Midterm 2 November 12, 2014 **Duration: 50 minutes**

This test has 5 questions (of unequal value) on 12 pages, for a total of 40 points.

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations. Answers without justifications will not be marked.
- Continue on the closest blank page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. No aids of any kind are allowed, including: documents, cheat sheets, electronic devices of any kind (including calculators, phones, etc.)

First Name: _____ Last Name: _____

Student-No: _____ Section: _____

Signature: _____

Question:	1	2	3	4	5	Total
Points:	10	8	10	7	5	40
Score:						

Student Conduct during Examinations 1. Each examination candidate must be prepared to produce, upon purposely exposing written papers to the view of other ex-(ii) amination candidates or imaging devices; the request of the invigilator or examiner, his or her UBCcard for identification. (iii) purposely viewing the written papers of other examination candidates; Examination candidates are not permitted to ask questions of the examiners or invigilators, except in cases of supposed errors or am-(iv) using or having visible at the place of writing any books, pabiguities in examination questions, illegible or missing material, or pers or other memory aid devices other than those authorized the like. by the examiner(s); and, 3. No examination candidate shall be permitted to enter the examinausing or operating electronic devices including but not lim-(v) tion room after the expiration of one-half hour from the scheduled ited to telephones, calculators, computers, or similar devices other than those authorized by the examiner(s)(electronic destarting time, or to leave during the first half hour of the examination. Should the examination run forty-five (45) minutes or less, no vices other than those authorized by the examiner(s) must be examination candidate shall be permitted to enter the examination completely powered down if present at the place of writing). room once the examination has begun. 6. Examination candidates must not destroy or damage any examina-4. Examination candidates must conduct themselves honestly and in tion material, must hand in all examination papers, and must not accordance with established rules for a given examination, which will be articulated by the examiner or invigilator prior to the examiner σ take any examination material from the examination room without permission of the examiner or invigilator. ination commencing. Should dishonest behaviour be observed by the examiner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received. 7. Notwithstanding the above, for any mode of examination that does not fall into the traditional, paper-based method, examination can-Examination candidates suspected of any of the following, or any didates shall adhere to any special rules for conduct as established other similar practices, may be immediately dismissed from the and articulated by the examiner. examination by the examiner/invigilator, and may be subject to disciplinary action: Examination candidates must follow any additional examination (i) speaking or communicating with other examination candirules or directions communicated by the examiner(s) or invigiladates, unless otherwise authorized; tor(s).

- 1. Consider the function $f(x, y) = (x 1)(y 2y^2)$, defined on the rectangle $R = \{(x, y) \mid 0 \le x \le 2, -1 \le y \le 1\}.$
- 5 marks (a) Find and classify all critical points of f on R.

Answer:

5 marks

(b) Determine the location and value of the absolute maximum and minimum of f on R.

8 marks 2. A closed cylindrical can must contain 1 litre of water (i.e., 1000 cubic centimetres). Determine the radius r and height h of the can that uses the minimal amount of metal.

3. A hiker stands on the slope of a mountain, whose altitude function is given by the equation

$$z = 100 \exp\left(-\frac{x^2 + y^2}{10000} + 0.02\right).$$

Her coordinates are (10, 10, 100). She holds a compass: the direction North is given by the vector (0, 1), and East by (1, 0).

(a) The hiker wants to climb to the top in the direction of the steepest slope. In which direction, given by its compass (e.g. North, South, North-East, etc...), must she walk?

Answer:

3 marks

4 marks

(b) She decides that the slope is too high, and that instead she will walk in a direction whose slope is 20%. What direction(s) can she take?

3 marks(c) Another hiker is walking from the point with coordinates (10, 10, 100) in another
direction. A GPS measures that as he walks, the rate of change of his x coordinate
is 0.2 m/s, and the rate of change of his y coordinate is 0.3 m/s. What is the rate
of change of his altitude z?

4. Consider the iterated integral

$$I = \int_0^1 \int_y^{\sqrt{y}} \cos(3x^2 - 2x^3) dx dy.$$

2 marks

(a) The integral I can be regarded as a double integral over a region D in the xy-plane. Draw a clearly labeled sketch of the region D.

2 marks (b) Write I as an iterated integral with the order of integration reversed.

5 marks 5. Consider the region in space consisting of points (x, y, z) which lie inside the cylinder $x^2 + y^2 \leq 1$, above the xy-plane, and below the plane x + y + z = 2. Using any method, determine the volume V of this region. (As always, explain your work; it may be helpful to use the fact that the area of the unit disk is π .)