The University of British Columbia

MATH 253

Midterm 2
14 November 2012

Time: 50 minutes
\square
FIRST NAME: LAST NAME :

STUDENT \#:

This Examination paper consists of 7 pages (including this one). Make sure you have all 7 .

INSTRUCTIONS:

No memory aids allowed. No calculators allowed. No communication devices allowed.
PLEASE CIRCLE YOUR INSTRUCTOR'S NAME BELOW

MARKING:

Q1	$/ 10$
Q2	$/ 12$
Q3	$/ 12$
Q4	$/ 16$
TOTAL	$/ 50$

$$
\text { MATH } 253 \text { Midterm } 2 \text { - } 14 \text { November } 2012 \text { - p. } 2 \text { of } 7
$$

Q1 [10 marks]

Find the volume of the region in 3 -space which is below the surface $z=1+3 x^{2} y^{2}$ and lies above the region in the xy-plane enclosed by the curves $x=y^{2}$ and $x=1$.

MATH 253 Midterm 2 - 14 November 2012 - p. 3 of 7

Q2

 [12 marks]Suppose $T(x, y, z)=x y^{2}-x+x^{2} z+y z^{2}$ gives the temperature at the point (x, y, z) in space.
(a) Find an equation of the plane tangent at $(1,2,1)$ to the level surface of T passing through that point.[4pts]
(b) At time $t=0$, a fly passes through $(1,2,1)$ moving toward the point $(4,2,5)$ at speed of 1 unit/sec. Calculate $\frac{d T}{d t}$ at $t=0$ for the fly.[4pts]

$$
\text { MATH } 253 \text { Midterm } 2 \text { - } 14 \text { November } 2012 \text { - p. } 4 \text { of } 7
$$

(c) A worm crawling on the plane $2 x-y+2 z=2$ passes through the point $(1,2,1)$. The worm wishes to keep his temperature constant while increasing z. In which direction should the worm move? Express your answer as a unit vector. [4pts]

MATH 253 Midterm 2 - 14 November 2012 - p. 5 of 7

Q3 [12 marks]
Consider the following iterated integral

$$
\int_{0}^{2} \int_{2-\sqrt{4-x^{2}}}^{x} f(x, y) d y d x
$$

(a) Sketch the region of integration. Be sure to label your axes and clearly mark x and y values on the axes. Give the coordinates of any intersection points. [4pt]
(b) Change the order of integration to $d x d y$. [4pt]
(c) Convert the integral to polar coordinates.[4pt]

$$
\text { MATH } 253 \text { Midterm } 2 \text { - } 14 \text { November } 2012 \text { - p. } 6 \text { of } 7
$$

Q4 [16 marks]

Consider the function $f(x, y)=(4 y+7) e^{-x^{2}-y^{2}}$ on the domain $x^{2}+y^{2} \leq 1$.
(a) Find all critical points of f which are inside the domain [4 pts]
(b) Classify each of the critical points on the inside of the domain as a "local maximum", "local minimum", "saddle points", or "discriminant is zero". [4 pts]

```
MATH 253 MidTERM 2-14 November 2012 - p. }7\mathrm{ of 7
```

(c) Use the method of Lagrange multipliers to find the maximum and minimum values of f on the boundary of the domain. [6pt]
(d) Find the absolute maximum and minimum values of f on its whole domain. You may use the fact that $e^{15 / 16}>11 / 8$. [2 pts]

