Final Examination — June 26, 2018 Duration: 2.5 hours This test has 8 questions on 12 pages, for a total of 100 points.

Sebastián Barbieri

- Read all the questions carefully before starting to work. Unless otherwise indicated, give complete arguments and explanations for all your calculations as answers without justification will not be marked.
- Continue on a blank page if you run out of space, and indicate this clearly on the original page.
- This is a closed-book examination. No aids of any kind are allowed, including: documents, cheat sheets, electronic devices of any kind (including calculators, phones, etc.)

First Name:	Solutions	Last Name:
-------------	-----------	------------

Student-No: ______ Section: _____

Signature:

Question:	1	2	3	4	5	6	7	8	Total
Points:	20	10	10	10	10	10	10	20	100
Score:									

Student Conduct of	luring Examinations
 Each examination candidate must be prepared to produce, upon the request of the invigilator or examiner, his or her UBCcard for identi- fication. 	 (ii) purposely exposing written papers to the view of other examination candidates or imaging devices; (iii) purposely viewing the written papers of other examination can-
 Examination candidates are not permitted to ask questions of the examiners or invigilators, except in cases of supposed errors or ambi- guities in examination questions, illegible or missing material, or the like. 	 (iv) using or having visible at the place of writing any books, papers or other memory aid devices other than those authorized by the examiner(s); and,
3. No examination candidate shall be permitted to enter the examina- tion room after the expiration of one-half hour from the scheduled starting time, or to leave during the first half hour of the examina- tion. Should the examination run forty-five (45) minutes or less, no examination candidate shall be permitted to enter the examination room once the examination has begun.	(v) using or operating electronic devices including but not limited to telephones, calculators, computers, or similar devices other than those authorized by the examiner(s)—(electronic devices other than those authorized by the examiner(s) must be com- pletely powered down if present at the place of writing).
4. Examination candidates must conduct themselves honestly and in ac- cordance with established rules for a given examination, which will be articulated by the examiner or invigilator prior to the examination commencing. Should dishonest behaviour be observed by the exam- iner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received.	6. Examination candidates must not destroy or damage any examina- tion material, must hand in all examination papers, and must not take any examination material from the examination room without permission of the examiner or invigilator.
 Examination candidates suspected of any of the following, or any other similar practices, may be immediately dismissed from the ex- amination by the examiner/invigilator, and may be subject to disci- plinary action: 	7. Notwithstanding the above, for any mode of examination that does not fall into the traditional, paper-based method, examination candi- dates shall adhere to any special rules for conduct as established and articulated by the examiner.
 speaking or communicating with other examination candidates, unless otherwise authorized; 	 Examination candidates must follow any additional examination rules or directions communicated by the examiner(s) or invigilator(s).

20 marks 1. There are twelve statements below which you may classify as true or false by marking the corresponding box with an X. The rules are as follows:

- Every correct answer gives you 2 points.
- Every wrong answer gives you -1 point.
- Every answer left blank gives you 0 points.
- You may not earn less than 0 points nor more than 20 points.
- Assume that the functions f, G referenced below are smooth enough (existence of second partial derivatives, equivalence of f_{xy} and f_{yx} , well defined level curves, existence of implicit functions, etc.)

	1	2	3	4	5	6	7	8	9	10	11	12
True	Х	Х			Х			Х		X		
False			Х	Х		Х	Х		Х		Х	Х

- 1. For any two (non-zero) non-parallel vectors \vec{u}, \vec{v} in \mathbb{R}^3 , $||\vec{u} \times \vec{v}|| > 0$.
- 2. If a continuous function f(x, y) is positive for every (x, y) in its domain D then $\iint_D f(x, y) dA \ge 0$.
- 3. If a point (a, b) in the domain of a function f(x, y) satisfies

$$f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)f_{yx}(a,b) = -3$$

then (a, b) is a saddle point.

- 4. If $\lim_{x\to 0} g(x, mx) = L$ for every value of m and $\lim_{y\to 0} g(0, y) = L$ then the limit $\lim_{(x,y)\to(0,0)} g(x, y)$ exists and is equal to L.
- 5. $||\vec{u} + \vec{v}|| = ||\vec{u}|| + ||\vec{v}||$ if and only if there exists $a \ge 0$ such that $\vec{u} = a\vec{v}$ or $\vec{v} = a\vec{u}$.
- 6. Every solution to the equations given by the method of Lagrange multipliers is a local minimum or local maximum of the associated problem.
- 7. For any three vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^3 we have $(\vec{u} \times \vec{v}) \times \vec{w} = \vec{u} \times (\vec{v} \times \vec{w})$.
- 8. Consider the surface defined by G(x, y, z) = 0. If G(a, b, c) = 0 then any vector in the tangent plane to the surface at (a, b, c) is orthogonal to $\nabla G(a, b, c)$.
- 9. Let z = f(x, y) and c = f(a, b). The gradient $\nabla f(a, b)$ is parallel to the curve described by f(x, y) = c at (a, b).
- 10. Let z = f(x, y). It is possible that $\nabla f(x, y) = (0, 0)$ and (x, y) is neither a minimum nor a maximum.
- 11. The surface described by $\frac{x^2}{a} + y^2 + z^2 = 1$ is an ellipse for all non-zero values of a.
- 12. If there are values a, b such that every contour of a function z = f(x, y) is of the form ax + by = c for some value of c then necessarily z = f(x, y) describes a plane.

4 marks

- 2. Consider the integral $I = \int_0^2 \int_{1-\frac{x}{2}}^{e^x} f(x,y) \, dy dx$
- 2 marks (a) Sketch the region D of integration.

$$\int_{0}^{2} \int_{1-\frac{x}{2}}^{e^{x}} f(x,y) \mathrm{d}y \mathrm{d}x = \int_{0}^{1} \int_{\underline{2-2y}}^{2} f(x,y) \, \mathrm{d}x \mathrm{d}y + \int_{1}^{\underline{e^{2}}} \int_{\underline{\ln(y)}}^{\underline{2}} f(x,y) \, \mathrm{d}x \mathrm{d}y$$

4 marks (c) Compute the value of I for
$$f(x, y) = y$$
.

Solution: $\int_{0}^{2} \int_{1-\frac{x}{2}}^{e^{x}} y \, dy dx = \int_{0}^{2} \left(\frac{y^{2}}{2}\right)_{1-\frac{x}{2}}^{e^{x}} \, dx$ $= \frac{1}{2} \int_{0}^{2} e^{2x} - (1 - x + \frac{x^{2}}{4}) \, dx$ $= \frac{1}{2} \left(\frac{e^{2x}}{2} - x + \frac{x^{2}}{2} - \frac{x^{3}}{12}\right)_{0}^{2}$ $= \frac{1}{2} \left(\frac{e^{4}}{2} - 2 + \frac{4}{2} - \frac{8}{12} - \frac{1}{2}\right) = \frac{e^{4}}{4} - \frac{7}{12}.$

Answer:
$$\frac{e^4}{4} - \frac{7}{12}$$

4 marks 3. (a) Evaluate $I = \iiint_E \sqrt{x^2 + y^2} \, dV$ over the region E bounded by $x^2 + y^2 + z^2 = 4$. Hint: Recall that $\sin^2(\phi) = \frac{1 - \cos(2\phi)}{2}$.

Solution: R is a sphere of radius 2. In spherical coordinates we get that $\sqrt{x^2 + y^2} = \rho \sin(\phi)$. Therefore

$$I = \int_0^{2\pi} \int_0^{\pi} \int_0^2 (\rho \sin(\phi)) \rho^2 \sin(\phi) d\rho d\phi d\theta$$

= $\left(\int_0^{2\pi} 1 d\theta \right) \cdot \left(\int_0^{\pi} \sin^2(\phi) d\phi \right) \cdot \left(\int_0^2 \rho^3 d\rho \right)$
= $(2\pi) \cdot \left(\int_0^{\pi} \frac{1 - \cos(2\phi)}{2} d\phi \right) \cdot \left(\frac{16}{4} \right)$
= $8\pi \left(\frac{\phi}{2} - \frac{\sin(2\phi)}{4} \right)_0^{\pi}$
= $4\pi^2$.

Answer: $I = 4\pi^2$.

6 marks (b) Consider the triple integral

$$J = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{x^2+y^2}^{1} f(x,y,z) \, \mathrm{d}z \mathrm{d}y \mathrm{d}x.$$

Fill in the blanks below where the order of integration has been changed.

$$J = \int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \int_{x^2+y^2}^{1} f(x,y,z) \, dz \, dx \, dy$$
$$J = \int_{-1}^{1} \int_{y^2}^{1} \int_{y^2}^{1} \int_{-\sqrt{z-y^2}}^{\sqrt{z-y^2}} f(x,y,z) \, dx \, dz \, dy$$

4. Consider a right circular cone of height H > 0 and radius a > 0. This cone may be defined as the solid between z = 0 and $z = H(1 - \frac{\sqrt{x^2 + y^2}}{a})$ in the region D in the xy-plane bounded by $x^2 + y^2 = a^2$.

Suppose that the density of the cone is proportional to the distance from the z-axis. In other words, there exists a constant k > 0 such that $\rho(x, y) = k\sqrt{x^2 + y^2}$.

rks (a) Compute the total mass M of the cone.

Solution: We wish to compute $\iiint_R \rho(x, y) dA$ where R is the cone. This looks nice in cylindrical coordinates.

$$M = \int_0^{2\pi} \int_0^a \int_0^{H(1-\frac{R}{a})} (kR)R \, \mathrm{d}z \, \mathrm{d}R \, \mathrm{d}\theta$$
$$= k \left(\int_0^{2\pi} 1 \mathrm{d}\theta \right) \cdot \left(\int_0^a \int_0^{H(1-\frac{R}{a})} R^2 \, \mathrm{d}z \, \mathrm{d}R \right)$$
$$= 2k\pi \left(\int_0^a R^2 H(1-\frac{R}{a}) \, \mathrm{d}R \right)$$
$$= 2k\pi H \left(\frac{R^3}{3} - \frac{R^4}{4a} \right)_0^a$$
$$= 2k\pi H \left(\frac{a^3}{3} - \frac{a^3}{4} \right) = \frac{kHa^3\pi}{6}$$

Answer: $M = \frac{kHa^3\pi}{6}$.

5 marks (b) Compute the centre of mass of the cone. You may leave your answers in terms of M.

Solution: By symmetry $\bar{x} = \bar{y} = 0$. We just need to compute \bar{z} .

$$\bar{z} = \frac{1}{M} \int_0^{2\pi} \int_0^a \int_0^{H(1-\frac{R}{a})} zkR^2 \, dz \, dR \, d\theta$$

$$= \frac{k}{M} \left(\int_0^{2\pi} 1 d\theta \right) \cdot \left(\int_0^a R^2 \int_0^{H(1-\frac{R}{a})} z \, dz \, dR \right)$$

$$= \frac{2k\pi}{M} \left(\int_0^a R^2 \left(\frac{z^2}{2} \right)_0^{H(1-\frac{R}{a})} \, dR \right)$$

$$= \frac{k\pi}{M} \left(\int_0^a R^2 H^2 (1-2\frac{R}{a}+\frac{R^2}{a^2}) \, dR \right)$$

$$= \frac{k\pi H^2}{M} \left(\frac{R^3}{3} - 2\frac{R^4}{4a} + \frac{R^5}{5a^2} \right)_0^a$$

$$= \frac{k\pi H^2}{M} \left(\frac{a^3}{3} - \frac{a^3}{2} + \frac{a^3}{5} \right) = \frac{k\pi H^2 a^3}{30M} = \frac{H}{5}$$

4 marks

Answer: $\bar{x} = 0.$ Answer: $\bar{y} = 0.$ Answer: $\bar{z} = \frac{H}{5}$ or $\frac{k\pi H^2 a^3}{30M}.$

1 mark

(c) Upon which of the parameters H, a and k of the problem above does the centre of mass $(\bar{x}, \bar{y}, \bar{z})$ depend?

Answer: Only H.

5. A long time ago in a galaxy far, far away, there was a little world inhabited exclusively by beautiful alpacas. Their world was so small and round that it could be modeled by a sphere $x^2 + y^2 + z^2 \leq R^2$.

2 marks

4 marks

(a) Suppose a surface is given by the equation z = f(x, y) on the domain D. State the integral formula for the surface area.

Answer:
$$\iint_D \sqrt{1 + ||\nabla f(x, y)||^2} \, \mathrm{d}A$$

(b) Let $0 \le c \le R$ be a fixed number. Compute the total surface area S of the portion of the alpaca planet that is above z = c.

Solution: The gradient $\nabla f(x,y)$ is $(\frac{-x}{\sqrt{R^2 - x^2 - y^2}}, \frac{-y}{\sqrt{R^2 - x^2 - y^2}})$, thus

$$\sqrt{1+||\nabla f(x,y)||^2} = \frac{n}{\sqrt{R^2 - x^2 - y^2}}$$

Hence, in polar coordinates we get

$$S = \int_0^{2\pi} \int_0^{\sqrt{R^2 - c^2}} \frac{R}{\sqrt{R^2 - \rho^2}} \rho \, \mathrm{d}\rho \mathrm{d}\theta$$
$$= -R\pi \int_{R^2}^{c^2} \frac{1}{\sqrt{u}} \, \mathrm{d}u$$
$$= -R\pi \left(2\sqrt{u}\right)_{R^2}^{c^2} = 2\pi R(R - c).$$

Where the change of variable was $u = R^2 - \rho^2$ with $du = -2\rho d\rho$.

Answer: $S = 2\pi R(R - c)$

4 marks (c) In the planet, three types of alpacas coexist in harmony: northern alpacas, tropical alpacas and southern alpacas. However, their diet is slightly different as each type eats a different type of grass. In order to avoid political struggles, the alpaca sages have decided that the surface above z = a will be sown with grass for northern alpacas, the land below z = b with grass for southern alpacas and the rest with grass for tropical alpacas. Furthermore, they will choose the values of a, b in such a way that the total surface of the planet corresponding to each type of alpaca is proportional with their population.

What are the values of a and b if the radius of the planet is R = 3[km] and the total population is composed of 10% northern alpacas, 50% tropical alpacas and 40% southern alpacas? Give your answer in [km].

Solution: From the formula above, the area of the upper hemisphere is obtained with c = 0. Thus the total surface of the planet is $4\pi R^2$. Imposing that $2\pi R(R - a) = 0.1 \cdot 4\pi R^2$ we obtain a = 0.8R. Similarly, (inverting the sphere) we obtain that b = -0.2R. Thus the solution is a = 2.4[km] and b = -0.6[km].

6. In an electrical circuit, the total resistance R of n resistors R_1, R_2, \ldots, R_n connected in parallel is the reciprocal of the sum of the reciprocals of the individual resistors.

Page 9 of 12

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Recall that the unit for resistance is Ohms $[\Omega]$ and that the value of a resistance is always non-negative.

(a) You are asked to build a circuit with three resistances R_1 , R_2 and R_3 connected in parallel such that $R_1 + R_2 + R_3 = 90[\Omega]$. What is the maximum total resistance R_{max} you could achieve if you are able to choose the values of R_1 , R_2 and R_3 ?

Solution: Implicit differentiation yields $\frac{\partial R}{\partial R_i} = \frac{R^2}{R_i^2}$. Using Lagrange multipliers we obtain that there is λ such that $R^2 = \lambda R_i^2$. We deduce that $R_1 = R_2 = R_3$. Plugging this into $R_1 + R_2 + R_3 = 90[\Omega]$ we obtain that each resistance should be $30[\Omega]$ and thus $R = 10[\Omega]$.

Answer:
$$R_{\text{max}} = 10[\Omega]$$
.

(b) Now you are given a circuit with three resistances connected in parallel. You measure the resistances and obtain that $R_1 = \frac{1}{2}[\Omega], R_2 = \frac{1}{2}[\Omega]$ and $R_3 = 1[\Omega]$ with a 1% error in each measurement. Use the method of total differentials to estimate the error in the total resistance of the circuit.

Solution: There are two possible interpretations. An error of 0.01 in each resistance or an error of $0.01R_i$. We will consider both correct. We compute $R = \frac{1}{5}[\Omega]$. Thus using total differentials we obtain that $dR = \frac{R^2}{R_1^2} dR_1 + \frac{R^2}{R_2^2} dR_2 + \frac{R^2}{R_3^2} dR_3$. Using the first interpretation we get:

$$\mathrm{d}R = \left(\frac{1}{5}\right)^2 \cdot \frac{1}{100} \cdot \left(2^2 + 2^2 + 1^2\right)$$

Thus $dR = \frac{9}{2500} [\Omega]$

Using the second interpretation we get:

$$\mathrm{d}R = \left(\frac{1}{5}\right)^2 \cdot \frac{1}{100} \cdot \left(\frac{2^2}{2} + \frac{2^2}{2} + 1\right)$$

Thus $dR = \frac{1}{500} [\Omega]$ Another interpretation takes 1% as relative error. The solution in that case

Answer: $dR = \frac{9}{2500}[\Omega]$ or $dR = \frac{1}{500}[\Omega]$.

5 marks

5 marks

7. Let $F(x, y, z) = x^2 + \frac{1}{2}y^2 + \frac{1}{2}z^4 - 1$ and consider the surface implicitly defined by the equation F(x, y, z) = 0.(a) Compute $\nabla F(x, y, z)$ 1 mark Answer: $\nabla F(x, y, z) = (2x, y, 2z^3).$ 3 marks (b) Compute the tangent plane to the surface at (1, 1, 1). Give it in the format Ax + By + Ay + By + AyCz = D.**Solution:** The tangent plane at (a, b, c) is given by the equation $\nabla F(a, b, c) \cdot (x - b)$ a, y - b, z - c) = 0. We have that $\nabla F(1, 1, 1) = (2, 1, 2)$ and thus we obtain 2(x-1) + (y-1) + 2(z-1) = 0, That is, 2x + y + 2z = 5. Answer: 2x + y + 2z = 5. (c) Give an equation describing the set of points on the surface at which the tangent plane 3 marks is orthogonal to the xy-plane. In one word describe the curve they form. **Solution:** At (a, b, c) the normal vector to the tangent plane is $\nabla(a, b, c)$. The normal vector to the xy-plane is $\vec{k} = (0, 0, 1)$. Thus we impose $\nabla(a, b, c) \cdot \vec{k} = 0$. This gives the condition $2a^3 = 0$ from where we deduce z = 0. Replacing in the equation of the surface gives $x^2 + \frac{1}{2}y^2 = 1$. An ellipse Answer: All (a, b, 0) such that $a^2 + \frac{b^2}{2} = 1$. That is, an ellipse. 3 marks (d) Describe the set of points on the surface at which the tangent plane at them passes through (0, 0, 0). **Solution:** We impose that (x, y, z) = (0, 0, 0) is a solution of $\nabla F(a, b, c) \cdot (x - b)$ a, y - b, z - c) = 0. We obtain $-2a^2 - b^2 - 2c^4 = 0$. As $2a^2 + b^2 + c^4 = 2$ for all points in the surface we obtain that $c^4 = -2$. This equation has no solution on \mathbb{R} ,

therefore, there are no points for which the condition holds.

Answer: There are none.

- 8. Consider the function $f(x, y) = x^2y^2 3x^2y 3xy^2 + 9xy$.
- 5 marks (a) Compute f_x , f_y , f_{xx} , f_{yy} and f_{xy} .

Answer: $f_x = 2xy^2 - 6xy - 3y^2 + 9y$.
Answer: $f_y = 2x^2y - 3x^2 - 6xy + 9x$.
Answer: $f_{xx} = 2y^2 - 6y$.
Answer: $f_{yy} = 2x^2 - 6x$
Answer: $f_{xy} = 4xy - 6x - 6y + 9.$

(b) Find all critical points of f. *hint:* both equations can be factorized into three terms. Try to factor either (2x - 3) or (2y - 3) out of them.

Solution: We impose that $\nabla F(x, y, z) = (0, 0)$. Factorizing the gradient we obtain the equations

$$y(y-3)(2x-3) = 0 (1)$$

$$x(x-3)(2y-3) = 0 (2)$$

Thus in (1) either y = 0, y = 3 or $x = \frac{1}{2}$. If y = 0, then either x = 0 or x = 3 solves (2). If y = 3, then either x = 0 or x = 3 solves (2). If $x = \frac{3}{2}$ only $y = \frac{3}{2}$ solves (2). We conclude that the critical points are (0,0), (0,3), (3,0), (3,3) and $(\frac{3}{2}, \frac{3}{2})$.

Answer: (0,0), (0,3), (3,0), (3,3) and $(\frac{3}{2}, \frac{3}{2})$.

3 marks (c) Classify the critical points of f.

Solution: We have $D(x,y) = (2x^2 - 6x)(2y^2 - 6y) - (4xy - 6x - 6y + 9)^2$. For (0,0), (0,3), (3,0) and (3,3) the first term is 0 and the second is nonzero, thus those are saddle points. For $(\frac{3}{2}, \frac{3}{2})$ we obtain that $D(\frac{3}{2}, \frac{3}{2}) > 0$. Also, $f_{xx}(\frac{3}{2}, \frac{3}{2}) < 0$, thus this is a local maximum.

Answer: (0,0), (0,3), (3,0), (3,3) are saddle points and $(\frac{3}{2}, \frac{3}{2})$ is a local maximum

4 marks

(d) Find the absolute maximum and minimum in the rectangle $D = [0, 4] \times [0, 3]$.

Solution: The only relevant critical point is $(\frac{3}{2}, \frac{3}{2})$ and $f(\frac{3}{2}, \frac{3}{2}) = \frac{81}{16}$. Along the border of D we have that f is identically zero along the lines x = 0, y = 0 and y = 3. Thus it remains to check the line x = 4 from y = 0 to 3. We define $g(y) = f(4, y) = 4y^2 - 12y$. Thus g'(y) = 8y - 12y. Plugging in this value we get $g(\frac{3}{2}) = -9$

Answer: $f_{\text{max}} = \frac{81}{16}$ at $(\frac{3}{2}, \frac{3}{2})$ and $f_{\text{min}} = -9$ at $(4, \frac{3}{2})$.

- 3 marks
- (e) Draw a sketch of a contour plot of f in the rectangle $[-1, 4] \times [-1, 4]$ with at least 5 different contours.

