

Student \# :
 \qquad Instructor's Name :

\qquad

Instructions:

No memory aids allowed. No calculators allowed. No communication devices allowed. Use the space provided on the exam. If you use the back of a page, write "see back" on the front of the page. This exam is 180 minutes long.

Question	Points	Score
1	21	
2	12	
3	6	
4	8	
5	9	
6	12	
7	12	
8	20	
Total:	100	

1. The following questions will be graded by answer only.
(a) 3 points Find a unit vector, with a positive \mathbf{k} component, which is parallel to the plane $x-2 y+z=3$ and perpendicular to the vector $\langle 1,1,1\rangle$.
(b) 3 points Let $z=\frac{1}{3}\left(1+x y^{2}\right)^{3}, x=g(t)$, and $y=h(t)$. Suppose that $g(0)=2$, $h(0)=1, g^{\prime}(0)=-3$, and $h^{\prime}(0)=5$. Compute the value of $\frac{d z}{d t}$ when $t=0$.
(c) 6 points Let $z(x, y)$ be defined implicitly by the equation $z^{3}+z+x+y^{2}=3$. Find
$\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ and $\frac{\partial^{2} z}{\partial x \partial y}$.
(d) 3 points Find the area of the triangle with vertices $(1,2,3),(4,6,2),(2,4,3)$.
(e) 3 points Let $u(x, t)=e^{t+a x}+e^{t-a x}$ where a is a parameter. Find a such that $5 u_{t}=u_{x x}+u$.
(f) 3 points A line through the origin makes an angle of 60 degrees with the x-axis and with the y-axis. What angle does it make with the z-axis?
2. The temperature is given by the function $T(x, y, z)=x^{3}+5 y z^{2}-17 z$.
(a) 3 points In what direction (given by a unit vector) does the temperature decrease fastest at the point $(-1,2,1)$?
(b) 3 points If you are at $(-1,2,1)$ does the temperature increase faster if you walk towards the point $(3,2,1)$ or towards the point $(-1,3,2)$? (show all your work!)
(c) 3 points Find the tangent plane to the level surface of T at the point $(-1,2,1)$.
(d) 3 points Using the value of T at $(-1,2,1)$ estimate the temperature at the point
3. Consider the integral

$$
\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \frac{y^{2}}{x^{8}} e^{x^{2}} d x d y
$$

(a) 2 points Sketch the domain of integration on the plot below

(b) 4 points Compute the integral.
4. 8 points Find the surface area of the part of the paraboloid $z=a^{2}-x^{2}-y^{2}$ which lies above the $x y$-plane.
5. 9 points The axes of the nine graphs below are all oriented in the standard way: the positive x-axis is on the left, the positive y-axis is on the right, and the positive z-axis is upward. Put the letter of the corresponding contour plot from the next page in the box below each graph.

In the contour plots below, the values of the contours are evenly spaced. Nine of these twelve plots correspond to graphs on the previous page.

6. 12 points Let E be the tetrahedron with vertices $(0,-1,0),(1,0,0),(0,1,0)$, and $(0,0,1)$. Compute the integral

$$
\iiint_{E} z d V
$$

7. 12 points Find the points on the ellipse $8 x^{2}+12 x y+17 y^{2}=100$ which are closest and farthest from the origin.
8. Consider the solid E which lies below the spherical surface $x^{2}+y^{2}+(z-1)^{2}=1$, and above the conical surface $z=\sqrt{x^{2}+y^{2}}$.
(a) $\frac{4 \text { points }}{\text { (yet!). }}$ Set up the integral $\iiint_{E} z d V$ in cylindrical coordinates. Do not evaluate
(b) 4 points
(yet!).
(c) 4 points Set up the integral $\iiint_{E} z d V$ in Cartesian coordinates. Do not evaluate
(yet!).
(d) 4 points Evaluate the integral $\iiint_{E} z d V$.
(e) 4 points Find the coordinates of the center of mass of the solid E, assuming it has constant mass density.
