Final Exam Math 253 Dec 4th, 2013

Last Name: _____ First Name: _____

Student # : _____ Instructor's Name : _____

Instructions: No memory aids allowed. No calculators allowed. No communication devices allowed. Use the space provided on the exam. If you use the back of a page, write "see back" on the front of the page. This exam is 180 minutes long.

Question	Points	Score
1	21	
2	12	
3	6	
4	8	
5	9	
6	12	
7	12	
8	20	
Total:	100	

- 1. The following questions will be graded by answer only.
 - (a) 3 points Find a unit vector, with a positive **k** component, which is parallel to the plane x 2y + z = 3 and perpendicular to the vector $\langle 1, 1, 1 \rangle$.

(b) 3 points Let $z = \frac{1}{3}(1 + xy^2)^3$, x = g(t), and y = h(t). Suppose that g(0) = 2, h(0) = 1, g'(0) = -3, and h'(0) = 5. Compute the value of $\frac{dz}{dt}$ when t = 0.

(c) 6 points Let z(x, y) be defined implicitly by the equation $z^3 + z + x + y^2 = 3$. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ and $\frac{\partial^2 z}{\partial x \partial y}$.

(d) $\boxed{3 \text{ points}}$ Find the area of the triangle with vertices (1, 2, 3), (4, 6, 2), (2, 4, 3).

(e) 3 points Let $u(x,t) = e^{t+ax} + e^{t-ax}$ where a is a parameter. Find a such that $5u_t = u_{xx} + u$.

(f) 3 points A line through the origin makes an angle of 60 degrees with the x-axis and with the y-axis. What angle does it make with the z-axis?

- 2. The temperature is given by the function $T(x, y, z) = x^3 + 5yz^2 17z$.
 - (a) 3 points In what direction (given by a unit vector) does the temperature **decrease** fastest at the point (-1, 2, 1)?

(b) 3 points If you are at (-1, 2, 1) does the temperature increase faster if you walk towards the point (3, 2, 1) or towards the point (-1, 3, 2)? (show all your work!)

(c) 3 points Find the tangent plane to the level surface of T at the point (-1, 2, 1).

(d) 3 points Using the value of T at (-1, 2, 1) estimate the temperature at the point (-0.98, 2.01, 0.97).

3. Consider the integral

 $\int_0^8 \int_{\sqrt[3]{y}}^2 \frac{y^2}{x^8} e^{x^2} dx dy$

(a) 2 points Sketch the domain of integration on the plot below

(b) 4 points Compute the integral.

4. 8 points Find the surface area of the part of the paraboloid $z = a^2 - x^2 - y^2$ which lies above the *xy*-plane.

5. 9 points The axes of the nine graphs below are all oriented in the standard way: the positive x-axis is on the left, the positive y-axis is on the right, and the positive z-axis is upward. Put the letter of the corresponding contour plot from the next page in the box below each graph.

In the contour plots below, the *values* of the contours are evenly spaced. Nine of these twelve plots correspond to graphs on the previous page.

6. 12 points Let E be the tetrahedron with vertices (0, -1, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Compute the integral

$$\iiint_E z \, dV$$

7. 12 points Find the points on the ellipse $8x^2 + 12xy + 17y^2 = 100$ which are closest and farthest from the origin.

- 8. Consider the solid E which lies below the spherical surface $x^2 + y^2 + (z 1)^2 = 1$, and above the conical surface $z = \sqrt{x^2 + y^2}$.
 - (a) 4 points Set up the integral $\iiint_E z \, dV$ in cylindrical coordinates. Do not evaluate (yet!).

(b) 4 points Set up the integral $\iiint_E z \, dV$ in spherical coordinates. Do not evaluate (yet!).

(c) 4 points Set up the integral $\iint_E z \, dV$ in Cartesian coordinates. Do not evaluate (yet!).

(d) 4 points Evaluate the integral $\iiint_E z \, dV$.

(e) 4 points Find the coordinates of the center of mass of the solid E, assuming it has constant mass density.