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• No candidate shall be permitted to enter the examination
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• Candidates are not permitted to ask questions of the in-
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in examination questions.
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than those authorized by the examiners.

(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other

candidates.
• Smoking is not permitted during examinations.
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1. [20pt] For the following questions, fill in the answers in the boxes. No work need to be
shown and no partial credit will be given.

(a) Find the angle between the two vectors v1 = (1, 0, 1) and v2 = (0, 1, 1).

Answer =

(b) Find the directional derivative of the function f(x, y) = ex+y along the direction of the
vector v = ( 1√

2
, 1√

2
) at x = 0, y = 1.

Answer =

(c) Find the tangent plane to the surface x(cos y)ez = 1 at the point (1, 0, 0).

Answer =
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1. (continue)

(d) What is
∂2

∂x2
(sin(x2y2z))?

Answer =

(e) If x(u, v) = u2 − v2 and y(u, v) = 2uv. What is the Jacobian (stretching) factor if we
change variables from (x, y) to (u, v)?

Answer =
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2. [12pt] Given three points A = (1, 2, 3), B = (1, 3, 4), C = (0, 1, 3).
(a) Find the equation of the plane E containing A, B, C.
(b) Find the area of the triangle with vertices A, B, C.
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3. [10pt] If z is defined implicitly as a function of x and y by

xy3 + x2z4 = 2,

what is
∂z

∂x
when x = y = z = 1?
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4. [12pt] Consider the function f(x, y) = x− y + 2x2 + 2y2.
(a) Find its critical points and values in the open disk x2 + y2 < 1.
(b) Find its maximum and minimum on the circle x2 + y2 = 1.
(c) Find its absolute maximum and minimum in the region x2 + y2 ≤ 1.
You need to specify which value is maximum and which value is minimum.
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5. [12pt] Find the closest points to the origin on the ellipse x2 + 4y2 + 2x = 3.
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6. [12pt] Consider the tetrahedron bounded by the four planes

x = 0, y = 0, z = 0, x + 2y + 3z = 6.

Find the limits of the integrals for its volume in the three different orders∫∫∫
dx dy dz,

∫∫∫
dy dx dz,

∫∫∫
dz dx dy.



December 2007 Math 253 Name: Page 9 out of 10

7. [10pt] Compute

∫∫
R

x dA where the region R looks like a slice of pizza:

R : x2 + y2 ≤ 4, 0 ≤ y ≤ x.
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8. [12pt] Find the mass of the solid in between the two spheres centered at the origin with
radii 1 and 2, above the xy-plane, and with density function z.
Hint: sin(2t) = 2 sin t cos t.


