Self-simulable groups

Sebastián **Barbieri Lemp** Universidad de Santiago de Chile

Joint work with Mathieu Sablik and Ville Salo

Liège March, 2023

Motivation

$$\Gamma = \langle s_1, \dots, s_n \mid r_1, \dots, r_k \rangle$$
, with $r_i \in \{s_1, \dots, s_n\}^*$.

Motivation

$$\Gamma = \langle s_1, \dots, s_n \mid r_1, \dots, r_k \rangle$$
, with $r_i \in \{s_1, \dots, s_n\}^*$.

> Finitely generated recursively presented group.

$$\Gamma = \langle s_1, \dots, s_n \mid r_1, r_2, \dots \rangle.$$

Where the sequence $(r_i)_{i\in\mathbb{N}}$ can be enumerated by a Turing machine.

Motivation

$$\Gamma = \langle s_1, \ldots, s_n \mid r_1, \ldots, r_k \rangle$$
, with $r_i \in \{s_1, \ldots, s_n\}^*$.

> Finitely generated recursively presented group.

$$\Gamma = \langle s_1, \dots, s_n \mid r_1, r_2, \dots \rangle.$$

Where the sequence $(r_i)_{i\in\mathbb{N}}$ can be enumerated by a Turing machine.

Theorem (Higman 1961)

Every (finitely generated) recursively presented group occurs as a subgroup of a finitely presented group.

Setting

What would a dynamical analogue of Higman's theorem look like?

Setting

What would a dynamical analogue of Higman's theorem look like?

Finitely presented group

Subshift of finite type

Recursively presented group

• $\Gamma \curvearrowright X$ is an effectively closed action.

Setting

What would a dynamical analogue of Higman's theorem look like?

Finitely presented group

Subshift of finite type

Recursively presented group

• $\Gamma \curvearrowright X$ is an effectively closed action.

▷ In simpler words, we want a statement of the form: "every action which can be described by a Turing machine can be obtained in some nice way from a subshift of finite type."

Subshift of finite type

Let A be a finite set and consider $A^{\Gamma}=\{x\colon\Gamma\to A\}$ with the prodiscrete topology and the action $\Gamma\curvearrowright A^{\Gamma}$ given by

$$(gx)(h) = x(g^{-1}h)$$
 for every $g, h \in \Gamma$.

Subshift of finite type

Let A be a finite set and consider $A^{\Gamma} = \{x \colon \Gamma \to A\}$ with the prodiscrete topology and the action $\Gamma \curvearrowright A^{\Gamma}$ given by

$$(gx)(h) = x(g^{-1}h)$$
 for every $g, h \in \Gamma$.

A subset $X \subset A^{\Gamma}$ is called a Γ -subshift if it is closed and Γ -invariant.

3

Subshift of finite type

Let A be a finite set and consider $A^{\Gamma} = \{x \colon \Gamma \to A\}$ with the prodiscrete topology and the action $\Gamma \curvearrowright A^{\Gamma}$ given by

$$(gx)(h) = x(g^{-1}h)$$
 for every $g, h \in \Gamma$.

A subset $X \subset A^{\Gamma}$ is called a Γ -subshift if it is closed and Γ -invariant.

Subshift of finite type

A set $Y \subset A^{\Gamma}$ is a Γ -subshift of finite type (SFT) is there is a finite set $F \subset \Gamma$ and $\mathcal{F} \subset A^F$ such that $y \in Y$ if and only if

$$(gy)|_F \notin \mathcal{F}$$
 for every $g \in \Gamma$.

A subshift is of finite type if it is the set of configurations $x \in A^{\Gamma}$ which avoid a finite list of forbidden patterns (represented by \mathcal{F}).

X can be described by a Turing machine

For a word $w=w_0w_1\dots w_{n-1}\in\{0,1\}^n$ consider the cylinder set

$$[w] = \{x \in \{0,1\}^{\mathbb{N}} : x|_{\{0,\dots,n-1\}} = w\}.$$

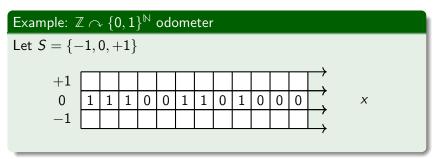
Effectively closed set

A set $X \subset \{0,1\}^{\mathbb{N}}$ is called **effectively closed** if it is closed and there is a Turing machine which enumerates a sequence of words $(w_n)_{n\in\mathbb{N}}$ such that

$$X = \{0,1\}^{\mathbb{N}} \setminus \bigcup_{n \in \mathbb{N}} [w_n].$$

4

$\Gamma \curvearrowright X$ can be described by a Turing machine



$\Gamma \curvearrowright X$ can be described by a Turing machine

$\Gamma \curvearrowright X$ can be described by a Turing machine



$\Gamma \curvearrowright X$ can be described by a Turing machine

$\Gamma \curvearrowright X$ can be described by a Turing machine



$\Gamma \curvearrowright X$ can be described by a Turing machine

$\Gamma \curvearrowright X$ can be described by a Turing machine

Idea: given a description of $x \in X$ and $g \in \Gamma$, we can compute gx.

We want Y to be an effectively closed set!

$\Gamma \curvearrowright X$ can be described by a Turing machine

Idea: given a description of $x \in X$ and $g \in \Gamma$, we can compute gx.

Let Γ be finitely generated by a symmetric set $S\ni 1_{\Gamma}$ and $X\subset\{0,1\}^{\mathbb{N}}$. Given $\Gamma\curvearrowright X$ consider the set

$$Y = \{y \in (\{0,1\}^S)^{\mathbb{N}} : \pi_s(y) = s \cdot \pi_{1_{\Gamma}}(y) \in X \text{ for every } s \in S\}.$$

Where
$$\pi_s(y) \in \{0,1\}^{\mathbb{N}}$$
 is such that $\pi_s(y)(n) = y(n)(s)$.

Effectively closed action

An action $\Gamma \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$ is effectively closed if Y is an effectively closed set.

Effectively closed action

An action $\Gamma \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$ is effectively closed if Y is an effectively closed set.

Note: In this talk we will always suppose that Γ has decidable word problem to avoid certain technicalities.

"Γ has decidable word problem if there's an algorithm that can draw arbitrarily large balls of its Cayley graph"

Example: natural actions of Thompson's groups

Consider $X = \{0,1\}^{\mathbb{N}}$ and let u_1, \ldots, u_n and v_1, \ldots, v_n be non-empty words in $\{0,1\}^*$ such that

$$X = [u_1] \sqcup [u_2] \sqcup \cdots \sqcup [u_n] = [v_1] \sqcup [v_2] \sqcup \cdots \sqcup [v_n].$$

Let φ be the homeomorphism of $\{0,1\}^{\mathbb{N}}$ which maps every cylinder $[u_i]$ to $[v_i]$ by replacing prefixes, that is

$$\varphi(u_i x) = v_i x$$
 for every $x \in \{0, 1\}^{\mathbb{N}}$.

Example: natural actions of Thompson's groups

Consider $X = \{0,1\}^{\mathbb{N}}$ and let u_1, \ldots, u_n and v_1, \ldots, v_n be non-empty words in $\{0,1\}^*$ such that

$$X = [u_1] \sqcup [u_2] \sqcup \cdots \sqcup [u_n] = [v_1] \sqcup [v_2] \sqcup \cdots \sqcup [v_n].$$

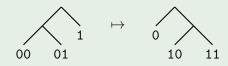
Let φ be the homeomorphism of $\{0,1\}^{\mathbb{N}}$ which maps every cylinder $[u_i]$ to $[v_i]$ by replacing prefixes, that is

$$\varphi(u_i x) = v_i x$$
 for every $x \in \{0, 1\}^{\mathbb{N}}$.

$$u_1 = 00, u_2 = 01, u_3 = 1 \text{ and } v_1 = 0, v_2 = 10, v_3 = 11.$$

$$\varphi(0101010...) = 1001010... \quad \varphi(0000000...) = 0000000...$$

$$\varphi(11111111...) = 11111111... \quad \varphi(0011001...) = 011001...$$



H Natural action of Thompson's groups

- F is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order.
- T is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order up to a cyclic permutation.
- *V* is the group of all such homeomorphisms.

- F is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order.
- T is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order up to a cyclic permutation.
- *V* is the group of all such homeomorphisms.

Then $F \leqslant T \leqslant V$ are Thompson's groups.

- F is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order.
- T is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order up to a cyclic permutation.
- *V* is the group of all such homeomorphisms.

Then $F \leqslant T \leqslant V$ are Thompson's groups.

 \triangleright these groups are finitely presented and have decidable word problem. Their natural action on $\{0,1\}^{\mathbb{N}}$ is effectively closed.

- F is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order.
- T is the group of all such homeomorphisms where u_1, \ldots, u_n and v_1, \ldots, v_n are given in lexicographical order up to a cyclic permutation.
- *V* is the group of all such homeomorphisms.

Then $F \leqslant T \leqslant V$ are Thompson's groups.

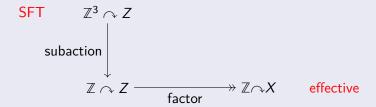
 \triangleright these groups are finitely presented and have decidable word problem. Their natural action on $\{0,1\}^{\mathbb{N}}$ is effectively closed.

- \bullet T, V are nonamenable.
- It is a famous open problem whether F is amenable.

What results are known?

Hochman's theorem, 2009

Every effectively closed action $\mathbb{Z} \curvearrowright X$ is the topological factor of a subaction of a \mathbb{Z}^3 -subshift of finite Z.

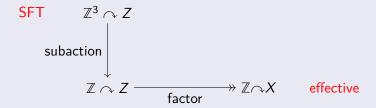


topological factor = image under a continuous $\Gamma\text{-}\text{equivariant}$ map

What results are known?

Hochman's theorem, 2009

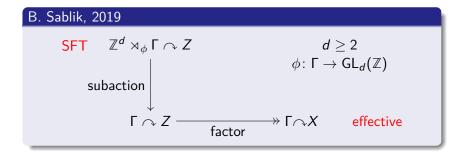
Every effectively closed action $\mathbb{Z} \curvearrowright X$ is the topological factor of a subaction of a \mathbb{Z}^3 -subshift of finite Z.



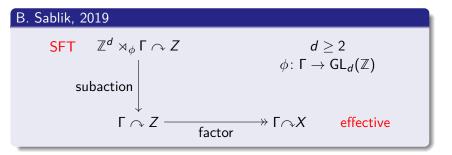
topological factor = image under a continuous Γ -equivariant map

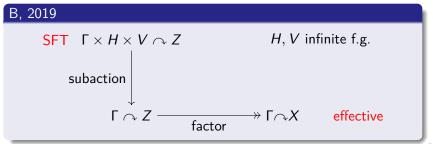
Moreover, the factor is nice (mod a group rotation, 1-1 in a set of full measure with respect to any invariant measure.)

Similar results for actions of groups



Similar results for actions of groups





A crazy question

Are there any groups Γ such that the diagram is as simple as possible?

In words: are there finitely generated groups Γ such that every effectively closed action $\Gamma \curvearrowright X$ is the topological factor of a Γ -SFT Z?

A crazy question

Are there any groups Γ such that the diagram is as simple as possible?

Holy grail
$$\fint \Box$$

$$\Gamma \curvearrowright Z \xrightarrow{\qquad \qquad } \Gamma \curvearrowright X$$
factor

In words: are there finitely generated groups Γ such that every effectively closed action $\Gamma \curvearrowright X$ is the topological factor of a Γ -SFT Z?

Theorem (B., Sablik, Salo 2021)

Yes.

Why is the question crazy?

Self-simulable group

A finitely generated group Γ is **self-simulable** if every effectively closed action $\Gamma \curvearrowright X$ is the topological factor of a Γ -SFT Z

A more proper name would be "groups with self-simulable zero-dimensional dynamics", but it is not that catchy.

Why is the question crazy?

Self-simulable group

A finitely generated group Γ is **self-simulable** if every effectively closed action $\Gamma \curvearrowright X$ is the topological factor of a Γ -SFT Z

A more proper name would be "groups with self-simulable zero-dimensional dynamics", but it is not that catchy.

- > there are a lot of obstructions to self-simulability.
 - Amenable groups cannot be self-simulable.
 - Groups with infinitely many ends cannot be self-simulable.
 - Some one-ended non-amenable groups are not self-simulable. Ex: $F_2 \times \mathbb{Z}$ (multi-ended \times amenable).

Amenable groups are not self-simulable

If Γ is amenable, we can associate to every action $\Gamma \curvearrowright X$ on a compact metrizable space by homeomorphisms a non-negative real number

$$h_{\mathsf{top}}(\Gamma \curvearrowright X) \in [0, +\infty].$$

called the **topological entropy** of $\Gamma \curvearrowright X$.

If Γ is amenable, we can associate to every action $\Gamma \curvearrowright X$ on a compact metrizable space by homeomorphisms a non-negative real number

$$h_{\mathsf{top}}(\Gamma \curvearrowright X) \in [0, +\infty].$$

called the **topological entropy** of $\Gamma \curvearrowright X$.

• If $\Gamma \curvearrowright X$ is expansive, then $h_{top}(\Gamma \curvearrowright X) < +\infty$.

If Γ is amenable, we can associate to every action $\Gamma \curvearrowright X$ on a compact metrizable space by homeomorphisms a non-negative real number

$$h_{\mathsf{top}}(\Gamma \curvearrowright X) \in [0, +\infty].$$

called the **topological entropy** of $\Gamma \curvearrowright X$.

- If $\Gamma \curvearrowright X$ is expansive, then $h_{top}(\Gamma \curvearrowright X) < +\infty$.
- Opological entropy cannot increase under factors.

If Γ is amenable, we can associate to every action $\Gamma \curvearrowright X$ on a compact metrizable space by homeomorphisms a non-negative real number

$$h_{\mathsf{top}}(\Gamma \curvearrowright X) \in [0, +\infty].$$

called the **topological entropy** of $\Gamma \curvearrowright X$.

- If $\Gamma \curvearrowright X$ is expansive, then $h_{top}(\Gamma \curvearrowright X) < +\infty$.
- 2 Topological entropy cannot increase under factors.
- **3** Conclusion: no action with entropy $+\infty$ can be the factor of a subshift.

If Γ is amenable, we can associate to every action $\Gamma \curvearrowright X$ on a compact metrizable space by homeomorphisms a non-negative real number

$$h_{\mathsf{top}}(\Gamma \curvearrowright X) \in [0, +\infty].$$

called the **topological entropy** of $\Gamma \curvearrowright X$.

- If $\Gamma \curvearrowright X$ is expansive, then $h_{top}(\Gamma \curvearrowright X) < +\infty$.
- 2 Topological entropy cannot increase under factors.
- **3** Conclusion: no action with entropy $+\infty$ can be the factor of a subshift.
- If Γ is recursively presented, there are effectively closed actions Γ ~ X with infinite entropy (the inverse limit of the full Γ-shifts on n symbols).

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

• No need for self-similar or hierarchical structures as in the other results in the literature.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

- No need for self-similar or hierarchical structures as in the other results in the literature.
- Proof based on the existence of paradoxical decompositions.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

- No need for self-similar or hierarchical structures as in the other results in the literature.
- Proof based on the existence of paradoxical decompositions.
- The technique is very flexible and allows for many other applications.

Non-amenable group

A group Γ is non-amenable if and only if it admits a **paradoxical** decomposition.

There is a partition $\Gamma = A \sqcup B$ and subpartitions

$$A = \bigsqcup_{i=1}^n A_i, \quad B = \bigsqcup_{j=1}^k B_j,$$

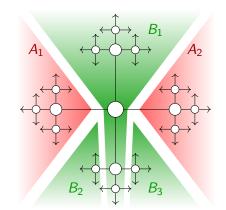
and elements $a_1, \ldots, a_n \in \Gamma$, $b_1, \ldots, b_k \in \Gamma$ such that

$$\Gamma = \bigsqcup_{i=1}^n a_i A_i = \bigsqcup_{j=1}^k b_j B_j.$$

$$\Gamma = A \cup B$$

$$A = A_1 \cup A_2$$

$$B = B_1 \cup B_2 \cup B_3$$

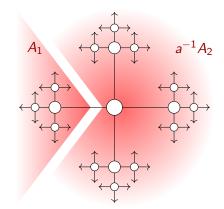


$$\Gamma = A \sqcup B$$

$$A = A_1 \sqcup A_2$$

$$B = B_1 \sqcup B_2 \sqcup B_3$$

$$\Gamma = A_1 \sqcup a^{-1}A_2$$

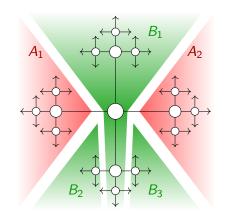


$$\Gamma = A \cup B$$

$$A = A_1 \cup A_2$$

$$B = B_1 \cup B_2 \cup B_3$$

$$\Gamma = A_1 \cup a^{-1}A_2$$



$$\Gamma = A \sqcup B$$

$$A = A_1 \sqcup A_2$$

$$B = B_1 \sqcup B_2 \sqcup B_3$$

$$\Gamma = A_1 \sqcup a^{-1}A_2$$

$$\Gamma = b^{-1}B_1 \sqcup B_2 \sqcup B_3$$

$$A = A_1 \sqcup A_2$$

$$A = A_1$$

> Paradoxical decompositions can be expressed analytically.

Non-amenable group

A group Γ is non-amenable if and only if there exists a finite set $K\subset \Gamma$ and a 2-to-1 map $\varphi\colon \Gamma\to \Gamma$ such that

$$g^{-1}\varphi(g) \in K$$
 for every $g \in \Gamma$.

> Paradoxical decompositions can be expressed analytically.

Non-amenable group

A group Γ is non-amenable if and only if there exists a finite set $K\subset \Gamma$ and a 2-to-1 map $\varphi\colon \Gamma\to \Gamma$ such that

$$g^{-1}\varphi(g) \in K$$
 for every $g \in \Gamma$.

 \triangleright The collection of all such maps can be coded using a Γ -subshift of finite type.

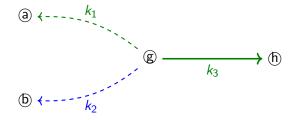
Alphabet =
$$K^3 \times \{G, B\}$$
.

- Three directions K^3 : one pointing to $\varphi(g)$, the next two pointing to the two preimages
- A color (green or blue) (partitioning the elements of the group into two paradoxical sets).

The paradoxical subshift

In pictures, the alphabet represents the following structure.

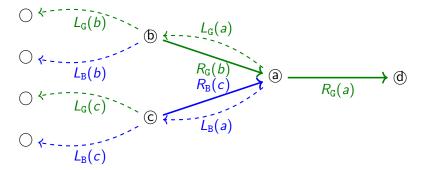
$$(k_1,k_2,k_3,\mathtt{G})\in K^3\times\{\mathtt{G},\mathtt{B}\}$$



- $a \neq b$,
- $\varphi(a) = ak_1^{-1} = g$,
- $\varphi(g) = gk_3 = h$.

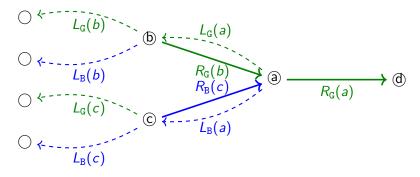
The paradoxical subshift

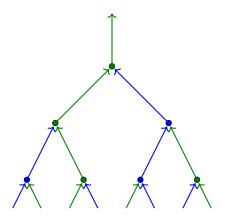
The local rules of the subshift impose that every node has two preimages of distinct color, and left arrows must match with right arrows.



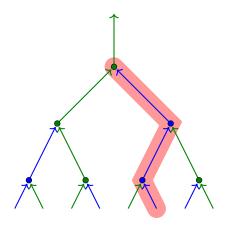
The paradoxical subshift

The local rules of the subshift impose that every node has two preimages of distinct color, and left arrows must match with right arrows.

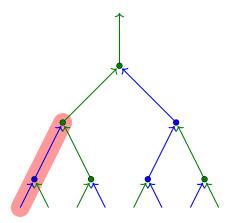




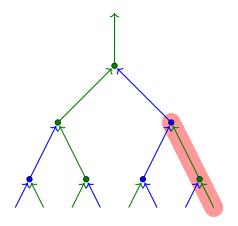
⊳ **Key observation**: In a bi-colored infinite binary tree, there is a canonical way to assign one-sided infinite paths to every node.

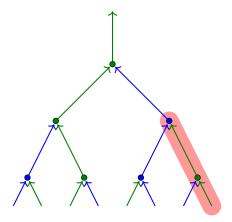


⊳ **Key observation**: In a bi-colored infinite binary tree, there is a canonical way to assign one-sided infinite paths to every node.



⊳ **Key observation**: In a bi-colored infinite binary tree, there is a canonical way to assign one-sided infinite paths to every node.





Follow the arrow tails of the opposite color!

The paths do not intersect.

The paradoxical shift

Let $\Gamma = \Gamma_1 \times \Gamma_2$ be the product of two non-amenable groups.

The paradoxical shift

Let $\Gamma = \Gamma_1 \times \Gamma_2$ be the product of two non-amenable groups.

 \triangleright taking the paradoxical subshift on each component and extending it trivially to Γ , we obtain a subshift of finite type on Γ with the property that every configuration induces:

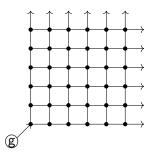
- a \mathbb{N}^2 -grid with moves in a finite set $K \subset \Gamma$ for every $g \in \Gamma$.
- The grids are pairwise disjoint.

The paradoxical shift

Let $\Gamma = \Gamma_1 \times \Gamma_2$ be the product of two non-amenable groups.

 \triangleright taking the paradoxical subshift on each component and extending it trivially to Γ , we obtain a subshift of finite type on Γ with the property that every configuration induces:

- a \mathbb{N}^2 -grid with moves in a finite set $K \subset \Gamma$ for every $g \in \Gamma$.
- The grids are pairwise disjoint.



> We use the grids to encode computation using Wang tilings.

 \vartriangleright We use the grids to encode computation using Wang tilings.

Given a Turing machine with alphabet Σ , states Q, starting state q_0 and transition function

$$\delta \colon Q \times \Sigma \to Q \times \Sigma \to \{-1,0,1\},$$

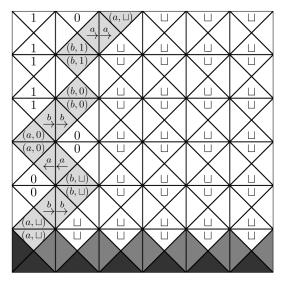
> We use the grids to encode computation using Wang tilings.

Given a Turing machine with alphabet Σ , states Q, starting state q_0 and transition function

$$\delta \colon Q \times \Sigma \to Q \times \Sigma \to \{-1, 0, 1\},$$

Where
$$\delta(s, b) = (s', b', 0)$$
, $\delta(\ell, c) = (\ell', c', -1)$ and $\delta(r, d) = (r', d', 1)$.

 $\,\rhd\,$ We use the grids to encode computation using Wang tilings.



In our case:

• Take the alphabet of the set representation of $\Gamma \curvearrowright X$ and use it as tape alphabet.

In our case:

- Take the alphabet of the set representation of $\Gamma \curvearrowright X$ and use it as tape alphabet.
- Encode the Turing machine which enumerates all cylinders which are in the complement of the set representation.

In our case:

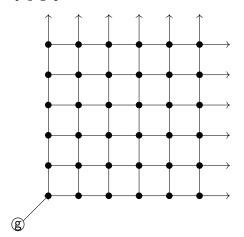
- Take the alphabet of the set representation of $\Gamma \curvearrowright X$ and use it as tape alphabet.
- Encode the Turing machine which enumerates all cylinders which are in the complement of the set representation.
- Take out the tiles containing the accepting state.

In our case:

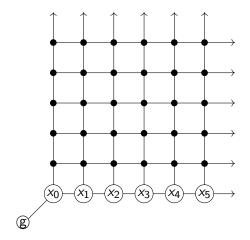
- Take the alphabet of the set representation of $\Gamma \curvearrowright X$ and use it as tape alphabet.
- Encode the Turing machine which enumerates all cylinders which are in the complement of the set representation.
- Take out the tiles containing the accepting state.

Result: The only remaining configurations are the ones in the set representation.

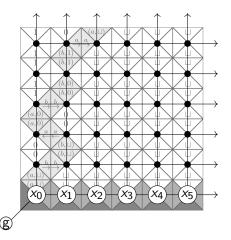
Start with $x = x_0x_1x_2x_3 \cdots \in A^{\mathbb{N}}$



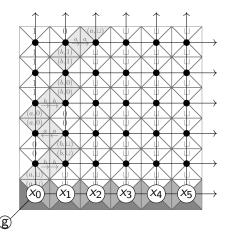
Start with $x = x_0x_1x_2x_3 \cdots \in A^{\mathbb{N}}$



Start with $x = x_0x_1x_2x_3 \cdots \in A^{\mathbb{N}}$



Start with $x = x_0 x_1 x_2 x_3 \cdots \in A^{\mathbb{N}}$



If the configuration survives (i.e. If the Turing machine does not stop), then x is in the set representation of $\Gamma \curvearrowright X$.

Now we have:

• A subshift which assigns to every $g \in \Gamma$ a \mathbb{N}^2 -grid.

Now we have:

- A subshift which assigns to every $g \in \Gamma$ a \mathbb{N}^2 -grid.
- For every $g \in \Gamma$, we have an element $y \in Y$ of the set representation of $\Gamma \curvearrowright X$.

Now we have:

- A subshift which assigns to every $g \in \Gamma$ a \mathbb{N}^2 -grid.
- For every $g \in \Gamma$, we have an element $y \in Y$ of the set representation of $\Gamma \curvearrowright X$.
- That is, for every $g \in \Gamma$ we have encoded $\{sx_g\}_{s \in S} \subset X$ for a generating set S of Γ .

Now we have:

- A subshift which assigns to every $g \in \Gamma$ a \mathbb{N}^2 -grid.
- For every $g \in \Gamma$, we have an element $y \in Y$ of the set representation of $\Gamma \curvearrowright X$.
- That is, for every $g \in \Gamma$ we have encoded $\{sx_g\}_{s \in S} \subset X$ for a generating set S of Γ .
- Weave together all the \mathbb{N}^2 -grids imposing that the configuration x_{gs} in gs coincides with $s^{-1}x_g$ through local rules.

Now we have:

- A subshift which assigns to every $g \in \Gamma$ a \mathbb{N}^2 -grid.
- For every $g \in \Gamma$, we have an element $y \in Y$ of the set representation of $\Gamma \curvearrowright X$.
- That is, for every $g \in \Gamma$ we have encoded $\{sx_g\}_{s \in S} \subset X$ for a generating set S of Γ .
- Weave together all the \mathbb{N}^2 -grids imposing that the configuration x_{gs} in gs coincides with $s^{-1}x_g$ through local rules.

Thus we obtain a natural factor map from this subshift of finite type to $\Gamma \curvearrowright X$.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

But we have more!

• Self-simulable groups are stable under commensurability.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

But we have more!

- Self-simulable groups are stable under commensurability.
- Self-simulable groups are stable under quasi-isometries of finitely presented groups.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

But we have more!

- Self-simulable groups are stable under commensurability.
- Self-simulable groups are stable under quasi-isometries of finitely presented groups.
- Any group which has a normal self-simulable subgroup is self-simulable.

Theorem (B., Sablik, Salo 2021)

The direct product $\Gamma = \Gamma_1 \times \Gamma_2$ of any pair of non-amenable finitely generated groups is self-simulable.

But we have more!

- Self-simulable groups are stable under commensurability.
- Self-simulable groups are stable under quasi-isometries of finitely presented groups.
- Any group which has a normal self-simulable subgroup is self-simulable.
- Any group Γ generated by S which has a self-simulable subgroup Δ with the property that $\Delta \cap s\Delta s^{-1}$ is non-amenable for every $s \in S$ is self-simulable.

Mixing the stability properties of this class, we obtain handy ways to show self-simulability:

Lemma

Let Γ be a finitely generated group which acts faithfully on $X=\{0,1\}^{\mathbb{N}}$ such that for any non-empty open set U the subgroup Γ_U which fixes every element of $X\setminus U$ is non-amenable. Then Γ is self-simulable.

Mixing the stability properties of this class, we obtain handy ways to show self-simulability:

Lemma

Let Γ be a finitely generated group which acts faithfully on $X=\{0,1\}^{\mathbb{N}}$ such that for any non-empty open set U the subgroup Γ_U which fixes every element of $X\setminus U$ is non-amenable. Then Γ is self-simulable.

Theorem: Thompson's V is self-simulable

Proof: Consider the natural action $V \curvearrowright \{0,1\}^{\mathbb{N}}$ of Thompson's V. For any non-trivial word $w \in \{0,1\}^*$ the subgroup of V which fixes $X \setminus [w]$ is isomorphic to V (which is non-amenable).

Very old and hard question: is Thompson's F amenable?

Very old and hard question: is Thompson's *F* amenable?

Theorem: Thompson's F is self-simulable if and only if F is non-amenable.

Very old and hard question: is Thompson's *F* amenable?

Theorem: Thompson's F is self-simulable if and only if F is non-amenable.

Proof: Amenable recursively presented groups are never self-simulable.

Consider the natural action $F \curvearrowright \{0,1\}^{\mathbb{N}}$ of Thompson's F. For any non-trivial word $w \in \{0,1\}^*$ the subgroup of F which fixes $X \setminus [w]$ is isomorphic to F. As we suppose that F is non-amenable, the lemma holds and we get that F is self-simulable.

Very old and hard question: is Thompson's *F* amenable?

Theorem: Thompson's F is self-simulable if and only if F is non-amenable.

Proof: Amenable recursively presented groups are never self-simulable.

Consider the natural action $F \curvearrowright \{0,1\}^{\mathbb{N}}$ of Thompson's F. For any non-trivial word $w \in \{0,1\}^*$ the subgroup of F which fixes $X \setminus [w]$ is isomorphic to F. As we suppose that F is non-amenable, the lemma holds and we get that F is self-simulable.

To show that F is amenable, it would then suffice to construct an effectively closed F-action which is not the factor of an F-subshift of finite type (no idea how to do this).

Very old and hard question: is Thompson's *F* amenable?

Theorem: Thompson's F is self-simulable if and only if F is non-amenable.

Proof: Amenable recursively presented groups are never self-simulable.

Consider the natural action $F \curvearrowright \{0,1\}^{\mathbb{N}}$ of Thompson's F. For any non-trivial word $w \in \{0,1\}^*$ the subgroup of F which fixes $X \setminus [w]$ is isomorphic to F. As we suppose that F is non-amenable, the lemma holds and we get that F is self-simulable.

To show that F is amenable, it would then suffice to construct an effectively closed F-action which is not the factor of an F-subshift of finite type (no idea how to do this).

By a similar argument, if F is non-amenable then T is self-simulable.

The following groups are self-simulable:

- Finitely generated non-amenable branch groups.
- The finitely presented simple groups of Burger and Mozes.
- Thompson's group V and higher-dimensional Brin-Thompson's groups nV.
- The general linear groups $GL_n(\mathbb{Z})$ and special linear groups $SL_n(\mathbb{Z})$ for $n \geq 5$.
- The automorphism group $\operatorname{Aut}(F_n)$ and outter automorphism group $\operatorname{Out}(F_n)$ of the free group on at least $n \geq 5$ generators.
- Braid groups B_n on at least $n \ge 7$ strands.
- Right-angled Artin groups associated to the complement of a finite connected graph for which there are two edges at distance at least 3.

ightharpoonup Suppose $\Gamma \curvearrowright X$ admits a free effectively closed action (for every $x \in X$ then gx = x implies that $g = 1_{\Gamma}$)

(SFT)
$$\Gamma \curvearrowright Z \xrightarrow{\text{factor}} \Gamma \curvearrowright X$$

ightharpoonup Suppose $\Gamma \curvearrowright X$ admits a free effectively closed action (for every $x \in X$ then gx = x implies that $g = 1_{\Gamma}$)

(SFT)
$$\Gamma \curvearrowright Z \xrightarrow{\text{factor}} \Gamma \curvearrowright X$$

Then the shift action of Γ on Z is free.

ightharpoonup Suppose $\Gamma \curvearrowright X$ admits a free effectively closed action (for every $x \in X$ then gx = x implies that $g = 1_{\Gamma}$)

(SFT)
$$\Gamma \curvearrowright Z \xrightarrow{\text{factor}} \Gamma \curvearrowright X$$

Then the shift action of Γ on Z is free.

Proof.

- Let $\phi \colon Z \to X$ be the factor map, and let $x \in Z$ and $g \in \Gamma$ such that gx = x.
- Then $g\phi(x) = \phi(gx) = \phi(x)$.
- As $\Gamma \curvearrowright X$ is free, we have $g = 1_{\Gamma}$. Thus $\Gamma \curvearrowright Z$ is free.

Theorem (Aubrun, B., Thomassé 2019)

Every finitely generated group with decidable word problem Γ admits an effectively closed Γ -subshift on which Γ acts freely.

Theorem (Aubrun, B., Thomassé 2019)

Every finitely generated group with decidable word problem Γ admits an effectively closed Γ -subshift on which Γ acts freely.

Corollary

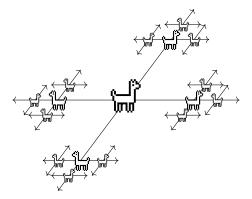
Every self-simulable group Γ with decidable word problem admits a Γ -SFT on which Γ acts freely.

Examples:

- $\Gamma = F_n \times F_n$.
- Thompson's V.
- Braid groups B_n , $n \ge 7$ strands.
- $GL_n(\mathbb{Z})$ and $SL_n(\mathbb{Z})$ for $n \geq 5$.

Note: If Γ is finitely generated, recursively presented and has undecidable word problem, there are no free effectively closed actions.

Thank you for your attention!



Groups with self-simulable zero-dimensional dynamics
S. Barbieri, M. Sablik and V. Salo
https://arxiv.org/abs/2104.05141