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Let A be a finite set and d ≥ 1 be an integer.
A configuration is a map x : Zd → A.

Let σ denote the Zd shift action on AZd given by

σn(x)(m) = x(n + m) for every n,m ∈ Zd .

We say two configurations x , y ∈ AZd are asymptotic if there
exists a finite F ⊂ Zd such that x |Zd\F = y |Zd\F .

The smallest such F = {n ∈ Zd : x(n) 6= y(n)} is their
difference set.

x , y are asymptotic if and only if for any sequence (nk)k∈N in Zd

with ‖nk‖ → ∞ then d(σnk (x), σnk (y))→ 0.

0



Let A be a finite set and d ≥ 1 be an integer.
A configuration is a map x : Zd → A.

Let σ denote the Zd shift action on AZd given by

σn(x)(m) = x(n + m) for every n,m ∈ Zd .

We say two configurations x , y ∈ AZd are asymptotic if there
exists a finite F ⊂ Zd such that x |Zd\F = y |Zd\F .

The smallest such F = {n ∈ Zd : x(n) 6= y(n)} is their
difference set.

x , y are asymptotic if and only if for any sequence (nk)k∈N in Zd

with ‖nk‖ → ∞ then d(σnk (x), σnk (y))→ 0.

0



Let A be a finite set and d ≥ 1 be an integer.
A configuration is a map x : Zd → A.

Let σ denote the Zd shift action on AZd given by

σn(x)(m) = x(n + m) for every n,m ∈ Zd .

We say two configurations x , y ∈ AZd are asymptotic if there
exists a finite F ⊂ Zd such that x |Zd\F = y |Zd\F .

The smallest such F = {n ∈ Zd : x(n) 6= y(n)} is their
difference set.

x , y are asymptotic if and only if for any sequence (nk)k∈N in Zd

with ‖nk‖ → ∞ then d(σnk (x), σnk (y))→ 0.

0



Let A be a finite set and d ≥ 1 be an integer.
A configuration is a map x : Zd → A.

Let σ denote the Zd shift action on AZd given by

σn(x)(m) = x(n + m) for every n,m ∈ Zd .

We say two configurations x , y ∈ AZd are asymptotic if there
exists a finite F ⊂ Zd such that x |Zd\F = y |Zd\F .

The smallest such F = {n ∈ Zd : x(n) 6= y(n)} is their
difference set.

x , y are asymptotic if and only if for any sequence (nk)k∈N in Zd

with ‖nk‖ → ∞ then d(σnk (x), σnk (y))→ 0.

0



x y

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

F = {(0, 0), (−1, 0), (0,−1)}.
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Let x , y ∈ AZd be asymptotic.
Given S b Zd and a pattern p ∈ AS let

[p] = {z ∈ AZd : z |S = p}.

We wish to compute how many times p occurs in x vs how many
times it occurs in y .

We say an asymptotic pair x , y is indistinguishable if ∆p(x , y) = 0
for every pattern p.
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Example: Let d = 2 and S = {(0, 0), (0, 1), (1, 0), (2, 0)}.

x y

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
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0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
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Example: Let d = 2 and S = {(0, 0), (0, 1), (1, 0), (2, 0)}.
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Example: Let d = 2 and S = {(0, 0), (0, 1), (1, 0), (2, 0)}.

x y

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

So for every pattern p with support S, we have ∆p(x , y) = 0.
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Examples:
(x , x) for any x ∈ AZd is an indistinguishable asymptotic pair.
We call it trivial.

If x , y ∈ AZd are asymptotic and on the same orbit
(σn(y) = x for some n ∈ Zd) then they are indistinguishable.

x y

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Do there exist indistinguishable asymptotic pairs which are
not on the same orbit?

4



Examples:
(x , x) for any x ∈ AZd is an indistinguishable asymptotic pair.
We call it trivial.
If x , y ∈ AZd are asymptotic and on the same orbit
(σn(y) = x for some n ∈ Zd) then they are indistinguishable.

x y

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Do there exist indistinguishable asymptotic pairs which are
not on the same orbit?

4



Origin of the question

Consider n balls with real weights given by a map f .

1

f (1)

2

f (2)

3

f (3)

4

f (4)

5

f (5)

6

f (6)

7

f (7)

n

f (n)

· · ·

¿What is the probability distribution µ = (µ1, . . . , µn) on
{1, . . . , n} that maximizes entropy plus average weight?

max
µ

(
H(µ) +

∫
f dµ

)
= max

µ

n∑
i=1

(−µi log(µi ) + f (i)µi ) .

Answer: Boltzmann’s distribution.

µk = exp(f (k))∑n
i=1 exp(f (i)) .
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Gibbs Measures

We can extend this idea to sets of configurations, yielding the
notion of Gibbs measures.

Denote the set of all asymptotic pairs (x , y) by A. The Boltzmann
distribution of a Gibbs measure is determined by a cocycle
Ψ: A → R, that is, a map which satisfies:

Ψ(x , y) = Ψ(x , z) + Ψ(z , y) for all (x , y), (y , z) ∈ A.

The space of continuous, shift-invariant cocycles B is a Banach
space with an appropriate norm.
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1 There is a natural evaluation map on B∗. For (x , y) ∈ A we
have evx ,y ∈ B∗ given by

evx ,y (Ψ) = Ψ(x , y) for every Ψ ∈ B.

2 It can be shown that the strong norm on B∗ for these
evaluation maps is given by

‖evx ,y‖ = sup
SbZd

1
|S|

∑
p∈AS

|∆p(x , y)|.

3 An asymptotic pair gives the trivial linear functional if
and only if it is indistinguishable.
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Do there exist indistinguishable asymptotic pairs which are
not on the same orbit (for Z)?

TM (2018): Probably not, it should be possible to prove this
using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this using
the Fine and Wilf theorem.
ŠS (2019): Probably not, it should be possible to prove this using
the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

Yes!
We completely characterize them on Z. They are closely connected
to Sturmian codings of irrational rotations.
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Basic properties of indistinguishable pairs:

Recall: (x , y) is indistinguishable if and only if ∆p(x , y) = 0 for
every S b Zd and pattern p ∈ AS .

Let (Sn)n∈N with Sn ↗ Zd . Then (x , y) is indistinguishable if and
only if ∆p(x , y) = 0 for every pattern p with support some Sn.

In particular, it suffices to check the property on rectangular
patterns (or words in the case of Z).

Indistinguishable asymptotic pairs are invariant under actions of
the affine group of Zd .

In particular, they are invariant under the shift map.
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Basic properties of indistinguishable pairs:

If (x , y) is an indistinguishable asymptotic pair and τ is a sliding
block code, then (τ(x), τ(y)) is an indistinguishable asymptotic
pair.

If (x , y) is an indistinguishable asymptotic pair and ϕ is a
substitution, then (ϕ(x), ϕ(y)) is an indistinguishable asymptotic
pair.

(xn, yn)n∈N converges in the asymptotic relation to (x , y) if
(xn)n∈N, (yn)n∈N converge to x , y respectively.
There is F b Zd such that the difference set of (xn, yn) is
contained in F for every n ∈ N.

If (xn, yn)n∈N converges in the asymptotic relation to (x , y) and
every pair (xn, yn) is indistinguishable, then (x , y) is
indistinguishable.
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Basic properties of indistinguishable pairs:

Let (x , y) be a non-trivial indistinguishable asymptotic pair. If x is
not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists p ∈ AS

which occurs at x exactly once (say σk(x) ∈ [p]).
1 As x , y are indistinguishable, p also occurs exactly once on y ,

say σm(y) ∈ [p].
2 Let (Sn)n∈N with Sn ↗ Zd and S ⊂ Sn. Let pn = σk(x)|Sn

3 By definition σk(x) ∈ [pn]. Also, this n is unique. By
indistinguishability, we must have σm(y) ∈ [pn].

4 As
⋂

n∈N[pn] = σk(x), we conclude that σk(x) = σm(y).
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The case of Z

On Z life is easier (as opposed to Zd with d ≥ 2):

Let (x , y) be a non-trivial indistinguishable asymptotic pair. If a
pattern p occurs in x , then it occurs intersecting their difference
set.

Corollary: If x , y are indistinguishable with difference set
F = J0, k − 1K then their word complexity satisfies

|Ln(x)| ≤ k + n − 1.
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The case of Z

Let (x , y) be a non-trivial indistinguishable asymptotic pair. If x is
recurrent, then it is uniformly recurrent.

In particular, if (x , y) is an indistinguishable asymptotic pair, with
x recurrent and difference set F = {0, 1} then:

1 x , y are uniformly recurrent.
2 |Ln(x)| = |Ln(y)| = n + 1

Thus x , y must be Sturmian configurations!
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Formally, given α ∈ [0, 1] \ Q let cα, c ′α ∈ {0, 1}Z be given by

cα(n) = bα(n + 1)c − bαnc.

c ′α(n) = dα(n + 1)e − dαne.

That is, the codings of the orbit of 0 under rotation by α in the
circle R/Z with partitions P = {[0, 1− α), [1− α, 1)} and
P ′ = {(0, 1− α], (1− α, 1]} respectively.
We call them characteristic Sturmian sequences of slope α.

The pair (cα, c ′α) is asymptotic with difference set F = {−1, 0}.

The pair (cα, c ′α) is indistinguishable. In fact, every pattern in their
language occurs exactly once intersecting each of their difference
sets.
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Theorem: B, Labbé and Starosta
Let x , y ∈ {0, 1}Z and assume that x is recurrent. The following
are equivalent:

(x , y) is an indistinguishable asymptotic pair with difference
set F = {−1, 0} such that x−1x0 = 10 and y−1y0 = 01

There exists α ∈ [0, 1] \ Q such that x = cα and y = c ′α are
the lower and upper characteristic Sturmian sequences of
slope α.

But there is more...
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The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta
Let x , y ∈ {0, 1}Z. The following are equivalent:

(x , y) is an indistinguishable asymptotic pair with difference
set F = {−1, 0} such that x−1x0 = 10 and y−1y0 = 01

there exists (αn)n∈N with αn ∈ [0, 1] \ Q such that

x = lim
n→∞

cαn and y = lim
n→∞

c ′αn .

But there is more...
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The general case can be obtained from Sturmians using shifts and
substitutions.
Theorem: B, Labbé and Starosta
Let A be a finite alphabet and x , y ∈ AZ a non-trivial asymptotic
pair. Then x , y is indistinguishable if and only if either

x is recurrent and there exists α ∈ [0, 1] \ Q, a substitution
ϕ : {0, 1} → A+ and an integer m ∈ Z such that

{x , y} = {σmϕ(σ(cα)), σmϕ(σ(c ′α))},

x is not recurrent and there exists a substitution
ϕ : {0, 1} → A+ and an integer m ∈ Z such that

{x , y} = {σmϕ(∞0.10∞), σmϕ(∞0.010∞)}.

17



What about d ≥ 2?

Things are much harder:
Patterns may occur without intersecting the difference set.
recurrent indistinguishable pairs may not be uniformly
recurrent.
Substitutions do not help reduce the problem to a small size
difference set (no good notion of derived sequences).
In general, there is no complexity bound.
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Example:

x y

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 1 0 0 1 0 1 0 0 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 1 0 1 0 0 1 0 0 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

The horizontal configuration is a 1-dimensional indistinguishable
pair, everything else is the symbol 2.

Recurrent but not uniformly recurrent.
Some patterns do not occur in the difference set.
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Theorem: B and Labbé.
Let d ≥ 1 and x , y ∈ {0, . . . , d}Zd be an asymptotic pair with
difference set F = {0,−e1, . . . ,−ed}. TFAE:

1 The asymptotic pair (x , y) is indistinguishable, satisfies the
flip condition and x is uniformly recurrent.

2 There exists a totally irrational vector α ∈ [0, 1)d such that
x = cα and y = c ′α are the characteristic multidimensional
Sturmian configurations of slope α.
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Theorem: B and Labbé.
Let d ≥ 1 and x , y ∈ {0, . . . , d}Zd be an asymptotic pair such that
x is uniformly recurrent and which satisfies the flip condition with
difference set F = {0,−e1, . . . ,−ed}. TFAE:

1 The asymptotic pair (x , y) is indistinguishable.
2 For every nonempty finite connected subset S ⊂ Zd and

p ∈ LS(x) ∪ LS(y), p intersects the difference set F exactly
once in both x and y .

3 For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

4 There exists a totally irrational vector α ∈ [0, 1)d such that
x = cα and y = c ′α are the characteristic multidimensional
Sturmian configurations of slope α.
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Given α = (α1, . . . , αd ) ∈ [0, 1]d , let τ ∈ Sd such that
1 ≥ ατ(1) ≥ ατ(2) ≥ · · · ≥ ατ(d) ≥ 0.

Then the partitions W and W ′ are given by:

1− ατ(1) 1− ατ(2)1− ατ(3) 1− ατ(d)0 1

· · ·

W0

W1

W2

Wd

W ′
0

W ′
1

W ′
2

W ′
d

The characteristic Sturmian configurations cα, c ′α of slope α are
the codings of 0 under the Zd -orbit generated by the rotations Rαi

and the partitions W and W ′ respectively.

(We ask that (1, α1, . . . , αd ) is rationally independent so that the
associated Zd action is free).
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Explicitly, given α = (α1, . . . , αd ) we have

cα : Zd → {0, . . . , d}

n 7→
d∑

i=1
(bαi + n · αc − bn · αc) ,

and

c ′α : Zd → {0, . . . , d}

n 7→
d∑

i=1
(dαi + n · αe − dn · αe) .

The configurations cα, c ′α are asymptotic with difference set
F = {0,−e1, . . . ,−ed}.
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Recall the picture from the beginning:

x y

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

We have x = cα and y = c ′α respectively for

α =
(√

2
2 ,
√
19− 4

)
.
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Flip Condition

Let x , y ∈ {0, . . . , d}Zd be an asymptotic pair. We say it satisfies
the flip condition if:

1 the difference set of x and y is F = {0,−e1, . . . ,−ed},
2 the restriction x |F is a bijection F → {0, . . . , d} such that

x0 = 0,
3 yn = xn − 1 mod (d + 1) for every n ∈ F .

The conditions above induce a permutation on {0, . . . , d} defined
by yn 7→ xn for every n ∈ F , which is the cyclic permutation
(0, 1, . . . , d) of the alphabet.
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The flip condition can be interpreted as flipping the unit hypercube
on a co-dimension 1 discrete subspace.
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Theorem: B and Labbé.
Let d ≥ 1 and x , y ∈ {0, . . . , d}Zd be an asymptotic pair such that
x is uniformly recurrent and which satisfies the flip condition with
difference set F = {0,−e1, . . . ,−ed}. TFAE:

1 The asymptotic pair (x , y) is indistinguishable.
2 For every nonempty finite connected subset S ⊂ Zd and

p ∈ LS(x) ∪ LS(y), p intersects the difference set F exactly
once in both x and y .

3 For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

4 There exists a totally irrational vector α ∈ [0, 1)d such that
x = cα and y = c ′α are the characteristic multidimensional
Sturmian configurations of slope α.
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For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

Say cα ∈ {0, 1, 2}Z
d and you need to know how many patterns

with support S b Z2 there are.
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For every nonempty finite connected subset S ⊂ Zd , we have

|LS(x)| = |LS(y)| = |F − S|.

Say cα ∈ {0, 1, 2}Z
d and you need to know how many patterns

with support S b Z2 there are.

S = F = F − S =

There are exactly 14 patterns with support S on a 2-dimensional
Sturmian configuration.
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Let (m1, . . . ,md ) ∈ Nd and consider the box

B =
d∏

i=1
J0,mi − 1K.

In this case we get a beautiful formula for the complexity of a
multidimensional Sturmian configuration x :

|LB(x)| = |L(m1,...,md )(x)| = m1 · · ·md

(
1 + 1

m1
+ · · ·+ 1

md

)
.

We can interpret it as |F − B|, which is the volume of R, plus the
volume of each of the d − 1 dimensional faces.
B For d = 1 we recover Ln(x) = n + 1.
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What’s next on this direction?

1 Maybe the Zd setting is completely wrong. Redefine
everything for Delone sets in Rd and use ad-hoc tools from
that setting (in progress in joint work with Sébastien Labbé).

2 Most of the basic properties hold for arbitrary countable
groups. Are there natural properties that would generate
interesting "Sturmian-like" configurations on groups?
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Thanks!

Indistinguishable asymptotic pairs and multidimensional
Sturmian configurations.

S. Barbieri, S. Labbé
https://arxiv.org/abs/2204.06413

A characterization of Sturmian sequences by
indistinguishable asymptotic pairs
S. Barbieri, S. Labbé, Š. Starosta

https://doi.org/10.1016/j.ejc.2021.103318
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