Sturmian configurations through asymptotic pairs

Sebastián Barbieri

Universidad de Santiago de Chile

Low Complexity Dynamical Systems - BRINMRC October, 2023

イロト イヨト イヨト イヨト ヨー わへの

- Let A be a finite set and $d \ge 1$ be an integer.
- A configuration is a map $x : \mathbb{Z}^d \to A$.

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

- Let A be a finite set and $d \ge 1$ be an integer.
- A configuration is a map $x \colon \mathbb{Z}^d \to A$.

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

We say two configurations $x, y \in A^{\mathbb{Z}^d}$ are **asymptotic** if there exists a finite $F \subset \mathbb{Z}^d$ such that $x|_{\mathbb{Z}^d \setminus F} = y|_{\mathbb{Z}^d \setminus F}$.

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三

- Let A be a finite set and $d \ge 1$ be an integer.
- A configuration is a map $x \colon \mathbb{Z}^d \to A$.

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

We say two configurations $x, y \in A^{\mathbb{Z}^d}$ are **asymptotic** if there exists a finite $F \subset \mathbb{Z}^d$ such that $x|_{\mathbb{Z}^d \setminus F} = y|_{\mathbb{Z}^d \setminus F}$.

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三

- Let A be a finite set and $d \ge 1$ be an integer.
- A configuration is a map $x \colon \mathbb{Z}^d \to A$.

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

We say two configurations $x, y \in A^{\mathbb{Z}^d}$ are **asymptotic** if there exists a finite $F \subset \mathbb{Z}^d$ such that $x|_{\mathbb{Z}^d \setminus F} = y|_{\mathbb{Z}^d \setminus F}$.

The smallest such F = {n ∈ Z^d : x(n) ≠ y(n)} is their difference set.

x, y are asymptotic if and only if for any sequence $(n_k)_{k\in\mathbb{N}}$ in \mathbb{Z}^d with $||n_k|| \to \infty$ then $d(\sigma^{n_k}(x), \sigma^{n_k}(y)) \to 0$.

・ロト ・ 日 ト ・ 日 ト ・ 日

 $F = \{(0,0), (-1,0), (0,-1)\}.$

・ロト・白 ト・モー・ モー うくぐ

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

<ロ> <回> <回> < 三> < 三> < 三> のQ()

• Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.

• Given $S \Subset \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

$$\Delta_p(x,y) = \sum_{u \in \mathbb{Z}^d} \mathbb{1}_{[p]}(\sigma^u(y)) - \mathbb{1}_{[p]}(\sigma^u(x)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

• Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.

 $\bullet~\mathsf{Given}~S \Subset \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

$$\Delta_p(x,y) = \sum_{u \in \overline{F-S}} \mathbf{1}_{[p]}(\sigma^u(y)) - \mathbf{1}_{[p]}(\sigma^u(x)).$$

・ロト・日本・日本・日本・日本

• Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.

• Given $S \Subset \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

$$\Delta_{p}(x,y) = \sum_{u \in \boxed{F-S}} \mathbb{1}_{[p]}(\sigma^{u}(y)) - \mathbb{1}_{[p]}(\sigma^{u}(x)).$$

We say an asymptotic pair x, y is indistinguishable if $\Delta_p(x, y) = 0$ for every pattern p.

x

у

1 0

E

イロト イポト イヨト イヨト

æ

E

イロト イヨト イヨト イヨト

æ

So for every pattern p with support S, we have $\Delta_p(x, y) = 0$.

3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Examples:

• (x, x) for any $x \in A^{\mathbb{Z}^d}$ is an indistinguishable asymptotic pair. We call it **trivial**. **Examples:**

- (x, x) for any $x \in A^{\mathbb{Z}^d}$ is an indistinguishable asymptotic pair. We call it **trivial**.
- If x, y ∈ A^{Z^d} are asymptotic and on the same orbit
 (σⁿ(y) = x for some n ∈ Z^d) then they are indistinguishable.

Do there exist indistinguishable asymptotic pairs which are not on the same orbit?

イロト イボト イヨト イヨト 二日

Origin of the question

Consider n balls with real weights given by a map f.

Origin of the question

Consider n balls with real weights given by a map f.

1 2 3 4 5 6 7 ... n

$$f(1)$$
 $f(2)$ $f(3)$ $f(4)$ $f(5)$ $f(6)$ $f(7)$ $f(n)$
*i*What is the probability distribution $\mu = (\mu_1, \dots, \mu_n)$ on $\{1, \dots, n\}$ that maximizes entropy plus average weight?

$$\max_{\mu} \left(H(\mu) + \int f d\mu \right) = \max_{\mu} \sum_{i=1}^{n} \left(-\mu_i \log(\mu_i) + f(i)\mu_i \right).$$

5

・ロ・・一部・・モ・・モ・ うへぐ

Origin of the question

Consider n balls with real weights given by a map f.

1 2 3 4 5 6 7 ... n

$$f(1)$$
 $f(2)$ $f(3)$ $f(4)$ $f(5)$ $f(6)$ $f(7)$ $f(n)$
 i What is the probability distribution $\mu = (\mu_1, \dots, \mu_n)$ on $\{1, \dots, n\}$ that maximizes entropy plus average weight?

$$\max_{\mu} \left(H(\mu) + \int f d\mu \right) = \max_{\mu} \sum_{i=1}^{n} \left(-\mu_i \log(\mu_i) + f(i)\mu_i \right).$$

Answer: Boltzmann's distribution.

$$\mu_k = \frac{\exp(f(k))}{\sum_{i=1}^n \exp(f(i))}.$$

Gibbs Measures

We can extend this idea to sets of configurations, yielding the notion of **Gibbs measures**.

Gibbs Measures

We can extend this idea to sets of configurations, yielding the notion of **Gibbs measures**.

Denote the set of all asymptotic pairs (x, y) by \mathcal{A} . The Boltzmann distribution of a Gibbs measure is determined by a **cocycle** $\Psi : \mathcal{A} \to \mathbb{R}$, that is, a map which satisfies:

$$\Psi(x,y) = \Psi(x,z) + \Psi(z,y)$$
 for all $(x,y), (y,z) \in \mathcal{A}$.

イロト イヨト イヨト イヨト 三日

Gibbs Measures

We can extend this idea to sets of configurations, yielding the notion of ${\mbox{Gibbs measures}}.$

Denote the set of all asymptotic pairs (x, y) by \mathcal{A} . The Boltzmann distribution of a Gibbs measure is determined by a **cocycle** $\Psi : \mathcal{A} \to \mathbb{R}$, that is, a map which satisfies:

$$\Psi(x,y) = \Psi(x,z) + \Psi(z,y)$$
 for all $(x,y), (y,z) \in \mathcal{A}$.

The space of continuous, shift-invariant cocycles \mathcal{B} is a Banach space with an appropriate norm.

● There is a natural evaluation map on B^{*}. For (x, y) ∈ A we have ev_{x,y} ∈ B^{*} given by

$$\operatorname{ev}_{x,y}(\Psi) = \Psi(x,y)$$
 for every $\Psi \in \mathcal{B}$.

● There is a natural evaluation map on B^{*}. For (x, y) ∈ A we have ev_{x,y} ∈ B^{*} given by

$$\operatorname{ev}_{x,y}(\Psi) = \Psi(x,y)$$
 for every $\Psi \in \mathcal{B}$.

It can be shown that the strong norm on B^{*} for these evaluation maps is given by

$$\|\mathrm{ev}_{x,y}\| = \sup_{S \in \mathbb{Z}^d} \frac{1}{|S|} \sum_{p \in \mathcal{A}^S} |\Delta_p(x,y)|.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

● There is a natural evaluation map on B^{*}. For (x, y) ∈ A we have ev_{x,y} ∈ B^{*} given by

$$\operatorname{ev}_{x,y}(\Psi) = \Psi(x,y)$$
 for every $\Psi \in \mathcal{B}$.

It can be shown that the strong norm on B^{*} for these evaluation maps is given by

$$\|\mathrm{ev}_{x,y}\| = \sup_{S \in \mathbb{Z}^d} \frac{1}{|S|} \sum_{\rho \in \mathcal{A}^S} |\Delta_{\rho}(x,y)|.$$

An asymptotic pair gives the trivial linear functional if and only if it is indistinguishable.

Do there exist indistinguishable asymptotic pairs which are not on the same orbit (for \mathbb{Z})?

Do there exist indistinguishable asymptotic pairs which are not on the same orbit (for \mathbb{Z})?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Do there exist indistinguishable asymptotic pairs which are not on the same orbit (for \mathbb{Z})?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021) \bigvee Yes! \bigvee We completely characterize them on \mathbb{Z} .

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

₩ Yes! ₩

We completely characterize them on \mathbb{Z} . They are closely connected to Sturmian codings of irrational rotations.

Recall: (x, y) is indistinguishable if and only if $\Delta_p(x, y) = 0$ for every $S \in \mathbb{Z}^d$ and pattern $p \in A^S$.

Recall: (x, y) is indistinguishable if and only if $\Delta_p(x, y) = 0$ for every $S \in \mathbb{Z}^d$ and pattern $p \in A^S$.

Let $(S_n)_{n \in \mathbb{N}}$ with $S_n \nearrow \mathbb{Z}^d$. Then (x, y) is indistinguishable if and only if $\Delta_p(x, y) = 0$ for every pattern p with support some S_n .

In particular, it suffices to check the property on rectangular patterns (or words in the case of \mathbb{Z}).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Recall: (x, y) is indistinguishable if and only if $\Delta_p(x, y) = 0$ for every $S \in \mathbb{Z}^d$ and pattern $p \in A^S$.

Let $(S_n)_{n \in \mathbb{N}}$ with $S_n \nearrow \mathbb{Z}^d$. Then (x, y) is indistinguishable if and only if $\Delta_p(x, y) = 0$ for every pattern p with support some S_n .

In particular, it suffices to check the property on rectangular patterns (or words in the case of \mathbb{Z}).

Indistinguishable asymptotic pairs are invariant under actions of the affine group of \mathbb{Z}^d .

In particular, they are invariant under the shift map.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

If (x, y) is an indistinguishable asymptotic pair and φ is a substitution, then $(\varphi(x), \varphi(y))$ is an indistinguishable asymptotic pair.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

If (x, y) is an indistinguishable asymptotic pair and φ is a substitution, then $(\varphi(x), \varphi(y))$ is an indistinguishable asymptotic pair.

 $(x_n, y_n)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) if

- $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ converge to x, y respectively.
- There is $F \Subset \mathbb{Z}^d$ such that the difference set of (x_n, y_n) is contained in F for every $n \in \mathbb{N}$.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

If (x, y) is an indistinguishable asymptotic pair and φ is a substitution, then $(\varphi(x), \varphi(y))$ is an indistinguishable asymptotic pair.

 $(x_n, y_n)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) if

- $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ converge to x, y respectively.
- There is $F \Subset \mathbb{Z}^d$ such that the difference set of (x_n, y_n) is contained in F for every $n \in \mathbb{N}$.

If $(x_n, y_n)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) and every pair (x_n, y_n) is indistinguishable, then (x, y) is indistinguishable.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^S$ which occurs at x exactly once (say $\sigma^k(x) \in [p]$).

イロン イロン イヨン イヨン 一日

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^S$ which occurs at x exactly once (say $\sigma^k(x) \in [p]$).

As x, y are indistinguishable, p also occurs exactly once on y, say σ^m(y) ∈ [p].

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^S$ which occurs at x exactly once (say $\sigma^k(x) \in [p]$).

- As x, y are indistinguishable, p also occurs exactly once on y, say σ^m(y) ∈ [p].
- **②** Let $(S_n)_{n \in \mathbb{N}}$ with $S_n \nearrow \mathbb{Z}^d$ and $S \subset S_n$. Let $p_n = \sigma^k(x)|_{S_n}$

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^S$ which occurs at x exactly once (say $\sigma^k(x) \in [p]$).

- As x, y are indistinguishable, p also occurs exactly once on y, say σ^m(y) ∈ [p].
- ② Let $(S_n)_{n \in \mathbb{N}}$ with $S_n \nearrow \mathbb{Z}^d$ and $S \subset S_n$. Let $p_n = \sigma^k(x)|_{S_n}$
- By definition $\sigma^k(x) \in [p_n]$. Also, this *n* is unique. By indistinguishability, we must have $\sigma^m(y) \in [p_n]$.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^S$ which occurs at x exactly once (say $\sigma^k(x) \in [p]$).

- As x, y are indistinguishable, p also occurs exactly once on y, say σ^m(y) ∈ [p].
- **②** Let $(S_n)_{n \in \mathbb{N}}$ with $S_n \nearrow \mathbb{Z}^d$ and $S \subset S_n$. Let $p_n = \sigma^k(x)|_{S_n}$
- By definition $\sigma^k(x) \in [p_n]$. Also, this *n* is unique. By indistinguishability, we must have $\sigma^m(y) \in [p_n]$.
- As $\bigcap_{n \in \mathbb{N}} [p_n] = \sigma^k(x)$, we conclude that $\sigma^k(x) = \sigma^m(y)$.

・ロト ・日 ・ モー・ モー・ うくつ

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$x = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ y = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$x = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$x = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ y = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$x = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ y = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$x = 1 0 0 1 0 0 1 0 1 0 1$$
$$y = 1 0 0 1 0 1 0 1 0 0 1$$

Corollary: If x, y are indistinguishable with difference set $F = [\![0, k - 1]\!]$ then their word complexity satisfies

$$|\mathcal{L}_n(x)| \leq k+n-1.$$

(日) (部) (注) (注) (三)

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

() x, y are uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

$$|\mathcal{L}_n(x)| = |\mathcal{L}_n(y)| = n+1$$

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

$$|\mathcal{L}_n(x)| = |\mathcal{L}_n(y)| = n+1$$

Thus x, y must be Sturmian configurations!

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

That is, the codings of the orbit of 0 under rotation by α in the circle \mathbb{R}/\mathbb{Z} with partitions $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}$ and $\mathcal{P}' = \{(0, 1 - \alpha], (1 - \alpha, 1]\}$ respectively. We call them characteristic Sturmian sequences of slope α .

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

That is, the codings of the orbit of 0 under rotation by α in the circle \mathbb{R}/\mathbb{Z} with partitions $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}$ and $\mathcal{P}' = \{(0, 1 - \alpha], (1 - \alpha, 1]\}$ respectively. We call them characteristic Sturmian sequences of slope α .

The pair $(c_{\alpha}, c'_{\alpha})$ is asymptotic with difference set $F = \{-1, 0\}$.

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

$$c_{\alpha}'(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

That is, the codings of the orbit of 0 under rotation by α in the circle \mathbb{R}/\mathbb{Z} with partitions $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}$ and $\mathcal{P}' = \{(0, 1 - \alpha], (1 - \alpha, 1]\}$ respectively. We call them characteristic Sturmian sequences of slope α .

The pair $(c_{\alpha}, c'_{\alpha})$ is asymptotic with difference set $F = \{-1, 0\}$.

The pair $(c_{\alpha}, c'_{\alpha})$ is indistinguishable. In fact, every pattern in their language occurs exactly once intersecting each of their difference sets.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume that x is recurrent. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set F = {−1,0} such that x₋₁x₀ = 10 and y₋₁y₀ = 01
- There exists α ∈ [0,1] \ Q such that x = c_α and y = c'_α are the lower and upper characteristic Sturmian sequences of slope α.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume that x is recurrent. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set F = {−1,0} such that x₋₁x₀ = 10 and y₋₁y₀ = 01
- There exists α ∈ [0,1] \ Q such that x = c_α and y = c'_α are the lower and upper characteristic Sturmian sequences of slope α.

But there is more...

The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$
- there exists $(\alpha_n)_{n\in\mathbb{N}}$ with $\alpha_n\in[0,1]\setminus\mathbb{Q}$ such that

$$x = \lim_{n \to \infty} c_{\alpha_n}$$
 and $y = \lim_{n \to \infty} c'_{\alpha_n}$.

イロン イロン イヨン イヨン 一日

The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$
- there exists $(\alpha_n)_{n\in\mathbb{N}}$ with $\alpha_n\in[0,1]\setminus\mathbb{Q}$ such that

$$x = \lim_{n \to \infty} c_{\alpha_n}$$
 and $y = \lim_{n \to \infty} c'_{\alpha_n}$.

But there is more ...

(ロ) (部) (目) (日) (日) (の)
The general case can be obtained from Sturmians using shifts and substitutions.

Theorem: B, Labbé and Starosta

Let A be a finite alphabet and $x, y \in A^{\mathbb{Z}}$ a non-trivial asymptotic pair. Then x, y is indistinguishable if and only if either

• x is recurrent and there exists $\alpha \in [0, 1] \setminus \mathbb{Q}$, a substitution $\varphi \colon \{0, 1\} \to A^+$ and an integer $m \in \mathbb{Z}$ such that

$$\{x,y\} = \{\sigma^m \varphi(\sigma(c_\alpha)), \sigma^m \varphi(\sigma(c'_\alpha))\},\$$

• x is not recurrent and there exists a substitution $\varphi \colon \{0,1\} \to A^+$ and an integer $m \in \mathbb{Z}$ such that

$$\{x, y\} = \{\sigma^m \varphi(^{\infty} 0.10^{\infty}), \sigma^m \varphi(^{\infty} 0.010^{\infty})\}.$$

What about $d \ge 2$?

Things are much harder:

- Patterns may occur without intersecting the difference set.
- recurrent indistinguishable pairs may not be uniformly recurrent.
- Substitutions do not help reduce the problem to a small size difference set (no good notion of derived sequences).
- In general, there is no complexity bound.

Example:

х у 2

The horizontal configuration is a 1-dimensional indistinguishable pair, everything else is the symbol 2.

(I) < (II) < (II) < (II) < (II) </p>

Example:

The horizontal configuration is a 1-dimensional indistinguishable pair, everything else is the symbol 2.

- Recurrent but not uniformly recurrent.
- Some patterns do not occur in the difference set.

イロト イポト イヨト イヨト

Theorem: B and Labbé.

Let $d \ge 1$ and $x, y \in \{0, \dots, d\}^{\mathbb{Z}^d}$ be an asymptotic pair with difference set $F = \{0, -e_1, \dots, -e_d\}$. TFAE:

- The asymptotic pair (x, y) is indistinguishable, satisfies the flip condition and x is uniformly recurrent.
- Phere exists a totally irrational vector α ∈ [0, 1)^d such that x = c_α and y = c'_α are the characteristic multidimensional Sturmian configurations of slope α.

Theorem: B and Labbé.

Let $d \ge 1$ and $x, y \in \{0, \dots, d\}^{\mathbb{Z}^d}$ be an asymptotic pair such that x is uniformly recurrent and which satisfies the **flip condition** with difference set $F = \{0, -e_1, \dots, -e_d\}$. TFAE:

- The asymptotic pair (x, y) is indistinguishable.
- Provide a structure of the structure
- **③** For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |F - S|.$$

There exists a totally irrational vector α ∈ [0, 1)^d such that x = c_α and y = c'_α are the characteristic multidimensional Sturmian configurations of slope α.

Given
$$\alpha = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$$
, let $\tau \in S_d$ such that
 $1 \ge \alpha_{\tau(1)} \ge \alpha_{\tau(2)} \ge \dots \ge \alpha_{\tau(d)} \ge 0.$

Explicitly, given $\alpha = (\alpha_1, \ldots, \alpha_d)$ we have

$$c_{\alpha}: \mathbb{Z}^{d} \rightarrow \{0, \dots, d\}$$
$$n \mapsto \sum_{i=1}^{d} \left(\lfloor \alpha_{i} + n \cdot \alpha \rfloor - \lfloor n \cdot \alpha \rfloor \right),$$

 and

$$c'_{\alpha}: \mathbb{Z}^{d} \rightarrow \{0, \dots, \mathbf{d}\}$$
$$n \mapsto \sum_{i=1}^{d} \left(\left\lceil \alpha_{i} + n \cdot \alpha \right\rceil - \left\lceil n \cdot \alpha \right\rceil \right).$$

・ロト・日本・モン・モー うへの

Explicitly, given $\alpha = (\alpha_1, \ldots, \alpha_d)$ we have

$$c_{\alpha}: \mathbb{Z}^{d} \rightarrow \{0, \dots, d\}$$
$$n \mapsto \sum_{i=1}^{d} \left(\lfloor \alpha_{i} + n \cdot \alpha \rfloor - \lfloor n \cdot \alpha \rfloor \right),$$

and

$$\begin{aligned} c'_{\alpha} : & \mathbb{Z}^d & \to & \{0, \dots, d\} \\ & n & \mapsto & \sum_{i=1}^d \left(\left\lceil \alpha_i + n \cdot \alpha \right\rceil - \left\lceil n \cdot \alpha \right\rceil \right). \end{aligned}$$

The configurations c_{α}, c'_{α} are asymptotic with difference set $F = \{0, -e_1, \dots, -e_d\}.$

Recall the picture from the beginning:

х y 2 1 1 0

We have $x = c_{\alpha}$ and $y = c'_{\alpha}$ respectively for

$$\alpha = \left(\frac{\sqrt{2}}{2}, \sqrt{19} - 4\right).$$

크

イロト イポト イヨト イヨト

Flip Condition

Let $x, y \in \{0, ..., d\}^{\mathbb{Z}^d}$ be an asymptotic pair. We say it satisfies the **flip condition** if:

- the difference set of x and y is $F = \{0, -e_1, \dots, -e_d\}$,
- 3 the restriction $x|_F$ is a bijection $F \to \{0, \ldots, d\}$ such that $x_0 = 0$,

3
$$y_n = x_n - 1 \mod (d+1)$$
 for every $n \in F$.

Flip Condition

Let $x, y \in \{0, ..., d\}^{\mathbb{Z}^d}$ be an asymptotic pair. We say it satisfies the **flip condition** if:

- the difference set of x and y is $F = \{0, -e_1, \dots, -e_d\}$,
- ② the restriction $x|_F$ is a bijection $F \rightarrow \{0, ..., d\}$ such that $x_0 = 0$,

$$3 \ y_n = x_n - 1 \ {\rm mod} \ (d+1) \ {\rm for} \ {\rm every} \ n \in F.$$

The conditions above induce a permutation on $\{0, ..., d\}$ defined by $y_n \mapsto x_n$ for every $n \in F$, which is the cyclic permutation (0, 1, ..., d) of the alphabet.

The flip condition can be interpreted as flipping the unit hypercube on a co-dimension 1 discrete subspace.

Theorem: B and Labbé.

Let $d \ge 1$ and $x, y \in \{0, \dots, d\}^{\mathbb{Z}^d}$ be an asymptotic pair such that x is uniformly recurrent and which satisfies the **flip condition** with difference set $F = \{0, -e_1, \dots, -e_d\}$. TFAE:

- The asymptotic pair (x, y) is indistinguishable.
- Provide a structure of the structure
- **③** For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |F - S|.$$

There exists a totally irrational vector α ∈ [0, 1)^d such that x = c_α and y = c'_α are the characteristic multidimensional Sturmian configurations of slope α.

For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have $|\mathcal{L}_S(x)| = |\mathcal{L}_S(y)| = |F - S|.$

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |\mathcal{F} - \mathcal{S}|.$$

Say $c_{\alpha} \in \{0, 1, 2\}^{\mathbb{Z}^d}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^2$ there are.

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |\mathcal{F} - \mathcal{S}|.$$

Say $c_{\alpha} \in \{0, 1, 2\}^{\mathbb{Z}^d}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^2$ there are.

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |\mathcal{F} - \mathcal{S}|.$$

Say $c_{\alpha} \in \{0, 1, 2\}^{\mathbb{Z}^d}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^2$ there are.

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |F - S|.$$

Say $c_{\alpha} \in \{0, 1, 2\}^{\mathbb{Z}^d}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^2$ there are.

$$|\mathcal{L}_{\mathcal{S}}(x)| = |\mathcal{L}_{\mathcal{S}}(y)| = |\mathcal{F} - \mathcal{S}|.$$

Say $c_{\alpha} \in \{0, 1, 2\}^{\mathbb{Z}^d}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^2$ there are.

There are exactly 14 patterns with support S on a 2-dimensional Sturmian configuration.

Let $(m_1, \ldots, m_d) \in \mathbb{N}^d$ and consider the box

$$B=\prod_{i=1}^d \llbracket 0, m_i-1 \rrbracket.$$

In this case we get a beautiful formula for the complexity of a multidimensional Sturmian configuration *x*:

$$|\mathcal{L}_B(x)| = |\mathcal{L}_{(m_1,\ldots,m_d)}(x)| = m_1 \cdots m_d \left(1 + \frac{1}{m_1} + \cdots + \frac{1}{m_d}\right).$$

Let $(m_1, \ldots, m_d) \in \mathbb{N}^d$ and consider the box

$$B=\prod_{i=1}^d \llbracket 0, m_i-1 \rrbracket.$$

In this case we get a beautiful formula for the complexity of a multidimensional Sturmian configuration *x*:

$$|\mathcal{L}_B(x)| = |\mathcal{L}_{(m_1,...,m_d)}(x)| = m_1 \cdots m_d \left(1 + \frac{1}{m_1} + \cdots + \frac{1}{m_d}\right).$$

We can interpret it as |F - B|, which is the volume of R, plus the volume of each of the d - 1 dimensional faces.

Let $(m_1, \ldots, m_d) \in \mathbb{N}^d$ and consider the box

$$B=\prod_{i=1}^d \llbracket 0, m_i-1 \rrbracket.$$

In this case we get a beautiful formula for the complexity of a multidimensional Sturmian configuration *x*:

$$|\mathcal{L}_B(x)| = |\mathcal{L}_{(m_1,...,m_d)}(x)| = m_1 \cdots m_d \left(1 + \frac{1}{m_1} + \cdots + \frac{1}{m_d}\right).$$

We can interpret it as |F - B|, which is the volume of R, plus the volume of each of the d - 1 dimensional faces. \triangleright For d = 1 we recover $\mathcal{L}_n(x) = n + 1$.

What's next on this direction?

What's next on this direction?

• Maybe the \mathbb{Z}^d setting is completely wrong.

What's next on this direction?

- Maybe the Z^d setting is completely wrong. Redefine everything for Delone sets in ℝ^d and use ad-hoc tools from that setting (in progress in joint work with Sébastien Labbé).
- Most of the basic properties hold for arbitrary countable groups. Are there natural properties that would generate interesting "Sturmian-like" configurations on groups?

Thanks!

 Indistinguishable asymptotic pairs and multidimensional Sturmian configurations.
 S. Barbieri, S. Labbé https://arxiv.org/abs/2204.06413
 A characterization of Sturmian sequences by indistinguishable asymptotic pairs
 S. Barbieri, S. Labbé, Š. Starosta https://doi.org/10.1016/j.ejc.2021.103318

イロン イロン イヨン イヨン 一日