The Lanford-Ruelle theorem for sofic groups

Sebastián Barbieri

Universidad de Santiago de Chile

Joint work with Tom Meyerovitch

UT Groups and Dynamics November, 2022

イロト イヨト イヨト イヨト 二日

Consider *n* particles with weights on \mathbb{R} given by a function *f*

・ロト・日本・日本・日本・日本・日本

Consider *n* particles with weights on \mathbb{R} given by a function *f*

Which is the probability distribution $\mu = (\mu_1, \dots, \mu_n)$ on $\{1, \dots, n\}$ that maximizes entropy plus the integral of the weight?

$$\max_{\mu} \left(H(\mu) + \int f d\mu \right) = \max_{\mu} \sum_{i=1}^{n} \left(-\mu_i \log(\mu_i) + f(i)\mu_i \right).$$

Consider *n* particles with weights on \mathbb{R} given by a function *f*

Which is the probability distribution $\mu = (\mu_1, \dots, \mu_n)$ on $\{1, \dots, n\}$ that maximizes entropy plus the integral of the weight?

$$\max_{\mu} \left(H(\mu) + \int f d\mu \right) = \max_{\mu} \sum_{i=1}^{n} \left(-\mu_i \log(\mu_i) + f(i)\mu_i \right).$$

Answer: Boltzmann's distribution.

$$\mu_k = \frac{\exp(f(k))}{\sum_{i=1}^n \exp(f(i))}.$$

$$A^{\Gamma} = \{ x \colon \Gamma \to A \}.$$

$$A^{\Gamma} = \{ x \colon \Gamma \to A \}.$$

H^Γ A **subshift** on Γ is a subset $X \subset A^{\Gamma}$ which is closed and invariant under the action $\Gamma \curvearrowright A^{\Gamma}$ given by

$$(gx)(h) = x(g^{-1}h)$$
 for every $g, h \in \Gamma$.

イロト イヨト イヨト イヨト ニヨー

$$A^{\Gamma} = \{ x \colon \Gamma \to A \}.$$

H^Γ A **subshift** on Γ is a subset $X \subset A^{\Gamma}$ which is closed and invariant under the action $\Gamma \curvearrowright A^{\Gamma}$ given by

$$(gx)(h) = x(g^{-1}h)$$
 for every $g, h \in \Gamma$.

Given $F \Subset \Gamma$ y $p \in A^F$, let $[p] = \{x \in A^{\Gamma} : x|_F = p\}$.

イロト イヨト イヨト イヨト 二日

$$A^{\Gamma} = \{ x \colon \Gamma \to A \}.$$

 \square^{Γ} A **subshift** on Γ is a subset $X \subset A^{\Gamma}$ which is closed and invariant under the action $\Gamma \curvearrowright A^{\Gamma}$ given by

$$(gx)(h) = x(g^{-1}h)$$
 for every $g, h \in \Gamma$.

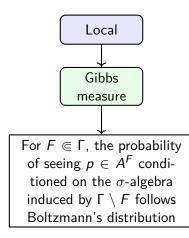
Given
$$F \Subset \Gamma$$
 y $p \in A^F$, let $[p] = \{x \in A^{\Gamma} : x|_F = p\}$.

↔ A subshift *X* ⊂ *A*^Γ is of **finite type (SFT)** if there is *F* ∈ Γ and *L* ⊂ *A*^{*F*} such that *x* ∈ *X* if and only if *gx* ∈ ∪_{*p*∈*L*}[*p*] for every *g* ∈ Γ.

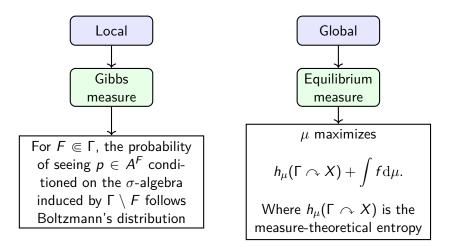
How to extend Boltzmann's distribution to subshifts?

How to extend Boltzmann's distribution to subshifts?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



How to extend Boltzmann's distribution to subshifts?



How are these two notions related?

Let $\Gamma = \mathbb{Z}^d$ and

- A subshift $X \subset A^{\mathbb{Z}^d}$.
- **2** A sufficiently regular map $f: X \to \mathbb{R}$.
- **③** An invariant measure μ on X.

How are these two notions related?

Let $\Gamma = \mathbb{Z}^d$ and

- A subshift $X \subset A^{\mathbb{Z}^d}$.
- **2** A sufficiently regular map $f: X \to \mathbb{R}$.
- **③** An invariant measure μ on X.

Theorem: Lanford, Ruelle, 1969

If X is a subshift of finite type μ equilibrium $\implies \mu$ is Gibbs.

How are these two notions related?

Let $\Gamma = \mathbb{Z}^d$ and

- A subshift $X \subset A^{\mathbb{Z}^d}$.
- **2** A sufficiently regular map $f: X \to \mathbb{R}$.
- **3** An invariant measure μ on X.

Theorem: Lanford, Ruelle, 1969

If X is a subshift of finite type μ equilibrium $\implies \mu$ is Gibbs.

Theorem: Dobrushin, 1968

If X is sufficiently mixing (D-mixing). μ is Gibbs $\implies \mu$ is equilibrium. Today we'll present a version of the LR theorem on steroids.

- $\mathbb{Z}^d \longrightarrow \Gamma$ an arbitrary sofic group.
- \mathbb{Z}^d -SFT $X \longrightarrow \Gamma$ -subshift X which satisfies the TMP.

Today we'll present a version of the LR theorem on steroids.

- $\mathbb{Z}^d \longrightarrow \Gamma$ an arbitrary sofic group.
- \mathbb{Z}^d -SFT $X \longrightarrow \Gamma$ -subshift X which satisfies the TMP.

Theorem: B., Meyerovitch, 2021

Let Γ be a sofic group and Σ a sofic approximation sequence of Γ . Let $f: X \to \mathbb{R}$ be sufficiently regular. For every Γ -subshift which has TMP and $h_{\Sigma}(\Gamma \frown X) \ge 0$, every equilibrium measure μ is Gibbs.

 $\label{eq:relation} \stackrel{\mbox{\sim}}{\Longrightarrow} A \ \mbox{cellular automata} \ \mbox{on } \Gamma \curvearrowright {\cal A}^{\Gamma} \ \mbox{is a continuous and} \\ \Gamma \mbox{-equivariant map } \varphi \colon {\cal A}^{\Gamma} \to {\cal A}^{\Gamma}$

 $\varphi(gx) = g\varphi(x)$ for every $g \in \Gamma, x \in A^{\Gamma}$.

 $\label{eq:action} \begin{array}{l} \overset{}{\sqcup} A \mbox{ cellular automata} \mbox{ on } \Gamma \curvearrowright A^{\Gamma} \mbox{ is a continuous and } \\ \Gamma \mbox{-equivariant map } \varphi \colon A^{\Gamma} \to A^{\Gamma} \end{array}$

 $\varphi(gx) = g\varphi(x)$ for every $g \in \Gamma, x \in A^{\Gamma}$.

Gottschalk's conjecture

For every group Γ , every injective CA $\varphi \colon A^{\Gamma} \to A^{\Gamma}$ is surjective.

 $\overset{\frown}{\rightarrowtail} A \text{ cellular automata on } \Gamma \curvearrowright A^{\Gamma} \text{ is a continuous and } \Gamma \text{-equivariant map } \varphi \colon A^{\Gamma} \to A^{\Gamma}$

 $\varphi(gx) = g\varphi(x)$ for every $g \in \Gamma, x \in A^{\Gamma}$.

Gottschalk's conjecture

For every group Γ , every injective CA $\varphi \colon A^{\Gamma} \to A^{\Gamma}$ is surjective.

- Sofic groups satisfy the conjecture
- It is not even known if all groups are sofic. The conjecture is open.

イロト イヨト イヨト イヨト 三日

An abstract entropy theory on A^{Γ} is a map

$$(X,\mu)\mapsto h(\Gamma \frown X,\mu)\in [-\infty,\infty],$$

such that h is invariant under measurable dynamical isomorphism.

- $X \subset A^{\Gamma}$ is a subshift.
- μ is an invariant Borel probabily measure on A^Γ with support on X.

 \Rightarrow An abstract entropy theory satisfies the Lanford-Ruelle theorem for f = 0 if every measure μ such that

$$h(\Gamma \frown X, \mu) = \sup_{\nu} h(\Gamma \frown X, \nu),$$

is a Gibbs measure.

If Γ admits an abstract entropy theory for subshift which satisfies the Lanford-Ruelle theorem for f = 0, then Gottschalk's conjecture holds for Γ .

If Γ admits an abstract entropy theory for subshift which satisfies the Lanford-Ruelle theorem for f = 0, then Gottschalk's conjecture holds for Γ .

Proof:

 The only Gibbs measure on A^Γ is the uniform Bernoulli measure, which has full support.

If Γ admits an abstract entropy theory for subshift which satisfies the Lanford-Ruelle theorem for f = 0, then Gottschalk's conjecture holds for Γ .

Proof:

- The only Gibbs measure on A^Γ is the uniform Bernoulli measure, which has full support.
- For every subshift $X \subsetneq A^{\Gamma}$, $\sup_{\nu} h(\Gamma \frown X, \nu) < \sup_{\mu} h(\Gamma \frown A^{\Gamma}, \mu).$

If Γ admits an abstract entropy theory for subshift which satisfies the Lanford-Ruelle theorem for f = 0, then Gottschalk's conjecture holds for Γ .

Proof:

- The only Gibbs measure on A^Γ is the uniform Bernoulli measure, which has full support.
- For every subshift $X \subsetneq A^{\Gamma}$, $\sup_{\nu} h(\Gamma \frown X, \nu) < \sup_{\mu} h(\Gamma \frown A^{\Gamma}, \mu).$
- If φ is an injective endomorphism, then for every measure μ on A^Γ, Γ ¬ (A^Γ, μ) ≅ Γ ¬ (φ(A^Γ), φ_{*}(μ)).

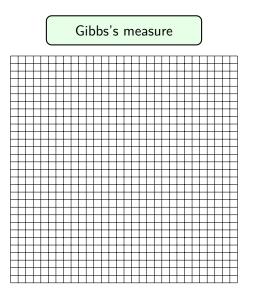
イロン イヨン イヨン イヨン 三日

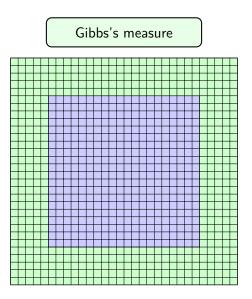
If Γ admits an abstract entropy theory for subshift which satisfies the Lanford-Ruelle theorem for f = 0, then Gottschalk's conjecture holds for Γ .

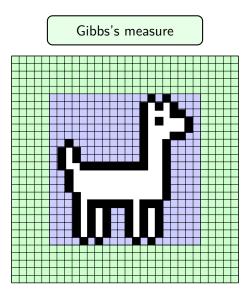
Proof:

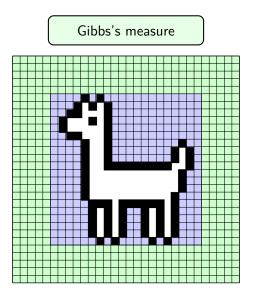
- The only Gibbs measure on A^Γ is the uniform Bernoulli measure, which has full support.
- For every subshift $X \subsetneq A^{\Gamma}$, $\sup_{\nu} h(\Gamma \frown X, \nu) < \sup_{\mu} h(\Gamma \frown A^{\Gamma}, \mu).$
- If φ is an injective endomorphism, then for every measure μ on A^Γ, Γ ¬ (A^Γ, μ) ≅ Γ ¬ (φ(A^Γ), φ_{*}(μ)).
- If μ is uniform Bernoulli, then $h(\Gamma \curvearrowright A^{\Gamma}, \mu) = h(\Gamma \curvearrowright \varphi(A^{\Gamma}), \varphi_*(\mu))$ and thus $\varphi(A^{\Gamma}) = A^{\Gamma}$.

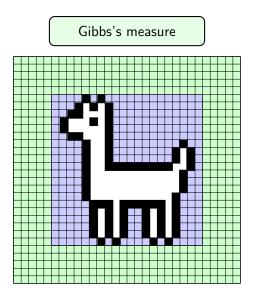
イロト イヨト イヨト イヨト 三日











 $\mu({\hbox{\rm tr}}|{\hbox{\rm l}})$ and $\mu({\hbox{\rm tr}}|{\hbox{\rm l}})$ follow Boltzmann's distribution.

 $x, y \in A^{\Gamma}$ are **asymptotic** if there is $F \Subset \Gamma$ such that

 $x|_{\Gamma\setminus F}=y|_{\Gamma\setminus F}.$

Denote by $\mathcal{T}(X)$ the equivalence relation of asymptotic pairs on X.

イロト イヨト イヨト イヨト 三日

 $x, y \in A^{\Gamma}$ are **asymptotic** if there is $F \Subset \Gamma$ such that

$$x|_{\Gamma\setminus F}=y|_{\Gamma\setminus F}.$$

Denote by $\mathcal{T}(X)$ the equivalence relation of asymptotic pairs on X.

Let us consider $f: X \to \mathbb{R}$ such that for every asymptotic pair $(x,y) \in \mathcal{T}(X)$

 $\Psi_f(x,y) = \sum_{g \in \Gamma} f(gy) - f(gx)$ is absolutely convergent.

 $x, y \in A^{\Gamma}$ are **asymptotic** if there is $F \Subset \Gamma$ such that

$$x|_{\Gamma\setminus F}=y|_{\Gamma\setminus F}.$$

Denote by $\mathcal{T}(X)$ the equivalence relation of asymptotic pairs on X.

Let us consider $f: X \to \mathbb{R}$ such that for every asymptotic pair $(x,y) \in \mathcal{T}(X)$

$$\Psi_f(x,y) = \sum_{g \in \Gamma} f(gy) - f(gx)$$
 is absolutely convergent.

Example: f is local (there is $F \Subset \Gamma$ such that f(x) = f(y) when $x|_F = y|_F$).

イロト イヨト イヨト イヨト 三日

Fix a subshift X. For $x \in A^{\Gamma}$ and $F \Subset \Gamma$, let $L_F(x)$ the set of patterns $p \in A^F$ which concatenated with $x|_{\Gamma \setminus F}$ give an element of X.

Fix a subshift X. For $x \in A^{\Gamma}$ and $F \Subset \Gamma$, let $L_F(x)$ the set of patterns $p \in A^F$ which concatenated with $x|_{\Gamma \setminus F}$ give an element of X.

A Borel probability measure μ in a subshift X is **Gibbs** with respect to $f: X \to \mathbb{R}$ if for every $F \Subset \Gamma$ and $p \in A^F$ then μ – ae

$$\mathbb{E}_{\mu}(\mathbb{1}_{[p]} \mid \sigma(A^{\Gamma \setminus F}))(x) = \begin{cases} \frac{\exp(\Psi_{f}(x, p \lor x \mid_{\Gamma \setminus F}))}{\sum_{q \in L_{F}(x)} \exp(\Psi_{f}(x, q \lor x \mid_{\Gamma \setminus F}))} & \text{ if } p \in L_{F}(x) \\ 0 & \text{ if } p \notin L_{F}(x) \end{cases}$$

イロト イヨト イヨト イヨト 三日

Example: $X = A^{\Gamma}$ and f = 0. For $p \in A^{F}$

$$\mathbb{E}_{\mu}(\mathbb{1}_{[p]} \mid \sigma(A^{\Gamma \setminus F}))(x) = \begin{cases} \frac{\exp(\Psi_{f}(x, p \lor x|_{\Gamma \setminus F}))}{\sum_{q \in L_{F}(X)} \exp(\Psi_{f}(x, q \lor x|_{\Gamma \setminus F}))} & \text{if } p \in L_{F}(x) \\ 0 & \text{if } p \notin L_{F}(x) \end{cases}$$
$$= \frac{\exp(\Psi_{f}(x, p \lor x|_{\Gamma \setminus F}))}{\sum_{q \in A^{F}} \exp(\Psi_{f}(x, q \lor x|_{\Gamma \setminus F}))}$$
$$= \frac{1}{|A^{F}|}.$$

Gibbs measure

Example: $X = A^{\Gamma}$ and f = 0. For $p \in A^{F}$

-

$$\mathbb{E}_{\mu}(\mathbb{1}_{[p]} \mid \sigma(A^{\Gamma \setminus F}))(x) = \begin{cases} \frac{\exp(\Psi_{f}(x, p \lor x|_{\Gamma \setminus F}))}{\sum_{q \in L_{F}(X)} \exp(\Psi_{f}(x, q \lor x|_{\Gamma \setminus F}))} & \text{if } p \in L_{F}(x) \\ 0 & \text{if } p \notin L_{F}(x) \end{cases}$$
$$= \frac{\exp(\Psi_{f}(x, p \lor x|_{\Gamma \setminus F}))}{\sum_{q \in A^{F}} \exp(\Psi_{f}(x, q \lor x|_{\Gamma \setminus F}))}$$
$$= \frac{1}{|A^{F}|}.$$

$$\mu([p]) = \frac{1}{|A^F|}$$
 is the uniform Bernoulli measure.

For $F \Subset \Gamma$ and a subshift $X \subset A^{\Gamma}$, let $L_F(X)$ be the set of patterns $p \in A^F$ such that $[p] \cap X \neq \emptyset$.

For $F \Subset \Gamma$ and a subshift $X \subset A^{\Gamma}$, let $L_F(X)$ be the set of patterns $p \in A^F$ such that $[p] \cap X \neq \emptyset$.

Easy case $\Gamma = \mathbb{Z}^d$. $h_{\mu}(\mathbb{Z}^d \curvearrowright X) = \lim_{n \to \infty} \frac{1}{(2n+1)^d} \sum_{p \in L_{[-n,n]^d}(X)} -\mu([p]) \log(\mu([p])).$

イロト イヨト イヨト イヨト 三日

For $F \Subset \Gamma$ and a subshift $X \subset A^{\Gamma}$, let $L_F(X)$ be the set of patterns $p \in A^F$ such that $[p] \cap X \neq \emptyset$.

Easy case $\Gamma = \mathbb{Z}^d$.

$$h_{\mu}(\mathbb{Z}^{d} \frown X) = \lim_{n \to \infty} \frac{1}{(2n+1)^{d}} \sum_{p \in L_{[-n,n]^{d}}(X)} -\mu([p]) \log(\mu([p])).$$

Equilibrium measure on \mathbb{Z}^d

An invariant Borel probability measure on a \mathbb{Z}^d -subshift is of equilibrium if it maximizes

$$h_{\mu}(\Gamma \frown X) + \int f \mathrm{d}\mu.$$

Among all invariant Borel probability measures on X.

Example: let $\Gamma = \mathbb{Z}^d$, $X = A^{\Gamma}$, f = 0.

Example: let $\Gamma = \mathbb{Z}^d$, $X = A^{\Gamma}$, f = 0. $-\sum_{p \in A^{[-n,n]^d}} \mu([p]) \log(\mu([p]))$ is maximized on $\mu([p]) = \frac{1}{|A^{[-n,n]^d}|}.$

14

Example: let $\Gamma = \mathbb{Z}^d$, $X = A^{\Gamma}$, f = 0. $-\sum_{p \in A^{[-n,n]^d}} \mu([p]) \log(\mu([p]))$ is maximized on

$$u([p]) = \frac{1}{|A^{[-n,n]^d}|}.$$

Then the only equilibrium measure for f = 0 is the uniform Bernoulli measure on $A^{\mathbb{Z}^d}$.

イロト イヨト イヨト イヨト 三日

Example: let $\Gamma = \mathbb{Z}^d$, $X = A^{\Gamma}$, f = 0. $-\sum_{p \in A^{[-n,n]^d}} \mu([p]) \log(\mu([p]))$ is maximized on $\mu([p]) = \frac{1}{|A^{[-n,n]^d}|}.$

Then the only equilibrium measure for f = 0 is the uniform Bernoulli measure on $A^{\mathbb{Z}^d}$.

For $A^{\mathbb{Z}^d}$ and f = 0, there is only one equilibrium and Gibbs measure and they coincide.

イロン イロン イヨン イヨン 二日

What if the group is not \mathbb{Z}^d ?

What if the group is not \mathbb{Z}^d ?

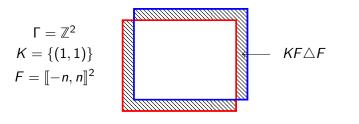
Given $K \Subset \Gamma$ and $\delta > 0$, we say $F \Subset \Gamma$ is (K, δ) -invariant if

 $|KF\Delta F| \leq \delta|F|.$

イロト イヨト イヨト イヨト 二日

What if the group is not \mathbb{Z}^d ?

Given $K \Subset \Gamma$ and $\delta > 0$, we say $F \Subset \Gamma$ is (K, δ) -invariant if $|KF\Delta F| \le \delta |F|.$



(日) (部) (注) (注) (三)

Amenable group

A group Γ is **amenable** if for every $K \Subset \Gamma$ and $\delta > 0$ there is $F \Subset \Gamma$ which is (K, δ) -invariant.

A sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of Γ is **Følner** if it is eventually (K, δ) -invariant for every $K \Subset \Gamma$ and $\delta > 0$.

Amenable group

A group Γ is **amenable** if for every $K \Subset \Gamma$ and $\delta > 0$ there is $F \Subset \Gamma$ which is (K, δ) -invariant.

A sequence $(F_n)_{n \in \mathbb{N}}$ of finite subsets of Γ is **Følner** if it is eventually (K, δ) -invariant for every $K \Subset \Gamma$ and $\delta > 0$.

$$h_{\mu}(\Gamma \frown X) = \lim_{n \to \infty} \frac{1}{|F_n|} \sum_{p \in L_{F_n}(X)} -\mu([p]) \log(\mu([p])).$$

Where $(F_n)_{n \in \mathbb{N}}$ is any Følner sequence.

Remark: the limit does not depend on the Følner sequence.

What if Γ is not amenable?

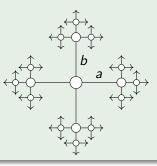
Entropy theory on amenable groups satisfies:

- It is non-increasing under factor maps.
- The entropy of A^Γ with the uniform Bernoulli measure is log(|A|).

Entropy theory on amenable groups satisfies:

- It is non-increasing under factor maps.
- The entropy of A^{Γ} with the uniform Bernoulli measure is $\log(|A|)$.

Example: (Ornstein and Weiss 87) Let F_2 be the free group on two generators a, b



What if Γ is not amenable?

Entropy theory on amenable groups satisfies:

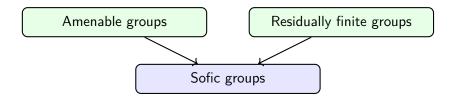
- It is non-increasing under factor maps.
- The entropy of A^{Γ} with the uniform Bernoulli measure is $\log(|A|)$.

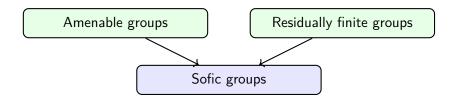
Example: (Ornstein and Weiss 87) Let F_2 be the free group on two generators a, b

Let
$$\varphi \colon (\mathbb{Z}/2\mathbb{Z})^{F_2} \to (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{F_2}$$
 be given by

 $\varphi(x)(g) = (x(g) + x(ga), x(g) + x(gb)).$

 φ is a factor map from $(\mathbb{Z}/2\mathbb{Z})^{F_2}$ to $((\mathbb{Z}/2\mathbb{Z})^2)^{F_2}$. One of the two properties must fail on F_2 .





A group Γ is **sofic** if there's a sequence $(V_i)_{i \in \mathbb{N}}$ of finite sets $|V_i| \to \infty$ and a collection $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$ which is:

• Asymptotically an action: For every $s, t \in \Gamma$,

$$\lim_{i\to\infty}\frac{1}{|V_i|}|\{v\in V_i:\sigma_i(st)v=\sigma_i(s)\sigma_i(t)v\}|=1.$$

• Asymptotically free: For every $s \neq t \in \Gamma$,

$$\lim_{i\to\infty}\frac{1}{|V_i|}\left|\{v\in V_i:\sigma_i(s)v\neq\sigma_i(t)v\}\right|=1.$$

Let $V_n = \Gamma/H_n$ and $\sigma_n \colon \Gamma \to \text{Sym}(\Gamma/H_n)$ be given by

 $\sigma_n(g)(xH_n) = gxH_n$ for every $g \in \Gamma$.

Let $V_n = \Gamma/H_n$ and $\sigma_n \colon \Gamma \to \text{Sym}(\Gamma/H_n)$ be given by

 $\sigma_n(g)(xH_n) = gxH_n$ for every $g \in \Gamma$.

The collection $\Sigma = \{\sigma_n \colon \Gamma \to \operatorname{Sym}(\Gamma/H_n)\}_{n \in \mathbb{N}}$ es

- Asymptotically an action.
- Asymptotically free, because $\bigcap_{n \in \mathbb{N}} H_n = 1$.

イロト イヨト イヨト イヨト 三日

Let $V_n = \Gamma/H_n$ and $\sigma_n \colon \Gamma \to \text{Sym}(\Gamma/H_n)$ be given by

 $\sigma_n(g)(xH_n) = gxH_n$ for every $g \in \Gamma$.

The collection $\Sigma = \{\sigma_n \colon \Gamma \to \operatorname{Sym}(\Gamma/H_n)\}_{n \in \mathbb{N}}$ es

- Asymptotically an action.
- Asymptotically free, because $\bigcap_{n \in \mathbb{N}} H_n = 1$.

Residually finite groups are sofic.

イロン イロン イヨン イヨン 一日

Let
$$V_n = F_n$$
 y $\sigma_n \colon \Gamma \to \operatorname{Sym}(F_n)$ be given by

$$\sigma_n(g)(f) = \begin{cases} gf & \text{if } gf \in F_n \\ \tau_g(f) & \text{otherwise.} \end{cases}$$

where $\tau_g : F_n \setminus g^{-1}F_n$ is some permutation.

Let
$$V_n = F_n$$
 y $\sigma_n \colon \Gamma \to \operatorname{Sym}(F_n)$ be given by

$$\sigma_n(g)(f) = egin{cases} gf & ext{if } gf \in F_n \ au_g(f) & ext{otherwise.} \end{cases}$$

where $\tau_g \colon F_n \setminus g^{-1}F_n$ is some permutation. The collection $\Sigma = \{\sigma_n \colon \Gamma \to \text{Sym}(F_n)\}_{n \in \mathbb{N}}$ is

• Asymptotically an action. For every $g, h \in \Gamma$ let $K = \{g, h, gh\}$ and $\varepsilon > 0$. There is F_n such that $|KF\Delta F| < \varepsilon |F|$. Therefore the number of $f \in F$ such that $\sigma_n(g)\sigma_n(h)f = \sigma_n(gh)f$ is at least $(1 - \varepsilon)|F|$.

• Asymptotically free, because $F_n \nearrow \Gamma$.

イロト イヨト イヨト イヨト 三日

Let
$$V_n = F_n$$
 y $\sigma_n \colon \Gamma \to \text{Sym}(F_n)$ be given by

$$\sigma_n(g)(f) = egin{cases} gf & ext{if } gf \in F_n \ au_g(f) & ext{otherwise.} \end{cases}$$

where $\tau_g : F_n \setminus g^{-1}F_n$ is some permutation. The collection $\Sigma = \{\sigma_n : \Gamma \to \text{Sym}(F_n)\}_{n \in \mathbb{N}}$ is

• Asymptotically an action. For every $g, h \in \Gamma$ let $K = \{g, h, gh\}$ and $\varepsilon > 0$. There is F_n such that $|KF\Delta F| < \varepsilon |F|$. Therefore the number of $f \in F$ such that $\sigma_n(g)\sigma_n(h)f = \sigma_n(gh)f$ is at least $(1 - \varepsilon)|F|$.

• Asymptotically free, because $F_n \nearrow \Gamma$.

Amenable groups are sofic.

イロン イロン イヨン イヨン 二日

How to define sofic entropy for an action $\Gamma \curvearrowright X$?

How to define sofic entropy for an action $\Gamma \curvearrowright X$?

Fix a sofic approximation sequence $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$ of Γ and a generating pseudometric ρ on X.

$$h_{\Sigma}(\Gamma \frown X, \mu) = \sup_{\varepsilon > 0} \inf_{L \Subset C(X)} \inf_{F \Subset \Gamma} \inf_{\delta > 0} \limsup_{i \to \infty} \frac{1}{|V_i|} \log(M_{\Sigma, \mu}^{\varepsilon}(\Gamma \frown X, F, \delta, L, \sigma_i))$$

Where $M_{\Sigma,\mu}^{\varepsilon}(\Gamma \frown X, F, \delta, L, \sigma_i)$ is the maximum cardinality of a collection of maps $\varphi \colon V_n \to X$ such that

2 son (F, δ) -close to an orbit

$$\max_{s\in F} \frac{1}{|V_i|} \left(\sum_{v\in V_i} \rho(s\varphi(v), \varphi(\sigma_i(s)v))^2 \right)^{\frac{1}{2}} < \delta.$$

O Are almost generic with respect to the measure

$$\left|\frac{1}{|V_i|}\sum_{v\in V_i}h(\varphi(v))-\int_Xh\mathrm{d}\mu\right|\leq \delta, \text{ for every } h\in L.$$

The action $\Gamma \curvearrowright X$ is expansive, so ε may be replaced by $\frac{1}{2}$.

$$h_{\Sigma}(\Gamma \frown X, \mu) = \sup_{\varepsilon > 0} \inf_{L \Subset C(X)} \inf_{F \Subset \Gamma} \inf_{\delta > 0} \limsup_{i \to \infty} \frac{1}{|V_i|} \log(M_{\Sigma, \mu}^{\varepsilon}(\Gamma \frown X, F, \delta, L, \sigma_i))$$

The action $\Gamma \curvearrowright X$ is expansive, so ε may be replaced by $\frac{1}{2}$.

$$h_{\Sigma}(\Gamma \frown X, \mu) = \inf_{L \Subset C(X)} \inf_{F \Subset \Gamma} \inf_{\delta > 0} \limsup_{i \to \infty} \frac{1}{|V_i|} \log(M^{0.5}_{\Sigma, \mu}(\Gamma \frown X, F, \delta, L, \sigma_i))$$

Fix a sofic approximation sequence $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$. Consider the generating pseudometric

$$\rho(x, y) = \begin{cases} 0 & \text{if } x(1_{\Gamma}) = y(1_{\Gamma}), \\ 1 & \text{if } x(1_{\Gamma}) \neq y(1_{\Gamma}). \end{cases}$$

For $w \in A^{V_i}$, define $\varphi_w(v) \in A^{\Gamma}$ by $\varphi_w(v)(g) = w(\sigma_i(g^{-1})v).$

Fix a sofic approximation sequence $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$. Consider the generating pseudometric

$$\rho(x,y) = \begin{cases} 0 & \text{if } x(1_{\Gamma}) = y(1_{\Gamma}), \\ 1 & \text{if } x(1_{\Gamma}) \neq y(1_{\Gamma}). \end{cases}$$

For
$$w \in A^{V_i}$$
, define $arphi_w(v) \in A^{\Gamma}$ by $arphi_w(v)(g) = w(\sigma_i(g^{-1})v).$

Each $w \in A^{V_i}$ induces a probability measure on A^{Γ} given by

$$\mu_{w} = \frac{1}{|V_i|} \sum_{v \in V_i} \delta_{\varphi_w(v)}.$$

イロト イヨト イヨト イヨト 二日

How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$. Let *d* be a metric on $\operatorname{Prob}(A^{\Gamma})$.

For $\mu \in \operatorname{Prob}_{\Gamma}(X)$, let

$$N_{\delta}(\mu) = \{\nu \in \mathsf{Prob}(A^{\mathsf{\Gamma}}) : d(\nu, \mu) < \delta\}.$$

How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$. Let *d* be a metric on $\operatorname{Prob}(A^{\Gamma})$.

For $\mu \in \operatorname{Prob}_{\Gamma}(X)$, let

$$N_{\delta}(\mu) = \{\nu \in \mathsf{Prob}(\mathcal{A}^{\Gamma}) : d(\nu, \mu) < \delta\}.$$

The sofic entropy of a subshift (X, μ) with respect to a sofic approximation sequence Σ is given by:

$$h_{\Sigma}(\Gamma \curvearrowright X, \mu) = \inf_{\delta > 0} \limsup_{i \to \infty} \frac{1}{|V_i|} \log \left| \{ w \in A^{V_i} : \mu_w \in N_{\delta}(\mu) \} \right|.$$

(日) (部) (注) (注) (三)

How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence $\Sigma = \{\sigma_i \colon \Gamma \to \operatorname{Sym}(V_i)\}_{i \in \mathbb{N}}$. Let *d* be a metric on $\operatorname{Prob}(A^{\Gamma})$.

For $\mu \in \operatorname{Prob}_{\Gamma}(X)$, let

$$N_{\delta}(\mu) = \{\nu \in \mathsf{Prob}(\mathcal{A}^{\Gamma}) : d(\nu, \mu) < \delta\}.$$

The sofic entropy of a subshift (X, μ) with respect to a sofic approximation sequence Σ is given by:

$$h_{\Sigma}(\Gamma \curvearrowright X, \mu) = \inf_{\delta > 0} \limsup_{i \to \infty} \frac{1}{|V_i|} \log \left| \{ w \in A^{V_i} : \mu_w \in N_{\delta}(\mu) \} \right|.$$

An invariant Borel probability measure μ is an **equilibrium** measure for a subshift $X \subset A^{\Gamma}$ with respect to Σ and $f: X \to \mathbb{R}$ if it maximizes the expression:

$$h_{\Sigma}(\Gamma \frown X, \mu) + \int f \mathrm{d}\mu.$$

Theorem: B., Meyerovitch, 2021

Let Γ be a sofic group and Σ a sofic approximation sequence of Γ . Let $f: X \to \mathbb{R}$ be sufficiently regular. For every Γ -subshift which has TMP and $h_{\Sigma}(\Gamma \frown X) \ge 0$, every equilibrium measure μ is Gibbs.

・ロト ・ 日 ト ・ 日 ト ・ 日

Theorem: B., Meyerovitch, 2021

Let Γ be a sofic group and Σ a sofic approximation sequence of Γ . Let $f: X \to \mathbb{R}$ be sufficiently regular. For every Γ -subshift which has TMP and $h_{\Sigma}(\Gamma \frown X) \ge 0$, every equilibrium measure μ is Gibbs.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Theorem: B., Meyerovitch, 2021

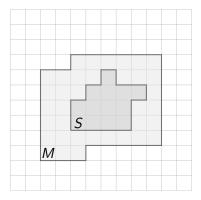
Let Γ be a sofic group and Σ a sofic approximation sequence of Γ . Let $f: X \to \mathbb{R}$ be sufficiently regular. For every Γ -subshift which has TMP and $h_{\Sigma}(\Gamma \curvearrowright X) \ge 0$, every equilibrium measure μ is Gibbs.

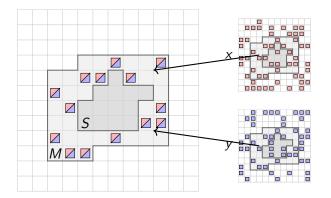
 $h_{\Sigma}(\Gamma \frown X) \ge 0$ if and only if there is an invariant Borel probability measure μ such that $h_{\Sigma}(\Gamma \frown X, \mu) \ge 0$.

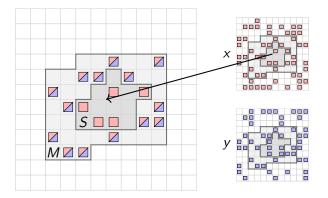
イロン イロン イヨン イヨン 三日

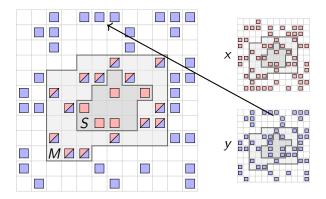
A closed set $X \subseteq A^{\Gamma}$ satisfies the **topological Markov property (TMP)** if

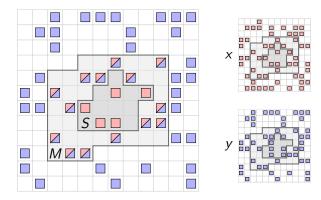
A closed set $X \subseteq A^{\Gamma}$ satisfies the **topological Markov property** (TMP) if for every $S \Subset \Gamma$ there is a finite memory set $M \supseteq S$

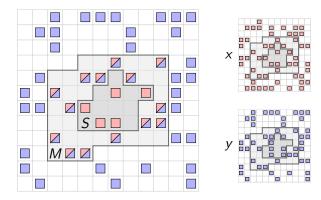


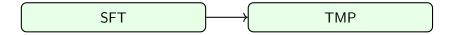












Two patterns $p, q \in A^F$ are **exchangeable** in a subshift $X \subset A^{\Gamma}$ if for every $x \in X$

$$x|_{\Gamma \setminus F} \lor p \in X$$
 if and only if $x|_{\Gamma \setminus F} \lor q \in X$.

Two patterns $p, q \in A^F$ are **exchangeable** in a subshift $X \subset A^{\Gamma}$ if for every $x \in X$

$$x|_{\Gamma \setminus F} \lor p \in X$$
 if and only if $x|_{\Gamma \setminus F} \lor q \in X$.

Remark: If X has TMP and $M \supset F$ is a memory set for $F \Subset \Gamma$, then for every x, y such that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$ we have that $x|_M, y|_M$ are exchangeable.

イロト イヨト イヨト イヨト 三日

• $\mathcal{T}(X)$ is the equivalence relation of asymptotic pairs.

- $\mathcal{T}(X)$ is the equivalence relation of asymptotic pairs.
- $\mathcal{T}^0(X)$ is the subrelation of $\mathcal{T}(X)$ generated by exchangeable patterns. We call it the **étale asymptotic relation**.

- $\mathcal{T}(X)$ is the equivalence relation of asymptotic pairs.
- $\mathcal{T}^0(X)$ is the subrelation of $\mathcal{T}(X)$ generated by exchangeable patterns. We call it the **étale asymptotic relation**.

$$\bigcirc = \{x \in \{0,1\}^{\mathbb{Z}} : |x^{-1}(1)| \le 1\}.$$

- $\mathcal{T}(X)$ is the equivalence relation of asymptotic pairs.
- $\mathcal{T}^0(X)$ is the subrelation of $\mathcal{T}(X)$ generated by exchangeable patterns. We call it the **étale asymptotic relation**.

$$\bigcirc = \{x \in \{0,1\}^{\mathbb{Z}} : |x^{-1}(1)| \le 1\}.$$

- $\mathcal{T}(X)$ is the equivalence relation of asymptotic pairs.
- $\mathcal{T}^0(X)$ is the subrelation of $\mathcal{T}(X)$ generated by exchangeable patterns. We call it the **étale asymptotic relation**.

$$\bigcirc = \{x \in \{0,1\}^{\mathbb{Z}} : |x^{-1}(1)| \le 1\}.$$

 \dots 0000001000000 $\dots \in \bigcirc$

Let
$$Y = \{x \in \{0, 1\}^{\mathbb{Z}} : |x^{-1}(1)| = 1\}.$$

• $\mathcal{T}(\bigcirc) = \bigcirc \times \bigcirc$.
• $\mathcal{T}^{0}(\bigcirc) = \{(x, x) : x \in \bigcirc\} \cup (Y \times Y)$

- $\mathcal{T}(X)$ is the equivalence relation of asymptotic pairs.
- $\mathcal{T}^{0}(X)$ is the subrelation of $\mathcal{T}(X)$ generated by exchangeable patterns. We call it the **étale asymptotic relation**.

$$\bigcirc = \{x \in \{0,1\}^{\mathbb{Z}} : |x^{-1}(1)| \le 1\}.$$

 \dots 0000001000000 $\dots \in \bigcirc$

Let
$$Y = \{x \in \{0, 1\}^{\mathbb{Z}} : |x^{-1}(1)| = 1\}.$$

• $\mathcal{T}(\bigcirc) = \bigcirc \times \bigcirc.$
• $\mathcal{T}^{0}(\bigcirc) = \{(x, x) : x \in \bigcirc\} \cup (Y \times Y).$

Theorem

 $\mathcal{T}(X) = \mathcal{T}^0(X)$ if and only if X has the TMP.

イロト イヨト イヨト イヨト

A Borel probability measure μ on a subshift X is **Gibbs** with respect to $f: X \to \mathbb{R}$ if for every $F \Subset \Gamma$ y $p \in A^F$ we have that $\mu - ae$

$$\mathbb{E}_{\mu}(\mathbb{1}_{[p]} \mid \sigma(A^{\Gamma \setminus F}))(x) = \begin{cases} \frac{\exp(\Psi_{f}(x, p \lor x \mid_{\Gamma \setminus F}))}{\sum_{q \in L_{F}(x)} \exp(\Psi_{f}(x, q \lor x \mid_{\Gamma \setminus F}))} & \text{ if } p \in L_{F}(x) \\ 0 & \text{ if } p \notin L_{F}(x) \end{cases}$$

A Borel probability measure μ on a subshift X is **Gibbs** with respect to $f: X \to \mathbb{R}$ if for every $F \Subset \Gamma$ y $p \in A^F$ we have that $\mu - ae$

$$\mathbb{E}_{\mu}(\mathbb{1}_{[p]} \mid \sigma(A^{\Gamma \setminus F}))(x) = \begin{cases} \frac{\exp(\Psi_{f}(x, p \lor x|_{\Gamma \setminus F}))}{\sum_{q \in L_{F}(x)} \exp(\Psi_{f}(x, q \lor x|_{\Gamma \setminus F}))} & \text{if } p \in L_{F}(x) \\ 0 & \text{if } p \notin L_{F}(x) \end{cases}$$

For $p, q \in L_F(x)$

$$\frac{\mathbb{E}_{\mu}(1_{[p]} \mid \sigma(\mathcal{A}^{\Gamma \setminus F}))(x)}{\mathbb{E}_{\mu}(1_{[q]} \mid \sigma(\mathcal{A}^{\Gamma \setminus F}))(x)} = \exp(\Psi_{f}(q \lor x|_{\Gamma \setminus F}, p \lor x|_{\Gamma \setminus F})).$$

Therefore the log of the above expression forms a cocycle on $\mathcal{T}(X)$.

Let μ be non-singular with respect to a countable Borel equivalence relation \mathcal{R} .

$$\left(ext{ if } \mu(A) = 0 \implies \mu\left(igcup_{x \in A} \{ y \in X : (x,y) \in \mathcal{R} \}
ight) = 0
ight).$$

Let μ be non-singular with respect to a countable Borel equivalence relation \mathcal{R} .

$$\left(ext{ if } \mu(A) = 0 \implies \mu\left(igcup_{x \in A} \{ y \in X : (x,y) \in \mathcal{R} \}
ight) = 0
ight).$$

There is a countable group G which generates \mathcal{R} and a map $\mathcal{D}_{\mu,\mathcal{R}} \colon \mathcal{R} \to \mathbb{R}_+$ such that for every $\phi \in G$,

$$rac{\mathrm{d}\mu\circ\phi}{\mathrm{d}\mu}(x)=\mathcal{D}_{\mu,\mathcal{R}}(x,\phi(x))\quad\mu-\mathsf{ae}.$$

Let μ be non-singular with respect to a countable Borel equivalence relation \mathcal{R} .

$$\left(\text{ if } \mu(A) = 0 \implies \mu\left(\bigcup_{x \in A} \{y \in X : (x, y) \in \mathcal{R} \} \right) = 0
ight).$$

There is a countable group G which generates \mathcal{R} and a map $\mathcal{D}_{\mu,\mathcal{R}} \colon \mathcal{R} \to \mathbb{R}_+$ such that for every $\phi \in G$,

$$rac{\mathrm{d}\mu\circ\phi}{\mathrm{d}\mu}(x)=\mathcal{D}_{\mu,\mathcal{R}}(x,\phi(x))\quad\mu-\mathsf{ae}.$$

Let $f: X \to \mathbb{R}$ such that the cocycle Ψ_f is well-defined. A Borel probability measure μ on a subshift X is:

- **Gibbs** with respect to f if it is non-singular with respect to $\mathcal{T}(X)$ and $\mathcal{D}_{\mu,\mathcal{T}(X)} = \exp(\Psi_f) \mu$ -ae.
- étale Gibbs with respect to *f* if it is non-singular with respect to *T*⁰(*X*) and *D*_{μ,*T*⁰(*X*)} = exp(Ψ_f) μ-ae.

If a subshift X has the TMP then

 $Gibbs = \acute{e}tale Gibbs.$

If a subshift X has the TMP then

 $Gibbs = \acute{e}tale Gibbs.$

Theorem: B., Meyerovitch, 2021

Let Γ be a sofic group and Σ a sofic approximation sequence of Γ . Let $f: X \to \mathbb{R}$ be sufficiently regular. For every Γ -subshift **which** has **TMP** and $h_{\Sigma}(\Gamma \frown X) \ge 0$, every equilibrium measure μ is **étale** Gibbs.

イロト イヨト イヨト イヨト 三日

$$\bigcirc = \{x \in \{0,1\}^{\Gamma} : |x^{-1}(1)| \le 1\}.$$

$$\textcircled{}{} = \{x \in \{0,1\}^{\mathsf{\Gamma}} : |x^{-1}(1)| \leq 1\}.$$

 $X_{\leq 1}$ only admits as an invariant measure the Dirac mass δ_0 on 0^{Γ} . Thus this is the equilibrium measure for any sofic group and sofic approximation sequence Σ (with sofic entropy 0).

$$= \{ x \in \{0,1\}^{\Gamma} : |x^{-1}(1)| \le 1 \}.$$

 $X_{\leq 1}$ only admits as an invariant measure the Dirac mass δ_0 on 0^1 . Thus this is the equilibrium measure for any sofic group and sofic approximation sequence Σ (with sofic entropy 0).

• δ_0 is **not** Gibbs for any f, because it is singular with respect to $\mathcal{T}(\bigcirc) = \bigcirc \times \bigcirc$.

イロト イヨト イヨト イヨト 三日

$$= \{ x \in \{0,1\}^{\Gamma} : |x^{-1}(1)| \le 1 \}.$$

 $X_{\leq 1}$ only admits as an invariant measure the Dirac mass δ_0 on 0^1 . Thus this is the equilibrium measure for any sofic group and sofic approximation sequence Σ (with sofic entropy 0).

• δ_0 is **not** Gibbs for any f, because it is singular with respect to $\mathcal{T}(\bigcirc) = \bigcirc \times \bigcirc$.

•
$$\delta_0$$
 is étale Gibbs because
 $\mathcal{T}^0(\bigcirc) = \{(x,x) : x \in \bigcirc\} \cup (Y \times Y)$ for
 $Y = \{x \in \{0,1\}^{\mathbb{Z}} : |x^{-1}(1)| = 1\}$ and the measure is
supported on $\bigcirc \setminus Y$.

イロト イヨト イヨト イヨト 三日

Proof sketch

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proof sketch

() Assume f is a local map.

Proof sketch

- **(**) Assume f is a local map.
- ② Let $x, y \in \mathcal{T}^0(X)$ and $F \subseteq \Gamma$ such that $p = x|_F$ and $q = y|_F$ do not **overlap**. Consider the set $\mathcal{U}(t, r, \delta)$ of measures μ s.t.

$$|\mu([p]\cup [q])-t|<\delta ext{ and } \left|rac{\mu([p])}{\mu([q])}-r
ight|<\delta.$$

- **(**) Assume f is a local map.
- ② Let $x, y \in \mathcal{T}^0(X)$ and $F \subseteq \Gamma$ such that $p = x|_F$ and $q = y|_F$ do not **overlap**. Consider the set $\mathcal{U}(t, r, \delta)$ of measures μ s.t.

$$|\mu([p]\cup [q])-t|<\delta ext{ and } \left|rac{\mu([p])}{\mu([q])}-r
ight|<\delta.$$

We show that for $r, s \ge 0$, if we let $r^* = \frac{r}{1+r}$ and $s^* = \frac{s}{1+s}$ then the difference on the expressions for sofic pressure $P(U(t, r, \delta)) - P(U(t, s, \delta))$ can be parameterized as

$$t(H(r^*) + r^*\Psi_f(x, y) - H(s^*) - s^*\Psi_f(x, y)).$$

If t > 0, the maximum value is obtained at $r = \exp(\Psi_f(x, y))$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• For $(x, y) \in \mathcal{T}_0$ which satisfy the technical condition and which are in the support of an equilibrium measure, then

$$\lim_{F \neq \Gamma} \frac{\mu([x|F])}{\mu([y|F])} = \exp(\Psi_f(x,y)).$$

• For $(x, y) \in \mathcal{T}_0$ which satisfy the technical condition and which are in the support of an equilibrium measure, then

$$\lim_{F \neq \Gamma} \frac{\mu([x|F])}{\mu([y|F])} = \exp(\Psi_f(x,y)).$$

The rest of the proof consists on getting rid of the technical condition (taking a product with a Bernoulli shift and showing that the non-overlap condition is generic).

イロン イロン イヨン イヨン 二日

• For $(x, y) \in \mathcal{T}_0$ which satisfy the technical condition and which are in the support of an equilibrium measure, then

$$\lim_{F \neq \Gamma} \frac{\mu([x|F])}{\mu([y|F])} = \exp(\Psi_f(x,y)).$$

- The rest of the proof consists on getting rid of the technical condition (taking a product with a Bernoulli shift and showing that the non-overlap condition is generic).
- The generalization to non-local functions f is done through functional analysis by interpreting equilibrium measures as subderivatives (and using a Mazur-like theorem).

A translation-invariant map $\Phi: L(X) \to \mathbb{R}$ is called an interaction, we say Φ is absolutely summable if

$$\sum_{1_G\in F\Subset\Gamma}\sup_{p\in L_F(X)}|\Phi(p)|<\infty.$$

Let $f_{\Phi} \colon X \to \mathbb{R}$ be given by

$$f_{\Phi}(x) = \sum_{1_G \in F \Subset \Gamma} \frac{1}{|F|} \Phi(x|_F).$$

・ロト ・ 日 ト ・ 日 ト ・ 日

A translation-invariant map $\Phi: L(X) \to \mathbb{R}$ is called an interaction, we say Φ is absolutely summable if

$$\sum_{1_G\in F\Subset\Gamma}\sup_{p\in L_F(X)}|\Phi(p)|<\infty.$$

Let $f_{\Phi} \colon X \to \mathbb{R}$ be given by

$$f_{\Phi}(x) = \sum_{1_G \in F \Subset \Gamma} \frac{1}{|F|} \Phi(x|_F).$$

Maps f_{Φ} for some absolutely summable Φ satisfy LR's theorem.

Let $\mathbb{F} = (F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of Γ such that $F_n \nearrow \Gamma$. Given $f : X \to \mathbb{R}$ and $S \Subset \Gamma$

 $Var_{S}(f) = \sup\{|f(x) - f(y)| : x, y \in X, x|_{S} = y|_{S}\}.$

Let $\mathbb{F} = (F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of Γ such that $F_n \nearrow \Gamma$. Given $f: X \to \mathbb{R}$ and $S \Subset \Gamma$

$$Var_{S}(f) = \sup\{|f(x) - f(y)| : x, y \in X, x|_{S} = y|_{S}\}.$$

We say a map has \mathbb{F} -summable variation if for every $S \Subset \Gamma$,

$$\sum_{n\in\mathbb{N}}|F_{n+1}S\setminus F_nS|\operatorname{Var}_{F_n}(f)<\infty.$$

Let $\mathbb{F} = (F_n)_{n \in \mathbb{N}}$ be a sequence of finite subsets of Γ such that $F_n \nearrow \Gamma$. Given $f: X \to \mathbb{R}$ and $S \Subset \Gamma$

$$Var_{S}(f) = \sup\{|f(x) - f(y)| : x, y \in X, x|_{S} = y|_{S}\}.$$

We say a map has \mathbb{F} -summable variation if for every $S \subseteq \Gamma$,

$$\sum_{n\in\mathbb{N}}|F_{n+1}S\setminus F_nS|\operatorname{Var}_{F_n}(f)<\infty.$$

Maps with \mathbb{F} -summable variation satisfy LR's theorem.

イロト イヨト イヨト イヨト 三日

Applications

Assume the conditions of the LR theorem hold.

• If there is a measure μ such that $h_{\Sigma}(\Gamma \frown X, \mu) \ge 0$ for some Σ , then there are Gibbs measures.

Applications

Assume the conditions of the LR theorem hold.

- If there is a measure μ such that $h_{\Sigma}(\Gamma \frown X, \mu) \ge 0$ for some Σ , then there are Gibbs measures.
- If there is a unique Gibbs measure for X and h_∑(Γ へ X) ≥ 0, then the equilibrium measure is unique and does not depend upon the sofic approximation sequence.

Applications

Assume the conditions of the LR theorem hold.

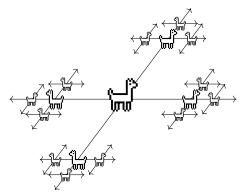
- If there is a measure μ such that $h_{\Sigma}(\Gamma \frown X, \mu) \ge 0$ for some Σ , then there are Gibbs measures.
- ② If there is a unique Gibbs measure for X and $h_{\Sigma}(\Gamma \frown X) \ge 0$, then the equilibrium measure is unique and does not depend upon the sofic approximation sequence.
- Suppose A is a finite group and $X \subset A^{\Gamma}$ is a subshift which is closed under pointwise multiplication. If the homoclinic group

$$\Delta(X) = \{x \in X : (x, e) \in \mathcal{T}(X)\}$$

is dense in X, then the Haar measure is the unique measure of maximal entropy for every sofic approximation sequence.

<ロト < 回 ト < 臣 ト < 臣 ト 三 の </p>

Thanks!



☆ The Lanford-Ruelle theorem for actions of sofic groups S. Barbieri, T. Meyerovitch Transactions of the AMS, to appear. https://arxiv.org/abs/2112.02334

イロト イヨト イヨト イヨト