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Consider n particles with weights on R given by a function f

1

f (1)

2

f (2)

3

f (3)

4

f (4)

5

f (5)

6

f (6)

7

f (7)

n

f (n)

· · ·

Which is the probability distribution µ = (µ1, . . . , µn) on
{1, . . . , n} that maximizes entropy plus the integral of the weight?

max
µ

(
H(µ) +

∫
f dµ

)
= max

µ

n∑
i=1

(−µi log(µi ) + f (i)µi ) .

Answer: Boltzmann’s distribution.

µk = exp(f (k))∑n
i=1 exp(f (i)) .
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Given a countable group Γ and a finite set A, we consider the full
G-shift with the prodiscrete topology

AΓ = {x : Γ→ A}.

A subshift on Γ is a subset X ⊂ AΓ which is closed and
invariant under the action Γ y AΓ given by

(gx)(h) = x(g−1h) for every g , h ∈ Γ.

Given F b Γ y p ∈ AF , let [p] = {x ∈ AΓ : x |F = p}.

A subshift X ⊂ AΓ is of finite type (SFT) if there is F b Γ
and L ⊂ AF such that x ∈ X if and only if gx ∈

⋃
p∈L[p] for every

g ∈ Γ.
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How to extend Boltzmann’s distribution to subshifts?

Local

For F b Γ, the probability
of seeing p ∈ AF condi-
tioned on the σ-algebra
induced by Γ \ F follows
Boltzmann’s distribution

Gibbs
measure

Global

µ maximizes

hµ(Γ y X ) +
∫

f dµ.

Where hµ(Γ y X ) is the
measure-theoretical entropy

Equilibrium
measure
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How are these two notions related?

Let Γ = Zd and
1 A subshift X ⊂ AZd .
2 A sufficiently regular map f : X → R.
3 An invariant measure µ on X .

Theorem: Lanford, Ruelle, 1969
If X is a subshift of finite type
µ equilibrium =⇒ µ is Gibbs.

Theorem: Dobrushin, 1968
If X is sufficiently mixing (D-mixing).
µ is Gibbs =⇒ µ is equilibrium.
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Today we’ll present a version of the LR theorem on steroids.

Zd −→ Γ an arbitrary sofic group.
Zd -SFT X −→ Γ-subshift X which satisfies the TMP.

Theorem: B., Meyerovitch, 2021
Let Γ be a sofic group and Σ a sofic approximation sequence of Γ.
Let f : X → R be sufficiently regular. For every Γ-subshift which
has TMP and hΣ(Γ y X ) ≥ 0, every equilibrium measure µ is
Gibbs.
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Motivation

A cellular automata on Γ y AΓ is a continuous and
Γ-equivariant map ϕ : AΓ → AΓ

ϕ(gx) = gϕ(x) for every g ∈ Γ, x ∈ AΓ.

Gottschalk’s conjecture
For every group Γ, every injective CA ϕ : AΓ → AΓ is surjective.

Sofic groups satisfy the conjecture
It is not even known if all groups are sofic. The conjecture is
open.
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Motivation
An abstract entropy theory on AΓ is a map

(X , µ) 7→ h(Γ y X , µ) ∈ [−∞,∞],

such that h is invariant under measurable dynamical isomorphism.
X ⊂ AΓ is a subshift.
µ is an invariant Borel probabily measure on AΓ with support
on X .

An abstract entropy theory satisfies the Lanford-Ruelle theorem
for f = 0 if every measure µ such that

h(Γ y X , µ) = sup
ν

h(Γ y X , ν),

is a Gibbs measure.
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Theorem
If Γ admits an abstract entropy theory for subshift which satisfies
the Lanford-Ruelle theorem for f = 0, then Gottschalk’s conjecture
holds for Γ.

Proof:
The only Gibbs measure on AΓ is the uniform Bernoulli
measure, which has full support.
For every subshift X ( AΓ,
supν h(Γ y X , ν) < supµ h(Γ y AΓ, µ).
If ϕ is an injective endomorphism, then for every measure µ
on AΓ, Γ y (AΓ, µ) ∼= Γ y (ϕ(AΓ), ϕ∗(µ)).
If µ is uniform Bernoulli, then
h(Γ y AΓ, µ) = h(Γ y ϕ(AΓ), ϕ∗(µ)) and thus ϕ(AΓ) = AΓ.
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Gibbs’s measure

A measure is Gibbs if it “locally follows Boltzmann’s distribution”.
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Gibbs’s measure

µ( | ) and µ( | ) follow Boltzmann’s distribution.
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Gibbs measure

x , y ∈ AΓ are asymptotic if there is F b Γ such that

x |Γ\F = y |Γ\F .

Denote by T (X ) the equivalence relation of asymptotic pairs on X .

Let us consider f : X → R such that for every asymptotic pair
(x , y) ∈ T (X )

Ψf (x , y) =
∑
g∈Γ

f (gy)− f (gx) is absolutely convergent.

Example: f is local (there is F b Γ such that f (x) = f (y) when
x |F = y |F ).
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Gibbs measure

Fix a subshift X . For x ∈ AΓ and F b Γ, let LF (x) the set of
patterns p ∈ AF which concatenated with x |Γ\F give an element of
X .

A Borel probability measure µ in a subshift X is Gibbs with
respect to f : X → R if for every F b Γ and p ∈ AF then µ− ae

Eµ(1[p] | σ(AΓ\F ))(x) =


exp(Ψf (x ,p∨x |Γ\F ))∑

q∈LF (X) exp(Ψf (x ,q∨x |Γ\F )) if p ∈ LF (x)

0 if p /∈ LF (x)
.
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Gibbs measure

Example: X = AΓ and f = 0. For p ∈ AF

Eµ(1[p] | σ(AΓ\F ))(x) =


exp(Ψf (x ,p∨x |Γ\F ))∑

q∈LF (X) exp(Ψf (x ,q∨x |Γ\F )) if p ∈ LF (x)

0 if p /∈ LF (x)
.

=
exp(Ψf (x , p ∨ x |Γ\F ))∑

q∈AF exp(Ψf (x , q ∨ x |Γ\F ))

= 1
|AF |

.

µ([p]) = 1
|AF |

is the uniform Bernoulli measure.

12



Gibbs measure

Example: X = AΓ and f = 0. For p ∈ AF

Eµ(1[p] | σ(AΓ\F ))(x) =


exp(Ψf (x ,p∨x |Γ\F ))∑

q∈LF (X) exp(Ψf (x ,q∨x |Γ\F )) if p ∈ LF (x)

0 if p /∈ LF (x)
.

=
exp(Ψf (x , p ∨ x |Γ\F ))∑

q∈AF exp(Ψf (x , q ∨ x |Γ\F ))

= 1
|AF |

.

µ([p]) = 1
|AF |

is the uniform Bernoulli measure.

12



Equilibrium measure

For F b Γ and a subshift X ⊂ AΓ, let LF (X ) be the set of patterns
p ∈ AF such that [p] ∩ X 6= ∅.

Easy case Γ = Zd .

hµ(Zd y X ) = lim
n→∞

1
(2n + 1)d

∑
p∈L[−n,n]d (X)

−µ([p]) log(µ([p])).

Equilibrium measure on Zd

An invariant Borel probability measure on a Zd -subshift is of
equilibrium if it maximizes

hµ(Γ y X ) +
∫

f dµ.

Among all invariant Borel probability measures on X .
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Equilibrium measure

Example: let Γ = Zd , X = AΓ, f = 0.

−
∑

p∈A[−n,n]d µ([p]) log(µ([p])) is maximized on

µ([p]) = 1
|A[−n,n]d |

.

Then the only equilibrium measure for f = 0 is the uniform
Bernoulli measure on AZd .

For AZd and f = 0, there is only one equilibrium and Gibbs
measure and they coincide.
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Equilibrium measure

What if the group is not Zd?

Given K b Γ and δ > 0, we say F b Γ is (K , δ)-invariant if

|KF ∆F | ≤ δ|F |.

Γ = Z2

K = {(1, 1)}
F = J−n, nK2

KF4F

15
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Equilibrium measure

Amenable group
A group Γ is amenable if for every K b Γ and δ > 0 there is
F b Γ which is (K , δ)-invariant.

A sequence (Fn)n∈N of finite subsets of Γ is Følner if it is
eventually (K , δ)-invariant for every K b Γ and δ > 0.

hµ(Γ y X ) = lim
n→∞

1
|Fn|

∑
p∈LFn (X)

−µ([p]) log(µ([p])).

Where (Fn)n∈N is any Følner sequence.

Remark: the limit does not depend on the Følner sequence.
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What if Γ is not amenable?

Entropy theory on amenable groups satisfies:
It is non-increasing under factor maps.
The entropy of AΓ with the uniform Bernoulli measure is
log(|A|).

Example: (Ornstein and Weiss 87)
Let F2 be the free group on two generators a, b
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Entropy theory on amenable groups satisfies:
It is non-increasing under factor maps.
The entropy of AΓ with the uniform Bernoulli measure is
log(|A|).

Example: (Ornstein and Weiss 87)
Let F2 be the free group on two generators a, b

Let ϕ : (Z/2Z)F2 → (Z/2Z× Z/2Z)F2 be given by

ϕ(x)(g) = (x(g) + x(ga), x(g) + x(gb)).

ϕ is a factor map from (Z/2Z)F2 to ((Z/2Z)2)F2 . One of the two
properties must fail on F2.
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Amenable groups Residually finite groups

Sofic groups

A group Γ is sofic if there’s a sequence (Vi )i∈N of finite sets
|Vi | → ∞ and a collection Σ = {σi : Γ→ Sym(Vi )}i∈N which is:

Asymptotically an action: For every s, t ∈ Γ,

lim
i→∞

1
|Vi |
|{v ∈ Vi : σi (st)v = σi (s)σi (t)v}| = 1.

Asymptotically free: For every s 6= t ∈ Γ,

lim
i→∞

1
|Vi |
|{v ∈ Vi : σi (s)v 6= σi (t)v}| = 1.
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Asymptotically free: For every s 6= t ∈ Γ,

lim
i→∞

1
|Vi |
|{v ∈ Vi : σi (s)v 6= σi (t)v}| = 1.

18



Example: If Γ is residually finite, there is a sequence of normal
subgroups (Hn)n∈N such that [Γ : Hn] <∞ and

⋂
n∈N Hn = 1.

Let Vn = Γ/Hn and σn : Γ→ Sym(Γ/Hn) be given by

σn(g)(xHn) = gxHn for every g ∈ Γ.

The collection Σ = {σn : Γ→ Sym(Γ/Hn)}n∈N es
Asymptotically an action.
Asymptotically free, because

⋂
n∈N Hn = 1.

Residually finite groups are sofic.
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Example: If Γ is amenable, consider a Følner sequence (Fn)n∈N

such that 1Γ ∈ Fn ↗ Γ.

Let Vn = Fn y σn : Γ→ Sym(Fn) be given by

σn(g)(f ) =
{

gf if gf ∈ Fn

τg (f ) otherwise.

where τg : Fn \ g−1Fn is some permutation.
The collection Σ = {σn : Γ→ Sym(Fn)}n∈N is

Asymptotically an action. For every g , h ∈ Γ let
K = {g , h, gh} and ε > 0. There is Fn such that
|KF ∆F | < ε|F |. Therefore the number of f ∈ F such that
σn(g)σn(h)f = σn(gh)f is at least (1− ε)|F |.
Asymptotically free, because Fn ↗ Γ.

Amenable groups are sofic.
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How to define sofic entropy for an action Γ y X?

Fix a sofic approximation sequence Σ = {σi : Γ→ Sym(Vi )}i∈N of
Γ and a generating pseudometric ρ on X .

hΣ(Γ y X , µ) = sup
ε>0

inf
LbC(X)

inf
FbΓ

inf
δ>0

lim sup
i→∞

1
|Vi |

log(Mε
Σ,µ(Γ y X ,F , δ, L, σi ))

Where Mε
Σ,µ(Γ y X ,F , δ, L, σi ) is the maximum cardinality of a collection of

maps ϕ : Vn → X such that
1 are ε-separated, maxv∈Vi ρ(ϕ(v), ϕ′(v)) > ε.
2 son (F , δ)-close to an orbit

max
s∈F

1
|Vi |

(∑
v∈Vi

ρ(sϕ(v), ϕ(σi (s)v))2

) 1
2

< δ.

3 Are almost generic with respect to the measure∣∣∣∣∣ 1
|Vi |

∑
v∈Vi

h(ϕ(v))−
∫

X
hdµ

∣∣∣∣∣ ≤ δ, for every h ∈ L.
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How to define sofic entropy for a subshift X?

The action Γ y X is expansive, so ε may be replaced by 1
2 .

22



How to define sofic entropy for a subshift X?

The action Γ y X is expansive, so ε may be replaced by 1
2 .

hΣ(Γ y X , µ) = sup
ε>0

inf
LbC(X)

inf
FbΓ

inf
δ>0

lim sup
i→∞

1
|Vi |

log(Mε
Σ,µ(Γ y X ,F , δ, L, σi ))

22



How to define sofic entropy for a subshift X?

The action Γ y X is expansive, so ε may be replaced by 1
2 .

hΣ(Γ y X , µ) = inf
LbC(X)

inf
FbΓ

inf
δ>0

lim sup
i→∞

1
|Vi |

log(M0.5
Σ,µ(Γ y X ,F , δ, L, σi ))

22



How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence Σ = {σi : Γ→ Sym(Vi )}i∈N.
Consider the generating pseudometric

ρ(x , y) =
{
0 if x(1Γ) = y(1Γ),
1 if x(1Γ) 6= y(1Γ).

For w ∈ AVi , define ϕw (v) ∈ AΓ by

ϕw (v)(g) = w(σi (g−1)v).

Each w ∈ AVi induces a probability measure on AΓ given by

µw = 1
|Vi |

∑
v∈Vi

δϕw (v).
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How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence Σ = {σi : Γ→ Sym(Vi )}i∈N.
Let d be a metric on Prob(AΓ).

For µ ∈ ProbΓ(X ), let

Nδ(µ) = {ν ∈ Prob(AΓ) : d(ν, µ) < δ}.

The sofic entropy of a subshift (X , µ) with respect to a sofic
approximation sequence Σ is given by:

hΣ(Γ y X , µ) = inf
δ>0

lim sup
i→∞

1
|Vi |

log
∣∣∣{w ∈ AVi : µw ∈ Nδ(µ)}

∣∣∣ .
An invariant Borel probability measure µ is an equilibrium
measure for a subshift X ⊂ AΓ with respect to Σ and f : X → R if
it maximizes the expression:

hΣ(Γ y X , µ) +
∫

f dµ.

24



How to define sofic entropy for a subshift X?
Fix a sofic approximation sequence Σ = {σi : Γ→ Sym(Vi )}i∈N.
Let d be a metric on Prob(AΓ).

For µ ∈ ProbΓ(X ), let

Nδ(µ) = {ν ∈ Prob(AΓ) : d(ν, µ) < δ}.

The sofic entropy of a subshift (X , µ) with respect to a sofic
approximation sequence Σ is given by:

hΣ(Γ y X , µ) = inf
δ>0

lim sup
i→∞

1
|Vi |

log
∣∣∣{w ∈ AVi : µw ∈ Nδ(µ)}

∣∣∣ .
An invariant Borel probability measure µ is an equilibrium
measure for a subshift X ⊂ AΓ with respect to Σ and f : X → R if
it maximizes the expression:

hΣ(Γ y X , µ) +
∫

f dµ.

24



How to define sofic entropy for a subshift X?
Fix a sofic approximation sequence Σ = {σi : Γ→ Sym(Vi )}i∈N.
Let d be a metric on Prob(AΓ).

For µ ∈ ProbΓ(X ), let

Nδ(µ) = {ν ∈ Prob(AΓ) : d(ν, µ) < δ}.

The sofic entropy of a subshift (X , µ) with respect to a sofic
approximation sequence Σ is given by:

hΣ(Γ y X , µ) = inf
δ>0

lim sup
i→∞

1
|Vi |

log
∣∣∣{w ∈ AVi : µw ∈ Nδ(µ)}

∣∣∣ .

An invariant Borel probability measure µ is an equilibrium
measure for a subshift X ⊂ AΓ with respect to Σ and f : X → R if
it maximizes the expression:

hΣ(Γ y X , µ) +
∫

f dµ.

24



How to define sofic entropy for a subshift X?
Fix a sofic approximation sequence Σ = {σi : Γ→ Sym(Vi )}i∈N.
Let d be a metric on Prob(AΓ).

For µ ∈ ProbΓ(X ), let

Nδ(µ) = {ν ∈ Prob(AΓ) : d(ν, µ) < δ}.

The sofic entropy of a subshift (X , µ) with respect to a sofic
approximation sequence Σ is given by:

hΣ(Γ y X , µ) = inf
δ>0

lim sup
i→∞

1
|Vi |

log
∣∣∣{w ∈ AVi : µw ∈ Nδ(µ)}

∣∣∣ .
An invariant Borel probability measure µ is an equilibrium
measure for a subshift X ⊂ AΓ with respect to Σ and f : X → R if
it maximizes the expression:

hΣ(Γ y X , µ) +
∫

f dµ.

24



Theorem: B., Meyerovitch, 2021
Let Γ be a sofic group and Σ a sofic approximation sequence of Γ.
Let f : X → R be sufficiently regular. For every Γ-subshift which
has TMP and hΣ(Γ y X ) ≥ 0, every equilibrium measure µ is
Gibbs.

hΣ(Γ y X ) ≥ 0 if and only if there is an invariant Borel probability
measure µ such that hΣ(Γ y X , µ) ≥ 0.
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A closed set X ⊆ AΓ satisfies the topological Markov property
(TMP) if
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SFT TMP

Two patterns p, q ∈ AF are exchangeable in a subshift X ⊂ AΓ if
for every x ∈ X

x |Γ\F ∨ p ∈ X if and only if x |Γ\F ∨ q ∈ X .

Remark: If X has TMP and M ⊃ F is a memory set for F b Γ,
then for every x , y such that x |Γ\F = y |Γ\F we have that x |M , y |M

are exchangeable.
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T (X ) is the equivalence relation of asymptotic pairs.

T 0(X ) is the subrelation of T (X ) generated by exchangeable
patterns. We call it the étale asymptotic relation.

Example: Consider the “sunny-side up” subshift

= {x ∈ {0, 1}Z : |x−1(1)| ≤ 1}.

. . . 000000010000000 · · · ∈

Let Y = {x ∈ {0, 1}Z : |x−1(1)| = 1}.
T ( ) = × .
T 0( ) = {(x , x) : x ∈ } ∪ (Y × Y ).

Theorem
T (X ) = T 0(X ) if and only if X has the TMP.
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A Borel probability measure µ on a subshift X is Gibbs with
respect to f : X → R if for every F b Γ y p ∈ AF we have that
µ− ae

Eµ(1[p] | σ(AΓ\F ))(x) =


exp(Ψf (x ,p∨x |Γ\F ))∑

q∈LF (X) exp(Ψf (x ,q∨x |Γ\F )) if p ∈ LF (x)

0 if p /∈ LF (x)
.

For p, q ∈ LF (x)

Eµ(1[p] | σ(AΓ\F ))(x)
Eµ(1[q] | σ(AΓ\F ))(x)

= exp(Ψf (q ∨ x |Γ\F , p ∨ x |Γ\F )).

Therefore the log of the above expression forms a cocycle on T (X ).
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Let µ be non-singular with respect to a countable Borel
equivalence relation R. if µ(A) = 0 =⇒ µ

⋃
x∈A
{y ∈ X : (x , y) ∈ R}

 = 0

 .

There is a countable group G which generates R and a map
Dµ,R : R → R+ such that for every φ ∈ G ,

dµ ◦ φ
dµ (x) = Dµ,R(x , φ(x)) µ− ae.

Let f : X → R such that the cocycle Ψf is well-defined. A Borel
probability measure µ on a subshift X is:

1 Gibbs with respect to f if it is non-singular with respect to
T (X ) and Dµ,T (X) = exp(Ψf ) µ-ae.

2 étale Gibbs with respect to f if it is non-singular with respect
to T 0(X ) and Dµ,T 0(X) = exp(Ψf ) µ-ae.
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1 Gibbs with respect to f if it is non-singular with respect to
T (X ) and Dµ,T (X) = exp(Ψf ) µ-ae.

2 étale Gibbs with respect to f if it is non-singular with respect
to T 0(X ) and Dµ,T 0(X) = exp(Ψf ) µ-ae.
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If a subshift X has the TMP then

Gibbs = étale Gibbs.

Theorem: B., Meyerovitch, 2021
Let Γ be a sofic group and Σ a sofic approximation sequence of Γ.
Let f : X → R be sufficiently regular. For every Γ-subshift which
has TMP and hΣ(Γ y X ) ≥ 0, every equilibrium measure µ is
étale Gibbs.
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Example: Consider the “sunny-side up” subshift

= {x ∈ {0, 1}Γ : |x−1(1)| ≤ 1}.

X≤1 only admits as an invariant measure the Dirac mass δ0 on 0Γ.
Thus this is the equilibrium measure for any sofic group and sofic
approximation sequence Σ (with sofic entropy 0).

δ0 is not Gibbs for any f , because it is singular with respect
to T ( ) = × .
δ0 is étale Gibbs because
T 0( ) = {(x , x) : x ∈ } ∪ (Y × Y ) for
Y = {x ∈ {0, 1}Z : |x−1(1)| = 1} and the measure is
supported on \ Y .
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Proof sketch

1 Assume f is a local map.
2 Let x , y ∈ T 0(X ) and F b Γ such that p = x |F and q = y |F

do not overlap. Consider the set U(t, r , δ) of measures µ s.t.

|µ([p] ∪ [q])− t| < δ and
∣∣∣∣µ([p])
µ([q]) − r

∣∣∣∣ < δ.

We show that for r , s ≥ 0, if we let r∗ = r
1+r and s∗ = s

1+s
then the difference on the expressions for sofic pressure
P(U(t, r , δ))− P(U(t, s, δ)) can be parameterized as

t (H(r∗) + r∗Ψf (x , y)− H(s∗)− s∗Ψf (x , y)) .

3 If t > 0, the maximum value is obtained at r = exp(Ψf (x , y)).
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Proof sketch

1 For (x , y) ∈ T0 which satisfy the technical condition and
which are in the support of an equilibrium measure, then

lim
F↗Γ

µ([x |F ])
µ([y |F ]) = exp(Ψf (x , y)).

2 The rest of the proof consists on getting rid of the technical
condition (taking a product with a Bernoulli shift and showing
that the non-overlap condition is generic).

3 The generalization to non-local functions f is done through
functional analysis by interpreting equilibrium measures as
subderivatives (and using a Mazur-like theorem).
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Functions that work with LR

A translation-invariant map Φ: L(X )→ R is called an interaction,
we say Φ is absolutely summable if∑

1G∈FbΓ
sup

p∈LF (X)
|Φ(p)| <∞.

Let fΦ : X → R be given by

fΦ(x) =
∑

1G∈FbΓ

1
|F |Φ(x |F ).

Maps fΦ for some absolutely summable Φ satisfy LR’s theorem.
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Functions that work with LR

Let F = (Fn)n∈N be a sequence of finite subsets of Γ such that
Fn ↗ Γ. Given f : X → R and S b Γ

VarS(f ) = sup{|f (x)− f (y)| : x , y ∈ X , x |S = y |S}.

We say a map has F-summable variation if for every S b Γ,∑
n∈N

|Fn+1S \ FnS|VarFn (f ) <∞.

Maps with F-summable variation satisfy LR’s theorem.
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Applications
Assume the conditions of the LR theorem hold.

1 If there is a measure µ such that hΣ(Γ y X , µ) ≥ 0 for some
Σ, then there are Gibbs measures.

2 If there is a unique Gibbs measure for X and hΣ(Γ y X ) ≥ 0,
then the equilibrium measure is unique and does not depend
upon the sofic approximation sequence.

3 Suppose A is a finite group and X ⊂ AΓ is a subshift which is
closed under pointwise multiplication. If the homoclinic group

∆(X ) = {x ∈ X : (x , e) ∈ T (X )}

is dense in X , then the Haar measure is the unique measure of
maximal entropy for every sofic approximation sequence.
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Thanks!

The Lanford–Ruelle theorem for actions of sofic groups
S. Barbieri, T. Meyerovitch

Transactions of the AMS, to appear.
https://arxiv.org/abs/2112.02334
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