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f(1) f(2) f(3) f(4) £(5) f(6) f(7) f(n)

Which is the probability distribution & = (1, ..., ps) on
{1,..., n} that maximizes entropy plus the integral of the weight?

In

max (H(u) + / fd,u> = mixizn:l (—pilog(pei) + F(i)pi) -

Answer: Boltzmann's distribution.

_ ep(f(K))
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Given a countable group I and a finite set A, we consider the full
G-shift with the prodiscrete topology

AT = {x:T — A}
W A subshift on I is a subset X c A" which is closed and
invariant under the action I ~ A" given by

(gx)(h) = x(g~th) for every g,h € T.

Given Felypec AF let [p] = {x € A" : x|F = p}.

W A subshift X C A" is of finite type (SFT) if thereis F € I
and L C AF such that x € X if and only if gx € Uperlp] for every
gel.
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How to extend Boltzmann's distribution to subshifts?

Global

~
Equilibrium
measure

For F € I, the probability
of seeing p € AF condi-
tioned on the o-algebra
induced by ' \ F follows
Boltzmann's distribution

[0 maximizes

h, (T ~ X) —i—/fd,u.

Where h, (I ~ X) is the
measure-theoretical entropy
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How are these two notions related?

Let T = Z9 and
@ A subshift X C AZ”,
@ A sufficiently regular map f: X — R.

© An invariant measure p on X.

Theorem: Lanford, Ruelle, 1969

If X is a subshift of finite type
u equilibrium = p is Gibbs.

| A\

Theorem: Dobrushin, 1968
If X is sufficiently mixing (D-mixing).
wis Gibbs = p is equilibrium.
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Today we'll present a version of the LR theorem on steroids.

e Z9 — T an arbitrary sofic group.
o Z9-SFT X — I-subshift X which satisfies the TMP.

Theorem: B., Meyerovitch, 2021

Let ' be a sofic group and ¥ a sofic approximation sequence of .
Let f: X — R be sufficiently regular. For every -subshift which
has TMP and hs (I ~ X) > 0, every equilibrium measure (i is
Gibbs.
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Motivation

w A cellular automata on I ~ A" is a continuous and
l-equivariant map ¢: AT — AT

©(gx) = gp(x) for every g e T, x € A",

Gottschalk’s conjecture

For every group I, every injective CA : AT — A" is surjective.

@ Sofic groups satisfy the conjecture

@ It is not even known if all groups are sofic. The conjecture is
open.



Motivation
An abstract entropy theory on A" is a map
(XaM) = h(r vaM) € [700700]7

such that h is invariant under measurable dynamical isomorphism.
o X C A" is a subshift.

@ 4 is an invariant Borel probabily measure on A" with support
on X.

W An abstract entropy theory satisfies the Lanford-Ruelle theorem
for f = 0 if every measure p such that

h( ~ X, 1) =sup h(lF ~ X, v),

is a Gibbs measure.
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Theorem

If I admits an abstract entropy theory for subshift which satisfies
the Lanford-Ruelle theorem for f = 0, then Gottschalk's conjecture
holds for .

v

Proof:

@ The only Gibbs measure on A" is the uniform Bernoulli
measure, which has full support.

o For every subshift X C AT,
sup, h(I ~ X,v) <sup, h(l ~ AT ).

@ If v is an injective endomorphism, then for every measure p
on AT, T~ (AT, 1) =T~ (p(AT), ou(n)).

@ If u is uniform Bernoulli, then
h(T ~ AT 1) = h(T ~ (A", pi(12)) and thus p(AT) = AT,

v
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[ Gibbs's measure J

p(w |8) and p(W|E) follow Boltzmann's distribution.
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Denote by 7 (X) the equivalence relation of asymptotic pairs on X.
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[ Gibbs measure ]

x,y € AT are asymptotic if there is F € I such that

X|r\E = yIr\F-

Denote by 7 (X) the equivalence relation of asymptotic pairs on X.

Let us consider f: X — R such that for every asymptotic pair
(x,y) € T(X)

Ve(x,y) = Z f(gy) — f(gx) is absolutely convergent.
ger

Example: f is local (there is F € I such that f(x) = f(y) when
x|F = ylF).
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[ Gibbs measure J

Fix a subshift X. For x € A" and F €T, let Lg(x) the set of
patterns p € AF which concatenated with x|r\F give an element of
X.
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[ Gibbs measure J

Fix a subshift X. For x € A" and F €T, let Lg(x) the set of
patterns p € AF which concatenated with x|r\F give an element of
X.

A Borel probability measure y in a subshift X is Gibbs with
respect to f: X — R if for every F € I and p € AF then p — ae

exp(Vr(x,pVx|r\r))
EAmﬂdN“mwz{ZwmwMWWWMw>

if pe LF(X)

0 it p ¢ Le(x)
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[ Gibbs measure J

Example: X = A" and f = 0. For p € AF

exp(Wr (x,pVx|r\F))
Eu(lp) | o(AT))(x) = {anm oV (x,aVxir\r))

if p€ LF(X)

0 if pé Le(x)
exp(Vr(x, pV xIn\F))
ZqGAF exp(\llf(x, qVv X’F\F))
1

AF|
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[ Gibbs measure J

Example: X = A" and f = 0. For p € AF

exp(Vr(x,pVx|r\£))
Eu(lp) | o(AT))(x) = {anm oV (x,aVxir\r))
0 if pé Le(x)
C ep(Welx, pV xlre)
D qear exp(Ve(x,q V x|r\F))
1
= T

if pe LF(X)

w([p]) = m is the uniform Bernoulli measure.
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[ Equilibrium measure ]

For F €T and a subshift X C AT, let Lg(X) be the set of patterns
p € AF such that [p]N X # @.
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For F €T and a subshift X C AT, let Lg(X) be the set of patterns
p € AF such that [p]N X # @.

Easy case [ = Z9.
1

h(Z9 ~ X) = lim ———— —([p]) log(u([pl))-
‘u( n—o0 (2n_|_]_)d pel_[%d(x) HALP]) log pA P
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[ Equilibrium measure ]

For F €T and a subshift X C AT, let Lg(X) be the set of patterns
p € AF such that [p]N X # @.

Easy case [ = Z9.
1

4~ = lim ——— - .
h(29 ~ X) = lim (zn“)dpa[%(x) u([p)) log(u([p)))

Equilibrium measure on Z¢

An invariant Borel probability measure on a Z9-subshift is of
equilibrium if it maximizes

h, (T ~ X) + / fdu.

Among all invariant Borel probability measures on X.
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Example: let [ = Z4 X=A" f=0.
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Example: let [ = Z4 X=A" f=0.
— 2 peat-nnd 1([p]) log(p([p])) is maximized on

1
w([p]) = m

Then the only equilibrium measure for f = 0 is the uniform
Bernoulli measure on AZ”.
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[ Equilibrium measure ]

Example: let [ = Z4 X=A" f=0.
— 2 peat-nnd 1([p]) log(p([p])) is maximized on

1
w([p]) = m

Then the only equilibrium measure for f = 0 is the uniform
Bernoulli measure on AZ”.

For AZ* and f = 0, there is only one equilibrium and Gibbs
measure and they coincide.

14
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What if the group is not Z97?

15



[ Equilibrium measure ]

What if the group is not Z97?

Given K € and § > 0, we say F € I is (K, d)-invariant if

|KFAF| < §|F].

15



[ Equilibrium measure ]

What if the group is not Z9?

Given K € and § > 0, we say F € I is (K, d)-invariant if

|KFAF| < §|F|.
r=2z? g .
K={1L1D} | 4— KFAF
F _ [I:_n’ n]]z NN NN
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[ Equilibrium measure ]

Amenable group

A group I is amenable if for every K € ' and § > 0 there is
F €T which is (K, ¢)-invariant.

A sequence (Fp)nen of finite subsets of I is Fglner if it is
eventually (K, d)-invariant for every K € I and § > 0.
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[ Equilibrium measure ]

Amenable group

A group I is amenable if for every K € I' and § > 0 there is
F €T which is (K, ¢)-invariant.

A sequence (Fp)nen of finite subsets of I is Fglner if it is
eventually (K, d)-invariant for every K € I and § > 0.

hu(F A X) = lim = 3 — (o)) log(u([p]))-

n—00 ‘Fn‘ pelr (X)

Where (Fp)nen is any Fglner sequence.

Remark: the limit does not depend on the Fglner sequence.

16
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17



What if T is not amenable?

Entropy theory on amenable groups satisfies:
@ It is non-increasing under factor maps.

@ The entropy of A" with the uniform Bernoulli measure is
log(|Al).
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Let F, be the free group on two generators a, b
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What if T is not amenable?

Entropy theory on amenable groups satisfies:
@ It is non-increasing under factor maps.

o The entropy of A" with the uniform Bernoulli measure is
log(|A]).

Example: (Ornstein and Weiss 87)
Let F, be the free group on two generators a, b

Let ¢: (Z/2Z2)F2 — (Z2/2Z x Z/2Z)F2 be given by

p(x)(g) = (x(g) + x(ga), x(g) + x(gb))

¢ is a factor map from (Z/2Z)f to ((Z/2Z)?)F2. One of the two
properties must fail on F.

17



Amenable groups

J [ Residually finite groups J

\ /

[

Sofic groups ]
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[ Amenable groups J [ Residually finite groups J

\ /

[ Sofic groups ]

A group T is sofic if there's a sequence (V;);en of finite sets
|Vi] = oo and a collection X = {o;: I — Sym(V})}ien which is:

e Asymptotically an action: For every s, t €T,

lim {v € V;:oi(st)v = oi(s)oi(t)v}| = 1.

@ Asymptotically free: For every s At €T,

li L
m

{v e V;:oi(s)v #ai(t)v} =1

18



Example: |If I is residually finite, there is a sequence of normal
subgroups (Hn)nen such that [ : Hy] < oo and (,en Hn = 1.
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Example: |If I is residually finite, there is a sequence of normal
subgroups (Hp)nen such that [I: Hp] < 0o and (,eny Hn = 1.

Let V, =T/H, and o,: I — Sym(I'/H,) be given by
on(g)(xH,) = gxH, for every g € T.

The collection ¥ = {o,: I — Sym(I'/H,,) } nen €s
o Asymptetieally an action.

o Asymptotically free, because ,cn Hn = 1.

Residually finite groups are sofic.
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Example: |If [ is amenable, consider a Fglner sequence (Fp)nen
such that 1r € F, /T.

Let V, = F,y 0,: T — Sym(F,) be given by

gf if gf € F,
Tg(f)  otherwise.

an(g)(f) = {

where 7,: F, \ g 1F, is some permutation.
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Example: |If [ is amenable, consider a Fglner sequence (Fp)nen
such that 1r € F, /T.

Let V, = F,y 0,: T — Sym(F,) be given by

(&)(F) gf if gf € Fp,
G =
& Tg(f)  otherwise.

where 7,: F, \ g 1F, is some permutation.
The collection ¥ = {op: I — Sym(Fp)}nen is
@ Asymptotically an action. For every g, h € T let
K = {g, h,gh} and £ > 0. There is F, such that
|KFAF| < €|F|. Therefore the number of f € F such that
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@ Asymptotically free, because F, /T.
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How to define sofic entropy for an action ' ~ X7
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How to define sofic entropy for an action ' ~ X7

Fix a sofic approximation sequence ¥ = {o;: I — Sym(V;)}ien of
" and a generating pseudometric p on X.

hs(T ~ X, 1) =sup inf inf inf limsup — V

log(M: I~ X,F,d,L, 0
e>0LEC(X) FET 6>0 00 | '| og( Zu( ~ J))

Where M5 (T ~ X, F, 4, L,0;) is the maximum cardinality of a collection of
maps ¢: V, — X such that

@ are e-separated, max,cv, p(p(v), ¢’ (v)) > e.
@ son (F,d)-close to an orbit

max (Z P(SW(V)MP(UI'(S)V))z) <4

© Are almost generic with respect to the measure

< 4, for every h € L.

21



How to define sofic entropy for a subshift X?
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How to define sofic entropy for a subshift X7

The action ' ~ X is expansive, so € may be replaced by %

1
he(T ~ X, p) = inf inf inf li — log(Mg (T ~ X, F,5,L, 0
(M~ X, 1) sup, Inf_ynf.inf lim sup 1o og(Ms (T ~ X, F,4,L,01))
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How to define sofic entropy for a subshift X7

The action ' ~ X is expansive, so € may be replaced by %

. o 1 0.5
= fl — log(M25,(T ~ X, F,6,L, 0
he(F ~ X, 1) L@Igfx)ygrggo imsup 1 og(My (T ~ X, F,6,L,07))
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How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence ¥ = {o;: I — Sym(V;)}ien-
Consider the generating pseudometric

0 if x(1r) = y(1r),

Py = {1 i x(1r) # y(1r).

For w € AV, define ¢, (v) € A" by

ow(v)(g) = w(oi(g™")v).
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How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence ¥ = {o;: [ = Sym(V;)}ien.

Consider the generating pseudometric

0 if x(1r) = y(1r),

Py = {1 i x(1r) # y(1r).

For w € AV, define ¢, (v) € A" by
Pw(v)(8) = w(oi(g™)v).

Each w € AY/ induces a probability measure on A™ given by

Hw \V] Z ow(v)

vevV;

23



How to define sofic entropy for a subshift X?
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How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence ¥ = {o;: I — Sym(V;)}ien.
Let d be a metric on Prob(A").

For u € Probr(X), let

Ns(1) = {v € Prob(A") : d(v, 1) < 6}.

24



How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence ¥ = {o;: I — Sym(V;)}ien.
Let d be a metric on Prob(A").

For u € Probr(X), let

Ns(1) = {v € Prob(A") : d(v, 1) < 6}.

The sofic entropy of a subshift (X, u) with respect to a sofic
approximation sequence X is given by:

1
hs (T ~ X, 1) = inf limsup log ‘{W c Ay, € Ng(,u)}).

0>0 o0 | Vi
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How to define sofic entropy for a subshift X?

Fix a sofic approximation sequence ¥ = {o;: I — Sym(V;)}ien.
Let d be a metric on Prob(A").

For u € Probr(X), let

Ns(1) = {v € Prob(A") : d(v, 1) < 6}.

The sofic entropy of a subshift (X, u) with respect to a sofic
approximation sequence X is given by:

1
hs (T ~ X, 1) = inf limsup log ‘{W c Ay, € Ng(,u)}’.

0>0 o0 | Vi

An invariant Borel probability measure p is an equilibrium
measure for a subshift X C AT with respect to ¥ and f: X — R if
it maximizes the expression:

hs(T' ~ X, 1) +/fdu.

24



Theorem: B., Meyerovitch, 2021

Let I' be a sofic group and X a sofic approximation sequence of T.

Let f: X — R be sufficiently regular. For every I-subshift which

has TMP and hs (I ~ X) > 0, every equilibrium measure x is
Gibbs.
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Theorem: B., Meyerovitch, 2021

Let ' be a sofic group and X a sofic approximation sequence of T.
Let f: X — R be sufficiently regular. For every I-subshift which
has TMP and hs (I ~ X) > 0, every equilibrium measure y is
Gibbs.

hs (I ~ X) > 0 if and only if there is an invariant Borel probability
measure g such that hy (I ~ X, p) > 0.
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A closed set X C A satisfies the topological Markov property
(TMP) if
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A closed set X C AT satisfies the topological Markov property
(TMP) if for every S €T there is a finite memory set M O S
such that for every x, y € X which satisfy xpns = yams, then
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A closed set X C AT satisfies the topological Markov property
(TMP) if for every S €T there is a finite memory set M O S
such that for every x, y € X which satisfy xpns = yams, then
x|sVyns € X.

O OO0 oboo
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D D o C DI:\DD oo

N = R ED :

O vy | OO mad EE,
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[ SFT J—{ TMP

Two patterns p, g € AF are exchangeable in a subshift X c A" if
for every x € X

x]r\,:\/p € X if and only ifx]r\,:\/q e X.
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[ SFT J—)[ TMP ]

Two patterns p, g € AF are exchangeable in a subshift X c A" if
for every x € X

x]r\,:\/p € X if and only ifx]r\,:\/q e X.

Remark: If X has TMP and M O F is a memory set for F €T,
then for every x, y such that x|r\F = y|r\F we have that x|y, y|um
are exchangeable.
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@ T(X) is the equivalence relation of asymptotic pairs.
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@ T(X) is the equivalence relation of asymptotic pairs.

o TO(X) is the subrelation of 7(X) generated by exchangeable
patterns. We call it the étale asymptotic relation.
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@ T(X) is the equivalence relation of asymptotic pairs.

o TO(X) is the subrelation of 7(X) generated by exchangeable
patterns. We call it the étale asymptotic relation.

Example: Consider the “sunny-side up” subshift

= {x e {0,1}%: |x7 (1) < 1}.
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@ T(X) is the equivalence relation of asymptotic pairs.

o TO(X) is the subrelation of 7(X) generated by exchangeable
patterns. We call it the étale asymptotic relation.

Example: Consider the “sunny-side up” subshift

= {x e {0,1}%: |x7 (1) < 1}.

...000000010000000 - - - €
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@ T(X) is the equivalence relation of asymptotic pairs.

o TO(X) is the subrelation of 7(X) generated by exchangeable
patterns. We call it the étale asymptotic relation.

Example: Consider the “sunny-side up” subshift

= {x e {0,1}%: |x7 (1) < 1}.

...000000010000000 - - - €
Let Y = {x € {0,1}%: x~}(1)| = 1}.
o T( ) = X .
o T )={(x,x):x¢€ FU(Y xY).
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@ T(X) is the equivalence relation of asymptotic pairs.

o TO(X) is the subrelation of 7(X) generated by exchangeable
patterns. We call it the étale asymptotic relation.

Example: Consider the “sunny-side up” subshift

= {x e {0,1}%: |x7 (1) < 1}.

...000000010000000 - - - €
Let Y = {x € {0,1}%: x~}(1)| = 1}.
o 7( )= X .
o T " )={(x,x):x€ — JU(YXY).

T(X) = T°(X) if and only if X has the TMP.
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A Borel probability measure p on a subshift X is Gibbs with
respect to f: X — R if for every F € 'y p € AF we have that
i — ae

exp(Vr(x,pVx|r\r))
EAdeN“mwz{Zwmwwwww~w>

if pe LF(X)

0 it p ¢ Le(x)

<
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A Borel probability measure p on a subshift X is Gibbs with
respect to f: X — R if for every F € 'y p € AF we have that
i — ae

exp(Vr(x,pVx|r\r))
Eu(lp | o(ATN)) () = { 2ot SPrbosxIne) :
0 if p¢ Lr(x)

if pe LF(X)

For p,q € Lp(x)

(1 | o(AN)(x)
Eu(lfg | o(ANVF))(x) exp(Vr(q V X[, PV X|rF))-

Therefore the log of the above expression forms a cocycle on 7(X).
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Let 1 be non-singular with respect to a countable Borel
equivalence relation R.

(ifu(A):O = u(U{yGX:(x,y)ER}) :0).

XEA
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Let 1 be non-singular with respect to a countable Borel
equivalence relation R.

(HMM%:Oziu(LHyeX%&yﬂﬂa):0>.

XEA

There is a countable group G which generates R and a map
D, r: R — Ry such that for every ¢ € G,

dpog
dp

(x) =Dur(x,0(x)) p— ae.
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Let 1 be non-singular with respect to a countable Borel
equivalence relation R.

(ﬁuM%zOziu(LHyEX%&yﬂﬂa)zo).

xEA

There is a countable group G which generates R and a map
D, r: R — Ry such that for every ¢ € G,

dpog
dp

(x) =Dur(x,0(x)) p— ae.

Let f: X — R such that the cocycle V¢ is well-defined. A Borel
probability measure 1 on a subshift X is:

@ Gibbs with respect to f if it is non-singular with respect to
T(X) and Dy, 7(x) = exp(Vr) p-ae.

@ étale Gibbs with respect to f if it is non-singular with respect
to T°(X) and D, 7o(x) = exp(Vr) p-ae.
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If a subshift X has the TMP then
Gibbs = étale Gibbs.
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If a subshift X has the TMP then
Gibbs = étale Gibbs. J

Theorem: B., Meyerovitch, 2021

Let I' be a sofic group and X a sofic approximation sequence of T.
Let f: X — R be sufficiently regular. For every -subshift whieh
hasTFMHP and hs (I ~ X) > 0, every equilibrium measure p is
étale Gibbs.
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Example:

Consider the “sunny-side up” subshift

oo ={xe{0,1}" : |x7 1) <1}
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Example: Consider the “sunny-side up” subshift

={xe{0,1}" : |x (1) < 1}.

X<1 only admits as an invariant measure the Dirac mass dp on or.

Thus this is the equilibrium measure for any sofic group and sofic
approximation sequence ¥ (with sofic entropy 0).
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Example: Consider the “sunny-side up” subshift
={xe{0,1}" : |x1(1)] < 1}.

X<1 only admits as an invariant measure the Dirac mass dp on or.
Thus this is the equilibrium measure for any sofic group and sofic
approximation sequence ¥ (with sofic entropy 0).

@ Jg is not Gibbs for any f, because it is singular with respect

toT( )= X
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Example: Consider the “sunny-side up” subshift

={xe{0,1}" : |x (1) < 1}.

X<1 only admits as an invariant measure the Dirac mass dp on or.

Thus this is the equilibrium measure for any sofic group and sofic
approximation sequence ¥ (with sofic entropy 0).
@ Jg is not Gibbs for any f, because it is singular with respect
toT( )= X
@ Op is étale Gibbs because
T )={(x,x) : x € U (Y x Y) for
Y = {x € {0,1}% : |x"1(1)| = 1} and the measure is
supported on \'Y.
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Proof sketch
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Proof sketch

© Assume f is a local map.
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Proof sketch

© Assume f is a local map.

@ Let x,y € T%(X) and F €T such that p = x|r and g = y|F
do not overlap. Consider the set U(t, r,d) of measures p s.t.

) U lal) — o] < 6 and | 2020 — ] <

p(lal)
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Proof sketch

© Assume f is a local map.

@ Let x,y € T%(X) and F €T such that p = x|r and g = y|F
do not overlap. Consider the set U(t, r,d) of measures p s.t.

) U lal) — o] < 6 and | 2020 — ] <

p(lal)

H * r * S
We show that for r,s > 0, if we let r* = S and s* = s

then the difference on the expressions for sofic pressure
P(U(t,r,d)) — P(U(t,s,d)) can be parameterized as

t(H(r") + r'Ve(x,y) — H(s™) — s"W¢(x,y)) .

@ If t > 0, the maximum value is obtained at r = exp(V¢(x, y)).



Proof sketch
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Proof sketch

@ For (x,y) € To which satisfy the technical condition and
which are in the support of an equilibrium measure, then

D)
()

= exp(V¢(x,y)).
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Proof sketch

@ For (x,y) € To which satisfy the technical condition and
which are in the support of an equilibrium measure, then

D)
P ulvlen) — P

@ The rest of the proof consists on getting rid of the technical
condition (taking a product with a Bernoulli shift and showing
that the non-overlap condition is generic).
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Proof sketch

@ For (x,y) € To which satisfy the technical condition and
which are in the support of an equilibrium measure, then

)
A'}"rm— p(Vr(x,y))-

@ The rest of the proof consists on getting rid of the technical
condition (taking a product with a Bernoulli shift and showing
that the non-overlap condition is generic).

© The generalization to non-local functions f is done through
functional analysis by interpreting equilibrium measures as
subderivatives (and using a Mazur-like theorem).
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Functions that work with LR

A translation-invariant map ®: L(X) — R is called an interaction,
we say ¢ is absolutely summable if

sup[(p)] < oo.
1geFer PELF(X)

Let fo: X — R be given by

)= 3 ‘;'¢(xy,:).

lceFel
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Functions that work with LR

A translation-invariant map ®: L(X) — R is called an interaction,
we say ¢ is absolutely summable if

sup[(p)] < oo.
1geFer PELF(X)

Let fo: X — R be given by

)= 3 ‘;'¢(xy,:).

lceFel

Maps fp for some absolutely summable ® satisfy LR’s theorem.




Functions that work with LR

Let F = (Fn)nen be a sequence of finite subsets of I such that
F, "T. Given f: X -Rand S&Tl

Vars(f) = sup{|f(x) = f(y)| : x,y € X, x|s = y|s}-
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Functions that work with LR

Let F = (Fn)nen be a sequence of finite subsets of I such that
F, ~T. Givenf: X —Rand SeTl

Varg(f) = sup{|f(x) — f(y)| : x,y € X, x|s = y[s}.
We say a map has F-summable variation if for every S €T,

Z |Frt1S \ FaS| Varg, () < oo.
neN
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Functions that work with LR

Let F = (Fn)nen be a sequence of finite subsets of I such that
F, ~T. Givenf: X —Rand SeTl

Varg(f) = sup{|f(x) — f(y)| : x,y € X, x|s = y[s}.
We say a map has F-summable variation if for every S €T,

Z |Frt1S \ FaS| Varg, () < oo.
neN

Maps with F-summable variation satisfy LR’s theorem.
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Applications

Assume the conditions of the LR theorem hold.

Q |If there is a measure u such that hy(I' ~ X, ;1) > 0 for some
Y, then there are Gibbs measures.
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Applications

Assume the conditions of the LR theorem hold.

Q |If there is a measure u such that hy(I' ~ X, ;1) > 0 for some
Y, then there are Gibbs measures.

@ |If there is a unique Gibbs measure for X and hs(I' ~ X) >0,
then the equilibrium measure is unique and does not depend
upon the sofic approximation sequence.
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Applications

Assume the conditions of the LR theorem hold.

Q |If there is a measure u such that hy(I' ~ X, ;1) > 0 for some
Y, then there are Gibbs measures.

@ |If there is a unique Gibbs measure for X and hs(I' ~ X) >0,
then the equilibrium measure is unique and does not depend
upon the sofic approximation sequence.

@ Suppose A is a finite group and X C AT is a subshift which is
closed under pointwise multiplication. If the homoclinic group

AX)={xe X :(x,e) e T(X)}

is dense in X, then the Haar measure is the unique measure of
maximal entropy for every sofic approximation sequence.
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W The Lanford—Ruelle theorem for actions of sofic groups
S. Barbieri, T. Meyerovitch
Transactions of the AMS, to appear.
https://arxiv.org/abs/2112.02334
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