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Motivation

What actions are factors of subshifts of finite type?

Theorem (R. Bowen (1970))
The restriction to the nonwandering set of Axiom A
diffeomorphisms are “nice” factors of Z-subshifts of finite type

Theorem (Gromov (1987), Coornaert-Papadopoulos (1993 book))
The natural action by isometries of a hyperbolic group Γ on its
boundary ∂Γ is a “nice” factor of a Γ-subshift of finite type

In this talk: for some groups, these results generalize to a large
class of actions if we don’t care about the factor being “nice”.
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Subshift of finite type

Let A be a finite set and consider AΓ = {x : Γ→ A} with the
prodiscrete topology and the action Γ y AΓ given by

(gx)(h) = x(g−1h) for every g , h ∈ Γ.

X ⊂ AΓ is a Γ-subshift if it is closed and Γ-invariant.

Y ⊂ AΓ is a Γ-subshift of finite type (SFT) is there is a finite set
F ⊂ Γ and F ⊂ AF such that y ∈ Y if and only if

(gy)|F /∈ F for every g ∈ Γ.

A subshift is of finite type if it is the set of configurations x ∈ AΓ

which avoid a finite list of forbidden patterns (represented by F).
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Theorem (B. Sablik, Salo (2021))
For a class of groups, called self-simulable, every “computable”
action Γ y X on a compact “computable” space X is the factor of
a subshift of finite type.

Intuitively:
Computable action Γ y X : there’s an algorithm that from a
description of x ∈ X and g ∈ Γ can compute gx .
Computable space: there’s an algorithm which can
approximate the space X .

Let’s look at X ⊂ {0, 1}N.
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Definitions

Computable space

For a word w = w0w1 . . .wn−1 ∈ {0, 1}n consider the cylinder set

[w ] = {x ∈ {0, 1}N : x |{0,...,n−1} = w}.

Effectively closed set
A set X ⊂ {0, 1}N is called effectively closed if there is a Turing
machine which enumerates a sequence of words (wn)n∈N such that

X = {0, 1}N \
⋃

n∈N

[wn].
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Definitions

Computable action

Let X ⊂ {0, 1}N. A function ϕ : X → {0, 1}N is computable if
there is a Turing machine which on input

n ∈ N

x ∈ {0, 1}N

Stops and answers ϕ(x)(n) whenever x ∈ X .

Let us restrict to a finitely generated group Γ = 〈S〉.

An action Γ y X is computable, if for every s ∈ S the map
ϕs : X → X given by ϕs(x) = sx is computable.
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Definitions

Computable action Γ y X

Example: Z y {0, 1}N odometer
Let S = {−1, 0,+1}

0
−1

+1
x1 1 1 1 1 10 0 0 0 0 0
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Let Γ be finitely generated by a symmetric set S 3 1Γ and
X ⊂ {0, 1}N. Given Γ y X consider the set

Y = {y ∈ ({0, 1}S)N : πs(y) = s · π1Γ(y) ∈ X for every s ∈ S}.

Where πs(y) ∈ {0, 1}N is such that πs(y)(n) = y(n)(s).
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Definitions

Effectively closed action
An action Γ y X ⊂ {0, 1}N is effectively closed if Y is an
effectively closed set.

Note: In this talk we will always suppose that Γ has decidable
word problem to avoid certain technicalities.

“Γ has decidable word problem if there’s an algorithm that can
draw arbitrarily large balls of its Cayley graph”
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Example: natural actions of Thompson’s groups
Consider X = {0, 1}N and let u1, . . . , un and v1, . . . , vn be
non-empty words in {0, 1}∗ such that

X = [u1] t [u2] t · · · t [un] = [v1] t [v2] t · · · t [vn].

Let ϕ be the homeomorphism of {0, 1}N which maps every
cylinder [ui ] to [vi ] by replacing prefixes, that is

ϕ(uix) = vix for every x ∈ {0, 1}N.

u1 = 00, u2 = 01, u3 = 1 and v1 = 0, v2 = 10, v3 = 11.

ϕ(0101010 . . . ) = 1001010 . . . ϕ(0000000 . . . ) = 0000000 . . .

ϕ(1111111 . . . ) = 1111111 . . . ϕ(0011001 . . . ) = 011001 . . .

0100
1

7→

1110
0
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Natural action of Thompson’s groups
F is the group of all such homeomorphisms where u1, . . . , un
and v1, . . . , vn are given in lexicographical order.
T is the group of all such homeomorphisms where u1, . . . , un
and v1, . . . , vn are given in lexicographical order up to a cyclic
permutation.
V is the group of all such homeomorphisms.

Then F 6 T 6 V are Thompson’s groups.

B these groups are finitely presented and have decidable word
problem. Their natural action on {0, 1}N is effectively closed.

T ,V are nonamenable.
It is a famous open problem whether F is amenable.
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What results are known?
Let H y X be an effectively closed action and let

1→ N → Γ→ H → 1

The action H y X extends to an action Γ y X where N acts
trivially.

In the following cases we have that Γ y X is the factor of a Γ-SFT.
1 Theorem [Hochman, 2009]

1→ Z2 → Z3 → Z→ 1

2 Theorem [B. Sablik, 2019] H is any infinite f.g. group, d ≥ 2,

1→ Zd → Zd o H → H → 1.

3 Theorem [B. 2019] H,G ,K are three infinite f.g groups

1→ G × K → H × G × K → H → 1.
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Question

Are there any groups Γ such that the diagram is as simple as
possible?

1→ 1→ Γ→ Γ→ 1

Holy grail

Γ y Z ΓyX
factor

Are there finitely generated groups Γ such that every effectively
closed action Γ y X is the topological factor of a Γ-SFT Z?

Theorem (B., Sablik, Salo 2021)
Yes.
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Self-simulable groups

Self-simulable group
A finitely generated group Γ is self-simulable if every effectively
closed action Γ y X is the topological factor of a Γ-SFT Z

B there are several obstructions to self-simulability.
Amenable groups cannot be self-simulable.
Groups with infinitely many ends cannot be self-simulable.
Some one-ended non-amenable groups are not self-simulable.
Ex: F2 × Z (multi-ended × amenable).
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Amenable groups are not self-simulable

If Γ is amenable, we can associate to every action Γ y X on a
compact metrizable space by homeomorphisms a non-negative real
number

htop(Γ y X ) ∈ [0,+∞].

called the topological entropy of Γ y X .

1 If Γ y X is expansive, then htop(Γ y X ) < +∞.
2 Topological entropy cannot increase under factors.
3 Conclusion: no action with entropy +∞ can be the factor of a

subshift.
4 If Γ is recursively presented, there are effectively closed actions

Γ y X with infinite entropy (the inverse limit of the full
Γ-shifts on n symbols).
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Our main result

Theorem (B., Sablik, Salo 2021)
The direct product Γ = Γ1 × Γ2 of any pair of non-amenable
finitely generated groups is self-simulable.

No need for self-similar or hierarchical structures as in the
other results in the literature.
Proof based on the existence of paradoxical decompositions.
The technique is very flexible and allows for many other
applications.
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Non-amenable group
A group Γ is non-amenable if and only if it admits a paradoxical
decomposition.

B Paradoxical decompositions can be expressed analytically.

Non-amenable group
A group Γ is non-amenable if and only if there exists a finite set
K ⊂ Γ and a 2-to-1 map ϕ : Γ→ Γ such that

g−1ϕ(g) ∈ K for every g ∈ Γ.

B The collection of all such maps for fixed K can be coded using a
Γ-subshift of finite type.
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B The collection of all such maps for fixed K can be coded using a
Γ-subshift of finite type.

Alphabet = K 3 × {G, B}.

Three directions K 3: one pointing to ϕ(g), the next two
pointing to the two preimages
A color (green or blue) (partitioning the elements of the group
into two paradoxical sets).
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The paradoxical subshift

In pictures, the alphabet represents the following structure.

(k1, k2, k3, G) ∈ K 3 × {G, B}

h©g©

a©

b©

k3

k1

k2

a 6= b,
ϕ(a) = ak−1

1 = g ,
ϕ(b) = bk−1

2 = g ,
ϕ(g) = gk3 = h.
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The paradoxical subshift

The local rules of the subshift impose that every node has two
preimages of distinct color, and left arrows must match with right
arrows.

d©a©

b©

c©

©

©

©

©

RG(a)

LG(a)

RG(b)

LB(a)

RB(c)

LG(b)

LB(b)

LG(c)

LB(c)

B This induces a binary tree-like structure (except for loops).
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B Key observation: In a bi-colored infinite binary tree, there is a
canonical way to assign one-sided infinite paths to every node.
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B Key observation: In a bi-colored infinite binary tree, there is a
canonical way to assign one-sided infinite paths to every node.

Follow the arrow tails of the opposite color!
The paths do not intersect.
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The paradoxical shift

Let Γ = Γ1 × Γ2 be the product of two non-amenable groups.

B taking the paradoxical subshift on each component and
extending it trivially to Γ, we obtain a subshift of finite type on Γ
with the property that every configuration induces:

a N2-grid with moves in a finite set K ⊂ Γ for every g ∈ Γ.
The grids are pairwise disjoint.

g©
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What do we do with grids? encode Turing machines

B We use the grids to encode computation using Wang tilings.

Given a Turing machine with alphabet Σ, states Q, starting state
q0 and transition function

δ : Q × Σ→ Q × Σ→ {−1, 0, 1},

seed tile1(a)

(q0, a)

tile2(a)

a

a

a

(s ′, b′)

(s, b)

c ′

`′
←

(`, c)

d ′

r ′
→

(r , d)

(q, a)
q→

a

(q, a)
q←

a

Where δ(s, b) = (s ′, b′, 0), δ(`, c) = (`′, c ′,−1) and δ(r , d) = (r ′, d ′, 1).
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What do we do with grids? encode Turing machines

In our case:
Take the alphabet of the set representation of Γ y X and use
it as tape alphabet.

Encode the Turing machine which enumerates all cylinders
which are in the complement of the set representation.
Take out the tiles containing the accepting state.

Result: The only remaining configurations are the ones in the set
representation.
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Start with x = x0x1x2x3 · · · ∈ AN

g©
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Start with x = x0x1x2x3 · · · ∈ AN

g©

x0 x1 x2 x3 x4

If the configuration survives (i.e. If the Turing machine does not
stop), then x is in the set representation of Γ y X .
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Finishing touches

Now we have:
A subshift which assigns to every g ∈ Γ a N2-grid.

For every g ∈ Γ, we have an element y ∈ Y of the set
representation of Γ y X .
That is, for every g ∈ Γ we have encoded {sxg}s∈S ⊂ X for a
generating set S of Γ.
Weave together all the N2-grids imposing that the
configuration xgs in gs coincides with s−1xg through local
rules.

Thus we obtain a natural factor map from this subshift of finite
type to Γ y X .
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Our main result

Theorem (B., Sablik, Salo 2021)
The direct product Γ = Γ1 × Γ2 of any pair of non-amenable
finitely generated groups is self-simulable.

But we have more!
Self-simulable groups are stable under commensurability.
Self-simulable groups are stable under quasi-isometries of
finitely presented groups.
Any group which has a normal self-simulable subgroup is
self-simulable.
Any group Γ generated by S which has a self-simulable
subgroup ∆ with the property that ∆ ∩ s∆s−1 is
non-amenable for every s ∈ S is self-simulable.
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Applications

Mixing the stability properties of this class, we obtain handy ways
to show self-simulability:

Lemma
Let Γ be a finitely generated group which acts faithfully on
X = {0, 1}N such that for any non-empty open set U the subgroup
ΓU which fixes every element of X \ U is non-amenable. Then Γ is
self-simulable.

Theorem: Thompson’s V is self-simulable

Proof: Consider the natural action V y {0, 1}N of Thompson’s
V . For any non-trivial word w ∈ {0, 1}∗ the subgroup of V which
fixes X \ [w ] is isomorphic to V (which is non-amenable).
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Applications

Very old and hard question: is Thompson’s F amenable?

Theorem: Thompson’s F is self-simulable if and only if F is
non-amenable.

Proof: Amenable recursively presented groups are never
self-simulable.
Consider the natural action F y {0, 1}N of Thompson’s F . For
any non-trivial word w ∈ {0, 1}∗ the subgroup of F which fixes
X \ [w ] is isomorphic to F . As we suppose that F is non-amenable,
the lemma holds and we get that F is self-simulable.

To show that F is amenable, it would then suffice to construct an
effectively closed F -action which is not the factor of an F -subshift
of finite type (no idea how to do this).

By a similar argument, if F is non-amenable then T is
self-simulable.
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Applications

The following groups are self-simulable:

Finitely generated non-amenable branch groups.
The finitely presented simple groups of Burger and Mozes.
Thompson’s group V and higher-dimensional
Brin-Thompson’s groups nV .
GLn(Z) and SLn(Z) for n ≥ 5.
Aut(Fn) and Out(Fn) for n ≥ 5.
Braid groups Bn on at least n ≥ 7 strands.
Right-angled Artin groups associated to the complement of a
finite connected graph for which there are two edges at
distance at least 3.
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Applications

B Suppose Γ y X admits a free effectively closed action (for every
x ∈ X then gx = x implies that g = 1Γ)

(SFT) Γ y Z ΓyX
factor

Then the shift action of Γ on Z is free.

Proof.
Let φ : Z → X be the factor map, and let x ∈ Z and g ∈ Γ
such that gx = x .
Then gφ(x) = φ(gx) = φ(x).
As Γ y X is free, we have g = 1Γ. Thus Γ y Z is free.

30



Applications

B Suppose Γ y X admits a free effectively closed action (for every
x ∈ X then gx = x implies that g = 1Γ)

(SFT) Γ y Z ΓyX
factor

Then the shift action of Γ on Z is free.

Proof.
Let φ : Z → X be the factor map, and let x ∈ Z and g ∈ Γ
such that gx = x .
Then gφ(x) = φ(gx) = φ(x).
As Γ y X is free, we have g = 1Γ. Thus Γ y Z is free.

30



Applications

B Suppose Γ y X admits a free effectively closed action (for every
x ∈ X then gx = x implies that g = 1Γ)

(SFT) Γ y Z ΓyX
factor

Then the shift action of Γ on Z is free.

Proof.
Let φ : Z → X be the factor map, and let x ∈ Z and g ∈ Γ
such that gx = x .
Then gφ(x) = φ(gx) = φ(x).
As Γ y X is free, we have g = 1Γ. Thus Γ y Z is free.

30



Theorem (Aubrun, B., Thomassé 2019)
Every finitely generated group with decidable word problem Γ
admits an effectively closed Γ-subshift on which Γ acts freely.

Corollary
Every self-simulable group Γ with decidable word problem admits a
Γ-SFT on which Γ acts freely.

Examples:
Γ = Fn × Fn.
Thompson’s V .
Braid groups Bn, n ≥ 7 strands.
GLn(Z) and SLn(Z) for n ≥ 5.

Note: If Γ is finitely generated, recursively presented and has
undecidable word problem, there are no free effectively closed
actions.
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Thank you for your attention!

Groups with self-simulable zero-dimensional dynamics
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