Insdistinguishability and multidimensional Sturmian configurations

Sebastián Barbieri Lemp
On joint work with S. Labbé and Š. Starosta
Universidad de Santiago de Chile
Dyadisc 5
June, 2022

- Let A be a finite set and $d \geq 1$ be an integer.
- A configuration is a map $x: \mathbb{Z}^{d} \rightarrow A$.
- Let A be a finite set and $d \geq 1$ be an integer.
- A configuration is a map $x: \mathbb{Z}^{d} \rightarrow A$.

For example if $d=2$ and $A=\{0,1,2\}$ a configuration looks like:

$$
\begin{array}{|l|llllllllllllllllll}
\hline 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\
\hline 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 \\
\hline 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 \\
\hline 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 \\
\hline 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 \\
\hline 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 \\
\hline 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 \\
\hline 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 \\
\hline 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 \\
\hline 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 \\
\hline 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 \\
\hline 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 \\
\hline 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 \\
\hline 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 \\
\hline 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\
\hline
\end{array}
$$

We say two configurations $x, y \in A^{\mathbb{Z}^{d}}$ are asymptotic if there exists a finite $F \subset \mathbb{Z}^{d}$ such that $\left.x\right|_{\mathbb{Z}^{d} \backslash F}=\left.y\right|_{\mathbb{Z}^{d} \backslash F}$.

We say two configurations $x, y \in A^{\mathbb{Z}^{d}}$ are asymptotic if there exists a finite $F \subset \mathbb{Z}^{d}$ such that $\left.x\right|_{\mathbb{Z}^{d} \backslash F}=\left.y\right|_{\mathbb{Z}^{d} \backslash F}$.

Given asymptotic x, y, we call $F=\left\{n \in \mathbb{Z}^{d}: x_{n} \neq y_{n}\right\}$ their difference set.

							x																		y							
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1			1	0	2			1	0	2	1	0	2	1	1	0	2	1
0	2	1	1	0	2	1	0	2	1	0	2	2	1	0			0	2	1	1	0	0	2	1	0	2	1	0	2	2	1	0
2	1	0	2	2	1	0	2	1	0	2	1	1	0	2			2	1	0	2	2	2	1	0	2	1	0	2	1	1	0	2
1	0	2	1	1	0	2	1	0	2	1	0	2	2	1			1	0	2	1	1	1	0	2	1	0	2	1	0	2	2	1
0	2	1	0	2	2	1	0	2	1	0	2	1	1	0			0	2	1	0		2	2	1	0	2	1	0	2	1	1	0
2	1	0	2	1	1	0	2	1	0	2	1	0	2	2			2	1	0	2		1	1	0	2	1	0	2	1	0	2	2
1	0	2	1	0	2	2	1	0	2	1	0	2	1	1			1	0	2		10	0	2	2	1	0	2	1	0	2	1	1
0	2	1	0	2	1	1	0	2	1	0	2	1	0	2			0	2	1	0	0	2	1	0	2	2	1	0	2	1	0	2
2	1	0	2	1	0	2	2	1	0	2	1	0	2	1			2	1	0		2	1	0	2	1	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0			1	0	2	1	10	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2			2	2	1	0	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1			1	1	0		2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0			0	2	2	1	10	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2			2	1					1	0	2	1		2	2	1		
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1			1	0	2	2	2	1	0	2	1	0	2	1	1	0	2	

Why the name "asymptotic"?

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\begin{array}{llllllllllllllllllllll}
x & 0 \\
y & =\begin{array}{lllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\begin{array}{lllllllllllllllllllll}
0 & 0 \\
\sigma(y) & \begin{array}{lllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\left.\begin{array}{llllllllllllllllllllll}
\sigma^{2}(x) & 0
\end{array}\right] \begin{array}{lllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\begin{aligned}
\sigma^{3}(x) & =\begin{array}{llllllllllllllllllllll}
0 & 0
\end{array} \\
\sigma^{3}(y) & =\begin{array}{llllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\left.\begin{array}{llllllllllllllllllllll}
\sigma^{4}(x) & 0
\end{array}\right] \begin{array}{lllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\begin{aligned}
\sigma^{5}(x) & =\begin{array}{llllllllllllllllllllll}
0 & 0
\end{array} \\
\sigma^{5}(y) & =\begin{array}{lllllllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\left.\begin{array}{llllllllllllllllllllll}
\sigma^{6}(x) & =0 & 0
\end{array}\right] \begin{array}{llllllllllllllllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\left.\begin{array}{llllllllllllllllllllll}
\sigma^{7}(x) & 0
\end{array}\right] \begin{array}{lllllllllllllllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\left.\begin{array}{lllllllllllllllllllllll}
\sigma^{9}(x) & 0
\end{array}\right] \begin{array}{lllllllllllllllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\begin{aligned}
\sigma^{10}(x) & 0
\end{aligned} 0
$$

Why the name "asymptotic"?

Let σ be the \mathbb{Z}^{d} action of $A^{\mathbb{Z}^{d}}$ given by

$$
\sigma^{n}(x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

x, y are asymptotic if and only if for any sequence $\left(n_{k}\right)_{k \in \mathbb{N}}$ in \mathbb{Z}^{d} with $\left\|n_{k}\right\| \rightarrow \infty$ then $d\left(\sigma^{n_{k}}(x), \sigma^{n_{k}}(y)\right) \rightarrow 0$.

$$
\begin{aligned}
\sigma^{11}(x) & =\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
\sigma^{11}(y) & =0
\end{aligned} \begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

- Let $x, y \in A^{\mathbb{Z}^{d}}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^{d}$ and a pattern $p \in A^{S}$ let

$$
[p]=\left\{z \in A^{\mathbb{Z}^{d}}:\left.z\right|_{S}=p\right\}
$$

- Let $x, y \in A^{\mathbb{Z}^{d}}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^{d}$ and a pattern $p \in A^{S}$ let

$$
[p]=\left\{z \in A^{\mathbb{Z}^{d}}:\left.z\right|_{S}=p\right\}
$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

- Let $x, y \in A^{\mathbb{Z}^{d}}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^{d}$ and a pattern $p \in A^{S}$ let

$$
[p]=\left\{z \in A^{\mathbb{Z}^{d}}:\left.z\right|_{s}=p\right\}
$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

$$
\Delta_{p}(x, y)=\sum_{u \in \mathbb{Z}^{d}} 1_{[p]}\left(\sigma^{u}(y)\right)-1_{[p]}\left(\sigma^{u}(x)\right)
$$

- Let $x, y \in A^{\mathbb{Z}^{d}}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^{d}$ and a pattern $p \in A^{S}$ let

$$
[p]=\left\{z \in A^{\mathbb{Z}^{d}}:\left.z\right|_{S}=p\right\}
$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

$$
\Delta_{p}(x, y)=\sum_{u \in F-S} 1_{[p]}\left(\sigma^{u}(y)\right)-1_{[p]}\left(\sigma^{u}(x)\right)
$$

- Let $x, y \in A^{\mathbb{Z}^{d}}$ be asymptotic.
- Given $S \Subset \mathbb{Z}^{d}$ and a pattern $p \in A^{S}$ let

$$
[p]=\left\{z \in A^{\mathbb{Z}^{d}}:\left.z\right|_{S}=p\right\}
$$

We wish to compute how many times p occurs in x vs how many times it occurs in y.

$$
\Delta_{p}(x, y)=\sum_{u \in F-S} 1_{[p]}\left(\sigma^{u}(y)\right)-1_{[p]}\left(\sigma^{u}(x)\right)
$$

We say an asymptotic pair x, y is indistinguishable if $\Delta_{p}(x, y)=0$ for every pattern p.

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.
x

	1	0	2	2	1	0	2	1	0	2	1	1	0	2
1														
	0	2	1	1	0	2	1	0	2	1	0	2	2	1
0														
1	1	0	2	2	1	0	2	1	0	2	1	1	0	2
	0	2	1	1	0	2	1	0	2	1	0	2	2	1
1	2	1	0	2	2	1	0	2	1	0	2	1	1	0
	0	2	2	1	1	0	2	1	0	2	1	0	2	2
2	2	1	0	2	1	1	1	0	2	1	0	2	1	0
	1	0	2	1	0	2	2	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1

y

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\
\hline 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 \\
\hline 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 \\
\hline 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 \\
\hline 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 \\
\hline 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 \\
\hline 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 \\
\hline 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 \\
\hline 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 \\
\hline 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 \\
\hline 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 \\
\hline 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 \\
\hline 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 \\
\hline 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 \\
\hline 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\
\hline
\end{array}
$$

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

x						y						
0	2	2				0	2	2	2	1	0	2
2	1	1				2	1	1	0	2	2	1
1	0	2				1	0	0	2	1	1	0
0	2						2	2	1	0	2	2

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

x					
0	2	2	1	0	
	2				
2	1	1	0	2	
1	1				
1	0	2	2	1	

y					
0	2	2	1	0	2
2	1	0	2	2	1
1	0	2	2	1	1

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

x					
0	2	2	1	0	2
2	1	1	0	2	1
1	0	2	2	1	0
0	2	1	0	2	2

y					
0	2	2	1	0	2
2	1	0	2	2	1
1	0	2	1	1	0
0	2	1	0	2	2

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

		x				y						
0	2	2	1	0	2	0	2	2	2	1	0	2
2	1	1	0	2	1	2	1	1	0	2	2	1
1	0	2	2	1	0	1	0	0	2	1	1	0
0	2	1	0	2	2	0	2	2	1	0	2	2

Example: Let $d=2$ and $S=\{(0,0),(0,1),(1,0),(2,0)\}$.

So for every pattern p with support S, we have $\Delta_{p}(x, y)=0$.

Examples:

- (x, x) for any $x \in A^{\mathbb{Z}^{d}}$ is an indistinguishable asymptotic pair. We call it trivial.

Examples:

- (x, x) for any $x \in A^{\mathbb{Z}^{d}}$ is an indistinguishable asymptotic pair. We call it trivial.
- If $x, y \in A^{\mathbb{Z}^{d}}$ are asymptotic and on the same orbit ($\sigma^{n}(y)=x$ for some $n \in \mathbb{Z}^{d}$) then they are indistinguishable.
x

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0
0	0	0	0	1	1	1	1	1	0
0	0	0	0	1	1	1	1	1	0
0	0	0	0	0	1	1	1	0	0
0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

y

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0
0	1	1	1	1	1	0	0	0	0
0	0	1	1	1	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

Motivation

Consider n balls with real weights given by a map f.
(1)

$f(1) f(2) f(3) f(4) f(5) \quad f(6) \quad f(7) \quad f(n)$

Motivation

Consider n balls with real weights given by a map f.

$f(1) f(2) f(3) f(4) f(5) f(6) f(7) \quad f(n)$
¿What is the probability distribution $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ on $\{1, \ldots, n\}$ that maximizes entropy plus average weight?

$$
\max _{\mu}\left(H(\mu)+\int f \mathrm{~d} \mu\right)=\max _{\mu} \sum_{i=1}^{n}\left(-\mu_{i} \log \left(\mu_{i}\right)+f(i) \mu_{i}\right)
$$

Motivation

Consider n balls with real weights given by a map f.

$$
f(1) f(2) f(3) \quad f(4) \quad f(5) \quad f(6) \quad f(7) \quad f(n)
$$

¿What is the probability distribution $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ on $\{1, \ldots, n\}$ that maximizes entropy plus average weight?

$$
\max _{\mu}\left(H(\mu)+\int f \mathrm{~d} \mu\right)=\max _{\mu} \sum_{i=1}^{n}\left(-\mu_{i} \log \left(\mu_{i}\right)+f(i) \mu_{i}\right) .
$$

Answer: Boltzmann's distribution.

$$
\mu_{k}=\frac{\exp (f(k))}{\sum_{i=1}^{n} \exp (f(i))}
$$

We can extend this idea to sets of configurations, yielding the notion of Gibbs measures.

A measure is Gibbs if it follows Boltzmann's distribution on its asymptotic relation.

A measure is Gibbs if it follows Boltzmann's distribution on its asymptotic relation.

A measure is Gibbs if it follows Boltzmann's distribution on its asymptotic relation.

A measure is Gibbs if it follows Boltzmann's distribution on its asymptotic relation.

$\mu($ 摞 $\| \square)$ and $\mu($ 组 $\mid \square)$ follow Boltzmann's distribution for some f.

Gibbs Measures

Denote the set of all asymptotic pairs (x, y) by \mathcal{A}. The Boltzmann distribution of a Gibbs measure is determined by a cocycle $\Psi: \mathcal{A} \rightarrow \mathbb{R}$, that is, a map which satisfies:

$$
\Psi(x, y)=\Psi(x, z)+\Psi(z, y) \text { for all }(x, y),(y, z) \in \mathcal{A}
$$

Gibbs Measures

Denote the set of all asymptotic pairs (x, y) by \mathcal{A}. The Boltzmann distribution of a Gibbs measure is determined by a cocycle $\Psi: \mathcal{A} \rightarrow \mathbb{R}$, that is, a map which satisfies:

$$
\Psi(x, y)=\Psi(x, z)+\Psi(z, y) \text { for all }(x, y),(y, z) \in \mathcal{A}
$$

Example: if all configurations all equally likely (that is, there is no associated weight) we obtain the cocycle $\Psi=0$ and the sole Gibbs measure for Ψ is the uniform Bernoulli measure on $A^{\mathbb{Z}^{d}}$.
(1) The space of continuous, shift-invariant cocycles \mathcal{B} is a Banach space with an appropriate norm.
(1) The space of continuous, shift-invariant cocycles \mathcal{B} is a Banach space with an appropriate norm.
(2) There is a natural evaluation map on \mathcal{B}^{*}. For $(x, y) \in \mathcal{A}$ we have $\mathrm{ev}_{x, y} \in \mathcal{B}^{*}$ given by

$$
\mathrm{ev}_{x, y}(\Psi)=\Psi(x, y) \text { for every } \Psi \in \mathcal{B}
$$

(1) The space of continuous, shift-invariant cocycles \mathcal{B} is a Banach space with an appropriate norm.
(2) There is a natural evaluation map on \mathcal{B}^{*}. For $(x, y) \in \mathcal{A}$ we have $\mathrm{ev}_{x, y} \in \mathcal{B}^{*}$ given by

$$
\mathrm{ev}_{x, y}(\Psi)=\Psi(x, y) \text { for every } \Psi \in \mathcal{B}
$$

(3) It can be shown that the strong norm on \mathcal{B}^{*} is given by

$$
\left\|\mathrm{ev}_{x, y}\right\|=\sup _{S \in \mathbb{Z}^{d}} \frac{1}{|S|} \sum_{p \in A^{S}}\left|\Delta_{p}(x, y)\right|
$$

(1) The space of continuous, shift-invariant cocycles \mathcal{B} is a Banach space with an appropriate norm.
(2) There is a natural evaluation map on \mathcal{B}^{*}. For $(x, y) \in \mathcal{A}$ we have $\mathrm{ev}_{x, y} \in \mathcal{B}^{*}$ given by

$$
\mathrm{ev}_{x, y}(\Psi)=\Psi(x, y) \text { for every } \Psi \in \mathcal{B}
$$

(3) It can be shown that the strong norm on \mathcal{B}^{*} is given by

$$
\left\|\mathrm{ev}_{x, y}\right\|=\sup _{S \in \mathbb{Z}^{d}} \frac{1}{|S|} \sum_{p \in A^{S}}\left|\Delta_{p}(x, y)\right| .
$$

(9) An asymptotic pair gives the trivial linear functional if and only if it is indistinguishable.

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

Yes.

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)
Yes. We completely characterize them on \mathbb{Z}.

Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.
ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

Yes. We completely characterize them on \mathbb{Z}. They are closely connected to Sturmian codings of irrational rotations.

Basic properties of indistinguishable pairs:

(x, y) is indistinguishable if and only if $\Delta_{p}(x, y)=0$ for every $S \Subset \mathbb{Z}^{d}$ and pattern $p \in A^{S}$.

Basic properties of indistinguishable pairs:

(x, y) is indistinguishable if and only if $\Delta_{p}(x, y)=0$ for every $S \Subset \mathbb{Z}^{d}$ and pattern $p \in A^{S}$.

Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ with $S_{n} \nearrow \mathbb{Z}^{d}$. Then (x, y) is indistinguishable if and only if $\Delta_{p}(x, y)=0$ for every pattern p with support some S_{n}.

In particular, it suffices to check the property on rectangular patterns (or words in the case of \mathbb{Z}).

Basic properties of indistinguishable pairs:

(x, y) is indistinguishable if and only if $\Delta_{p}(x, y)=0$ for every $S \Subset \mathbb{Z}^{d}$ and pattern $p \in A^{S}$.

Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ with $S_{n} \nearrow \mathbb{Z}^{d}$. Then (x, y) is indistinguishable if and only if $\Delta_{p}(x, y)=0$ for every pattern p with support some S_{n}.

In particular, it suffices to check the property on rectangular patterns (or words in the case of \mathbb{Z}).

Indistinguishable asymptotic pairs are invariant under actions of the affine group of \mathbb{Z}^{d}.

In particular, they are invariant under the shift map.

Basic properties of indistinguishable pairs:

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

Basic properties of indistinguishable pairs:

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

We say a sequence of asymptotic pairs $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) if both $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$ converge to x, y respectively, and there is $F \Subset \mathbb{Z}^{d}$ such that the difference set of $\left(x_{n}, y_{n}\right)$ is contained in F for every $n \in \mathbb{N}$.

Basic properties of indistinguishable pairs:

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

We say a sequence of asymptotic pairs $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) if both $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}$ converge to x, y respectively, and there is $F \Subset \mathbb{Z}^{d}$ such that the difference set of $\left(x_{n}, y_{n}\right)$ is contained in F for every $n \in \mathbb{N}$.

If $\left(x_{n}, y_{n}\right)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) and every pair $\left(x_{n}, y_{n}\right)$ is indistinguishable, then (x, y) is indistinguishable.

Basic properties of indistinguishable pairs:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Basic properties of indistinguishable pairs:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^{S}$ which occurs at x exactly once (say $\sigma^{k}(x) \in[p]$).

Basic properties of indistinguishable pairs:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^{S}$ which occurs at x exactly once (say $\sigma^{k}(x) \in[p]$).
(1) As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^{m}(y) \in[p]$.

Basic properties of indistinguishable pairs:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^{S}$ which occurs at x exactly once (say $\sigma^{k}(x) \in[p]$).
(1) As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^{m}(y) \in[p]$.
(2) Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ with $S_{n} \nearrow \mathbb{Z}^{d}$ and $S \subset S_{n}$. Let $p_{n}=\left.\sigma^{k}(x)\right|_{S_{n}}$

Basic properties of indistinguishable pairs:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^{S}$ which occurs at x exactly once (say $\sigma^{k}(x) \in[p]$).
(1) As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^{m}(y) \in[p]$.
(2) Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ with $S_{n} \nearrow \mathbb{Z}^{d}$ and $S \subset S_{n}$. Let $p_{n}=\left.\sigma^{k}(x)\right|_{S_{n}}$
(3) By definition $\sigma^{k}(x) \in\left[p_{n}\right]$. Also, this n is unique. By indistinguishability, we must have $\sigma^{m}(y) \in\left[p_{n}\right]$.

Basic properties of indistinguishable pairs:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^{S}$ which occurs at x exactly once (say $\sigma^{k}(x) \in[p]$).
(1) As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^{m}(y) \in[p]$.
(2) Let $\left(S_{n}\right)_{n \in \mathbb{N}}$ with $S_{n} \nearrow \mathbb{Z}^{d}$ and $S \subset S_{n}$. Let $p_{n}=\sigma^{k}(x) \mid S_{n}$
(3) By definition $\sigma^{k}(x) \in\left[p_{n}\right]$. Also, this n is unique. By indistinguishability, we must have $\sigma^{m}(y) \in\left[p_{n}\right]$.
(9) As $\bigcap_{n \in \mathbb{N}}\left[p_{n}\right]=\sigma^{k}(x)$, we conclude that $\sigma^{k}(x)=\sigma^{m}(y)$.

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^{d} with $d \geq 2$):
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^{d} with $d \geq 2$):
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$
\begin{aligned}
& x=\begin{array}{llllllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array} \\
& y=: \begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^{d} with $d \geq 2$):
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$
\begin{aligned}
& x=\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array} \\
& y=\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^{d} with $d \geq 2$):
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$
\begin{aligned}
& x=\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1
\end{array} \\
& y=\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^{d} with $d \geq 2$):
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$
\begin{aligned}
& x=\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
y & =\begin{array}{llllllllll|l}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^{d} with $d \geq 2$):
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

$$
\begin{aligned}
& x=\begin{array}{llllllllllll}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
y & =\begin{array}{lllllllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}
\end{array} . \begin{array}{lllllllll}
1
\end{array}
\end{aligned}
$$

Corollary: If x, y are indistinguishable with difference set $F=\llbracket 0, k-1 \rrbracket$ then their word complexity satisfies

$$
\left|\mathcal{L}_{n}(x)\right| \leq k+n-1
$$

The case of \mathbb{Z}

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

The case of \mathbb{Z}

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F=\{0,1\}$ then:

The case of \mathbb{Z}

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F=\{0,1\}$ then:
(1) x, y are uniformly recurrent.

The case of \mathbb{Z}

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F=\{0,1\}$ then:
(1) x, y are uniformly recurrent.
(2) $\left|\mathcal{L}_{n}(x)\right|=\left|\mathcal{L}_{n}(y)\right|=n+1$

The case of \mathbb{Z}

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F=\{0,1\}$ then:
(1) x, y are uniformly recurrent.
(2) $\left|\mathcal{L}_{n}(x)\right|=\left|\mathcal{L}_{n}(y)\right|=n+1$

Thus x, y must be Sturmian configurations!

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 0 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 01 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 010 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 0101 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 01011 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 010110 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 0101101 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 01011010 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 010110101 \ldots$

Let $\alpha \in[0,1] \backslash \mathbb{Q}$. Consider the rotation $R_{\alpha}: S^{1} \rightarrow S^{1}$ given by $R_{\alpha}(x)=x+\alpha$.
Consider the partition $\mathcal{P}=\left\{P_{0}=[0,1-\alpha),[1-\alpha, 1)\right\}$.

$$
\alpha=\frac{\sqrt{5}-1}{2}
$$

$\varphi(x)=\ldots 0101101011 \ldots$

Formally, given $\alpha \in[0,1] \backslash \mathbb{Q}$ let $c_{\alpha} \in\{0,1\}^{\mathbb{Z}}$ be given by

$$
c_{\alpha}(n)=\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor .
$$

Formally, given $\alpha \in[0,1] \backslash \mathbb{Q}$ let $c_{\alpha} \in\{0,1\}^{\mathbb{Z}}$ be given by

$$
c_{\alpha}(n)=\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor .
$$

Choosing instead the partition $\mathcal{P}^{\prime}=\left\{P_{0}=(0,1-\alpha],(1-\alpha, 1]\right\}$ gives

$$
c_{\alpha}^{\prime}(n)=\lceil\alpha(n+1)\rceil-\lceil\alpha n\rceil .
$$

Formally, given $\alpha \in[0,1] \backslash \mathbb{Q}$ let $c_{\alpha} \in\{0,1\}^{\mathbb{Z}}$ be given by

$$
c_{\alpha}(n)=\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor .
$$

Choosing instead the partition $\mathcal{P}^{\prime}=\left\{P_{0}=(0,1-\alpha],(1-\alpha, 1]\right\}$ gives

$$
c_{\alpha}^{\prime}(n)=\lceil\alpha(n+1)\rceil-\lceil\alpha n\rceil .
$$

The pair $\left(c_{\alpha}, c_{\alpha}^{\prime}\right)$ is asymptotic with difference set $F=\{-1,0\}$.

Formally, given $\alpha \in[0,1] \backslash \mathbb{Q}$ let $c_{\alpha} \in\{0,1\}^{\mathbb{Z}}$ be given by

$$
c_{\alpha}(n)=\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor .
$$

Choosing instead the partition $\mathcal{P}^{\prime}=\left\{P_{0}=(0,1-\alpha],(1-\alpha, 1]\right\}$ gives

$$
c_{\alpha}^{\prime}(n)=\lceil\alpha(n+1)\rceil-\lceil\alpha n\rceil .
$$

The pair $\left(c_{\alpha}, c_{\alpha}^{\prime}\right)$ is asymptotic with difference set $F=\{-1,0\}$.

The pair $\left(c_{\alpha}, c_{\alpha}^{\prime}\right)$ is indistinguishable. In fact, every pattern in their language occurs exactly once intersecting each of their difference sets.

Theorem: B, Labbé and Starosta

Let $x, y \in\{0,1\}^{\mathbb{Z}}$ and assume that x is recurrent. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F=\{-1,0\}$ such that $x_{-1} x_{0}=10$ and $y_{-1} y_{0}=01$
- There exists $\alpha \in[0,1] \backslash \mathbb{Q}$ such that $x=c_{\alpha}$ and $y=c_{\alpha}^{\prime}$ are the lower and upper characteristic Sturmian sequences of slope α.

Theorem: B, Labbé and Starosta

Let $x, y \in\{0,1\}^{\mathbb{Z}}$ and assume that x is recurrent. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F=\{-1,0\}$ such that $x_{-1} x_{0}=10$ and $y_{-1} y_{0}=01$
- There exists $\alpha \in[0,1] \backslash \mathbb{Q}$ such that $x=c_{\alpha}$ and $y=c_{\alpha}^{\prime}$ are the lower and upper characteristic Sturmian sequences of slope α.

But there is more...

The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta

Let $x, y \in\{0,1\}^{\mathbb{Z}}$. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F=\{-1,0\}$ such that $x_{-1} x_{0}=10$ and $y_{-1} y_{0}=01$
- there exists $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ with $\alpha_{n} \in[0,1] \backslash \mathbb{Q}$ such that

$$
x=\lim _{n \rightarrow \infty} c_{\alpha_{n}} \quad \text { and } \quad y=\lim _{n \rightarrow \infty} c_{\alpha_{n}}^{\prime}
$$

The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta

Let $x, y \in\{0,1\}^{\mathbb{Z}}$. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F=\{-1,0\}$ such that $x_{-1} x_{0}=10$ and $y_{-1} y_{0}=01$
- there exists $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ with $\alpha_{n} \in[0,1] \backslash \mathbb{Q}$ such that

$$
x=\lim _{n \rightarrow \infty} c_{\alpha_{n}} \quad \text { and } \quad y=\lim _{n \rightarrow \infty} c_{\alpha_{n}}^{\prime}
$$

But there is more...

The general case can be obtained from Sturmians using shifts and substitutions.

Theorem: B, Labbé and Starosta

Let A be a finite alphabet and $x, y \in A^{\mathbb{Z}}$ a non-trivial asymptotic pair. Then x, y is indistinguishable if and only if either

- x is recurrent and there exists $\alpha \in[0,1] \backslash \mathbb{Q}$, a substitution $\varphi:\{0,1\} \rightarrow A^{+}$and an integer $m \in \mathbb{Z}$ such that

$$
\{x, y\}=\left\{\sigma^{m} \varphi\left(\sigma\left(c_{\alpha}\right)\right), \sigma^{m} \varphi\left(\sigma\left(c_{\alpha}^{\prime}\right)\right)\right\}
$$

- x is not recurrent and there exists a substitution $\varphi:\{0,1\} \rightarrow A^{+}$and an integer $m \in \mathbb{Z}$ such that

$$
\{x, y\}=\left\{\sigma^{m} \varphi\left({ }^{\infty} 0.10^{\infty}\right), \sigma^{m} \varphi\left({ }^{\infty} 0.010^{\infty}\right)\right\}
$$

What about $d \geq 2$?

Things are much harder:

- Patterns may occur without intersecting the difference set.
- recurrent indistinguishable pairs may not be uniformly recurrent.
- Substitutions do not help reduce the problem to a small size difference set (no good notion of derived sequences).
- In general, there is no complexity bound.

Example:

$$
\begin{array}{lllllllllllll|}
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline
\end{array}
$$

2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
1	0	0	1	0	1	0	0	1	0	0	1
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2

The horizontal configuration is a 1-dimensional indistinguishable pair, everything else is the symbol 2.

Example:

2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
1	0	0	1	0	0	1	0	1	0	0	1
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	

2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
1	0	0	1	0	1	0	0	1	0	0	1
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2

The horizontal configuration is a 1-dimensional indistinguishable pair, everything else is the symbol 2.

- Recurrent but not uniformly recurrent.
- Some patterns do not occur in the difference set.

Theorem: B and Labbé.

Let $d \geq 1$ and $x, y \in\{0, \ldots, \mathrm{~d}\}^{\mathbb{Z}^{d}}$ be an asymptotic pair with difference set $F=\left\{0,-e_{1}, \ldots,-e_{d}\right\}$. TFAE:
(1) The asymptotic pair (x, y) is indistinguishable, satisfies the flip condition and x is uniformly recurrent.
(2) There exists a totally irrational vector $\alpha \in[0,1)^{d}$ such that $x=c_{\alpha}$ and $y=c_{\alpha}^{\prime}$ are the characteristic multidimensional Sturmian configurations of slope α.

Theorem: B and Labbé.

Let $d \geq 1$ and $x, y \in\{0, \ldots, \mathrm{~d}\}^{\mathbb{Z}^{d}}$ be an asymptotic pair such that x is uniformly recurrent and which satisfies the flip condition with difference set $F=\left\{0,-e_{1}, \ldots,-e_{d}\right\}$. TFAE:
(1) The asymptotic pair (x, y) is indistinguishable.
(2) For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$ and $p \in \mathcal{L}_{S}(x) \cup \mathcal{L}_{S}(y), p$ intersects the difference set F exactly once in both x and y.
(3) For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{S}(y)\right|=|F-S| .
$$

(9) There exists a totally irrational vector $\alpha \in[0,1)^{d}$ such that $x=c_{\alpha}$ and $y=c_{\alpha}^{\prime}$ are the characteristic multidimensional Sturmian configurations of slope α.

Multidimensional Sturmian Configurations

Let $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ and consider the associated rotations $R_{\alpha_{1}}, \ldots, R_{\alpha_{d}}$.

Multidimensional Sturmian Configurations

Let $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ and consider the associated rotations $R_{\alpha_{1}}, \ldots, R_{\alpha_{d}}$.

- If $\left(1, \alpha_{1}, \ldots, \alpha_{d}\right)$ is rationally independent, then the \mathbb{Z}^{d}-action on S^{1} generated by the $R_{\alpha_{i}}$ is free.

Multidimensional Sturmian Configurations

Let $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ and consider the associated rotations $R_{\alpha_{1}}, \ldots, R_{\alpha_{d}}$.

- If $\left(1, \alpha_{1}, \ldots, \alpha_{d}\right)$ is rationally independent, then the \mathbb{Z}^{d}-action on S^{1} generated by the $R_{\alpha_{i}}$ is free.
- Consider the partition \mathcal{W} of S^{1} generated by refining the Sturmian partitions $\mathcal{P}_{i}=\left\{\left[0,1-\alpha_{i}\right),\left[1-\alpha_{i}, 1\right)\right\}$ for every $1 \leq i \leq d$.

Multidimensional Sturmian Configurations

Let $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ and consider the associated rotations $R_{\alpha_{1}}, \ldots, R_{\alpha_{d}}$.

- If $\left(1, \alpha_{1}, \ldots, \alpha_{d}\right)$ is rationally independent, then the \mathbb{Z}^{d}-action on S^{1} generated by the $R_{\alpha_{i}}$ is free.
- Consider the partition \mathcal{W} of S^{1} generated by refining the Sturmian partitions $\mathcal{P}_{i}=\left\{\left[0,1-\alpha_{i}\right),\left[1-\alpha_{i}, 1\right)\right\}$ for every $1 \leq i \leq d$.
- Respectively, let \mathcal{W}^{\prime} be the partition of S^{1} generated by refining the Sturmian partitions $\mathcal{P}_{i}^{\prime}=\left\{\left(0,1-\alpha_{i}\right],\left(1-\alpha_{i}, 1\right]\right\}$ for every $1 \leq i \leq d$.

Multidimensional Sturmian Configurations

Let $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$ and consider the associated rotations $R_{\alpha_{1}}, \ldots, R_{\alpha_{d}}$.

- If $\left(1, \alpha_{1}, \ldots, \alpha_{d}\right)$ is rationally independent, then the \mathbb{Z}^{d}-action on S^{1} generated by the $R_{\alpha_{i}}$ is free.
- Consider the partition \mathcal{W} of S^{1} generated by refining the Sturmian partitions $\mathcal{P}_{i}=\left\{\left[0,1-\alpha_{i}\right),\left[1-\alpha_{i}, 1\right)\right\}$ for every $1 \leq i \leq d$.
- Respectively, let \mathcal{W}^{\prime} be the partition of S^{1} generated by refining the Sturmian partitions $\mathcal{P}_{i}^{\prime}=\left\{\left(0,1-\alpha_{i}\right],\left(1-\alpha_{i}, 1\right]\right\}$ for every $1 \leq i \leq d$.

The characteristic Sturmian configurations $c_{\alpha}, c_{\alpha}^{\prime}$ of slope α are the codings of 0 under the \mathbb{Z}^{d}-orbit generated by the rotations $R_{\alpha_{i}}$ and the partitions \mathcal{W} and \mathcal{W}^{\prime} respectively.

Given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in[0,1]^{d}$, let $\tau \in S_{d}$ such that

$$
1 \geq \alpha_{\tau(1)} \geq \alpha_{\tau(2)} \geq \cdots \geq \alpha_{\tau(d)} \geq 0
$$

Then the partitions \mathcal{W} and \mathcal{W}^{\prime} are given by:

Explicitly, given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ we have

$$
\begin{aligned}
c_{\alpha}: \quad \mathbb{Z}^{d} & \rightarrow\{0, \ldots, \mathrm{~d}\} \\
n & \mapsto \sum_{i=1}^{d}\left(\left\lfloor\alpha_{i}+n \cdot \alpha\right\rfloor-\lfloor n \cdot \alpha\rfloor\right),
\end{aligned}
$$

and

$$
\begin{aligned}
c_{\alpha}^{\prime}: \mathbb{Z}^{d} & \rightarrow\{0, \ldots, \mathrm{~d}\} \\
n & \mapsto \sum_{i=1}^{d}\left(\left\lceil\alpha_{i}+n \cdot \alpha\right\rceil-\lceil n \cdot \alpha\rceil\right) .
\end{aligned}
$$

Explicitly, given $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ we have

$$
\begin{aligned}
c_{\alpha}: \mathbb{Z}^{d} & \rightarrow\{0, \ldots, \mathrm{~d}\} \\
n & \mapsto \sum_{i=1}^{d}\left(\left\lfloor\alpha_{i}+n \cdot \alpha\right\rfloor-\lfloor n \cdot \alpha\rfloor\right),
\end{aligned}
$$

and

$$
\begin{aligned}
c_{\alpha}^{\prime}: \mathbb{Z}^{d} & \rightarrow\{0, \ldots, \mathrm{~d}\} \\
n & \mapsto \sum_{i=1}^{d}\left(\left\lceil\alpha_{i}+n \cdot \alpha\right\rceil-\lceil n \cdot \alpha\rceil\right) .
\end{aligned}
$$

The configurations $c_{\alpha}, c_{\alpha}^{\prime}$ are asymptotic with difference set $F=\left\{0,-e_{1}, \ldots,-e_{d}\right\}$.

Recall the picture from the beginning:
x

1	0	2	2	1	0	2	1	0	2	1	1	0	2	1
0	2	1	1	0	2	1	0	2	1	0	2	2	1	0
2	1	0	2	2	1	0	2	1	0	2	1	1	0	2
1	0	2	1	1	0	2	1	0	2	1	0	2	2	1
0	2	1	0	2	2	1	0	2	1	0	2	1	1	0
2	1	0	2	1	1	0	2	1	0	2	1	0	2	2
1	0	2	1	0	2	2	1	0	2	1	0	2	1	1
0	2	1	0	2	1	1	0	2	1	0	2	1	0	2
2	1	0	2	1	0	2	2	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\
\hline 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 \\
\hline 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 \\
\hline 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 \\
\hline 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 \\
\hline 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 \\
\hline 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 \\
\hline 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 \\
\hline 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 \\
\hline 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 \\
\hline 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 \\
\hline 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 \\
\hline 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 \\
\hline 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 2 & 1 & 0 & 2 \\
\hline 1 & 0 & 2 & 2 & 1 & 0 & 2 & 1 & 0 & 2 & 1 & 1 & 0 & 2 & 1 \\
\hline
\end{array}
$$

We have $x=c_{\alpha}$ and $y=c_{\alpha}^{\prime}$ respectively for

$$
\alpha=\left(\frac{\sqrt{2}}{2}, \sqrt{19}-4\right) .
$$

Flip Condition

Let $x, y \in\{0, \ldots, \mathrm{~d}\}^{\mathbb{Z}^{d}}$ be an asymptotic pair. We say it satisfies the flip condition if:
(1) the difference set of x and y is $F=\left\{0,-e_{1}, \ldots,-e_{d}\right\}$,
(2) the restriction $\left.x\right|_{F}$ is a bijection $F \rightarrow\{0, \ldots, d\}$ such that $x_{0}=0$,
(3) $y_{n}=x_{n}-1 \bmod (d+1)$ for every $n \in F$.

Flip Condition

Let $x, y \in\{0, \ldots, \mathrm{~d}\}^{\mathbb{Z}^{d}}$ be an asymptotic pair. We say it satisfies the flip condition if:
(1) the difference set of x and y is $F=\left\{0,-e_{1}, \ldots,-e_{d}\right\}$,
(2) the restriction $\left.x\right|_{F}$ is a bijection $F \rightarrow\{0, \ldots, \mathrm{~d}\}$ such that $x_{0}=0$,
(3) $y_{n}=x_{n}-1 \bmod (d+1)$ for every $n \in F$.

The conditions above induce a permutation on $\{0, \ldots, d\}$ defined by $y_{n} \mapsto x_{n}$ for every $n \in F$, which is the cyclic permutation $(0,1, \ldots, d)$ of the alphabet.

The flip condition can be interpreted as flipping the unit hypercube on a co-dimension 1 discrete subspace.

Theorem: B and Labbé.

Let $d \geq 1$ and $x, y \in\{0, \ldots, \mathrm{~d}\}^{\mathbb{Z}^{d}}$ be an asymptotic pair such that x is uniformly recurrent and which satisfies the flip condition with difference set $F=\left\{0,-e_{1}, \ldots,-e_{d}\right\}$. TFAE:
(1) The asymptotic pair (x, y) is indistinguishable.
(2) For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$ and $p \in \mathcal{L}_{S}(x) \cup \mathcal{L}_{S}(y), p$ intersects the difference set F exactly once in both x and y.
(3) For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{S}(y)\right|=|F-S| .
$$

(9) There exists a totally irrational vector $\alpha \in[0,1)^{d}$ such that $x=c_{\alpha}$ and $y=c_{\alpha}^{\prime}$ are the characteristic multidimensional Sturmian configurations of slope α.

For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{S}(y)\right|=|F-S| .
$$

For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{S}(y)\right|=|F-S| .
$$

Say $c_{\alpha} \in\{0,1,2\}^{\mathbb{Z}^{d}}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^{2}$ there are.

For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{s}(y)\right|=|F-S| .
$$

Say $c_{\alpha} \in\{0,1,2\}^{\mathbb{Z}^{d}}$ and you need to know how many patterns with support $S \Subset \mathbb{Z}^{2}$ there are.

For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{s}(y)\right|=|F-S| .
$$

Say $c_{\alpha} \in\{0,1,2\}^{\mathbb{Z}^{d}}$ and you need to know how many patterns with support $S \in \mathbb{Z}^{2}$ there are.

For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{S}(y)\right|=|F-S| .
$$

Say $C_{\alpha} \in\{0,1,2\}^{\mathbb{Z}^{d}}$ and you need to know how many patterns with support $S \in \mathbb{Z}^{2}$ there are.

For every nonempty finite connected subset $S \subset \mathbb{Z}^{d}$, we have

$$
\left|\mathcal{L}_{S}(x)\right|=\left|\mathcal{L}_{S}(y)\right|=|F-S| .
$$

Say $c_{\alpha} \in\{0,1,2\}^{\mathbb{Z}^{d}}$ and you need to know how many patterns with support $S \in \mathbb{Z}^{2}$ there are.

There are exactly 14 patterns with support S on a 2-dimensional Sturmian configuration.

Let $\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{N}^{d}$ and consider the rectangle

$$
R=\prod_{i=1}^{d} \llbracket 0, m_{i}-1 \rrbracket .
$$

In this case we get a beautiful formula for the rectangular complexity of a multidimensional Sturmian configuration x :

$$
\left|\mathcal{L}_{R}(x)\right|=\left|\mathcal{L}_{\left(m_{1}, \ldots, m_{d}\right)}(x)\right|=m_{1} \cdots m_{d}\left(1+\frac{1}{m_{1}}+\cdots+\frac{1}{m_{d}}\right) .
$$

Let $\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{N}^{d}$ and consider the rectangle

$$
R=\prod_{i=1}^{d} \llbracket 0, m_{i}-1 \rrbracket
$$

In this case we get a beautiful formula for the rectangular complexity of a multidimensional Sturmian configuration x :

$$
\left|\mathcal{L}_{R}(x)\right|=\left|\mathcal{L}_{\left(m_{1}, \ldots, m_{d}\right)}(x)\right|=m_{1} \cdots m_{d}\left(1+\frac{1}{m_{1}}+\cdots+\frac{1}{m_{d}}\right) .
$$

We can interpret it as $|F-R|$, which is the volume of R, plus the volume of each of the $d-1$ dimensional faces.

Let $\left(m_{1}, \ldots, m_{d}\right) \in \mathbb{N}^{d}$ and consider the rectangle

$$
R=\prod_{i=1}^{d} \llbracket 0, m_{i}-1 \rrbracket
$$

In this case we get a beautiful formula for the rectangular complexity of a multidimensional Sturmian configuration x :

$$
\left|\mathcal{L}_{R}(x)\right|=\left|\mathcal{L}_{\left(m_{1}, \ldots, m_{d}\right)}(x)\right|=m_{1} \cdots m_{d}\left(1+\frac{1}{m_{1}}+\cdots+\frac{1}{m_{d}}\right) .
$$

We can interpret it as $|F-R|$, which is the volume of R, plus the volume of each of the $d-1$ dimensional faces.
\triangleright For $d=1$ we recover $L_{n}(x)=n+1$.

Thanks!

级 Indistinguishable asymptotic pairs and multidimensional Sturmian configurations.
S. Barbieri, S. Labbé
https://arxiv.org/abs/2204.06413
ind A characterization of Sturmian sequences by indistinguishable asymptotic pairs
S. Barbieri, S. Labbé, Š. Starosta
https://doi.org/10.1016/j.ejc.2021.103318

