Insdistinguishability and multidimensional Sturmian configurations

Sebastián **Barbieri Lemp** On joint work with S. Labbé and Š. Starosta

Universidad de Santiago de Chile

- Let A be a finite set and $d \ge 1$ be an integer.
- A configuration is a map $x \colon \mathbb{Z}^d \to A$.

- Let A be a finite set and $d \ge 1$ be an integer.
- A configuration is a map $x \colon \mathbb{Z}^d \to A$.

For example if d = 2 and $A = \{0, 1, 2\}$ a configuration looks like:

We say two configurations $x, y \in A^{\mathbb{Z}^d}$ are **asymptotic** if there exists a finite $F \subset \mathbb{Z}^d$ such that $x|_{\mathbb{Z}^d \setminus F} = y|_{\mathbb{Z}^d \setminus F}$.

1

We say two configurations $x, y \in A^{\mathbb{Z}^d}$ are **asymptotic** if there exists a finite $F \subset \mathbb{Z}^d$ such that $x|_{\mathbb{Z}^d \setminus F} = y|_{\mathbb{Z}^d \setminus F}$.

Given asymptotic x, y, we call $F = \{n \in \mathbb{Z}^d : x_n \neq y_n\}$ their difference set.

1	0	2	2	1	0	2	1	0	2	1	1	0	2	1
0	2	1	1	0	2	1	0	2	1	0	2	2	1	0
2	1	0	2	2	1	0	2	1	0	2	1	1	0	2
1	0	2	1	1	0	2	1	0	2	1	0	2	2	1
0	2	1	0	2	2	1	0	2	1	0	2	1	1	0
2	1	0	2	1	1	0	2	1	0	2	1	0	2	2
1	0	2	1	0	2	2	1	0	2	1	0	2	1	1
0	2	1	0	2	1	1	0	2	1	0	2	1	0	2
2	1	0	2	1	0	2	2	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1

1	0	2	2	1	0	2	1	0	2	1	1	0	2	1
0	2	1	1	0	2	1	0	2	1	0	2	2	1	0
2	1	0	2	2	1	0	2	1	0	2	1	1	0	2
1	0	2	1	1	0	2	1	0	2	1	0	2	2	1
0	2	1	0	2	2	1	0	2	1	0	2	1	1	0
2	1	0	2	1	1	0	2	1	0	2	1	0	2	2
1	0	2	1	0	2	2	1	0	2	1	0	2	1	1
0	2	1	0	2	1	0	2	2	1	0	2	1	0	2
2	1	0	2	1	0	2	1	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

Let σ be the \mathbb{Z}^d action of $A^{\mathbb{Z}^d}$ given by

$$\sigma^n(x)(m) = x(n+m)$$
 for every $n, m \in \mathbb{Z}^d$.

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \subseteq \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_{\mathcal{S}} = p\}.$$

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \subseteq \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \subseteq \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_{\mathcal{S}} = p\}.$$

$$\Delta_{\rho}(x,y) = \sum_{u \in \mathbb{Z}^d} 1_{[\rho]}(\sigma^u(y)) - 1_{[\rho]}(\sigma^u(x)).$$

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \subseteq \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_{S} = p\}.$$

$$\Delta_{p}(x,y) = \sum_{u \in \boxed{F-S}} 1_{[p]}(\sigma^{u}(y)) - 1_{[p]}(\sigma^{u}(x)).$$

- Let $x, y \in A^{\mathbb{Z}^d}$ be asymptotic.
- Given $S \subseteq \mathbb{Z}^d$ and a pattern $p \in A^S$ let

$$[p] = \{z \in A^{\mathbb{Z}^d} : z|_S = p\}.$$

$$\Delta_{p}(x,y) = \sum_{u \in F-S} 1_{[p]}(\sigma^{u}(y)) - 1_{[p]}(\sigma^{u}(x)).$$

We say an asymptotic pair x, y is indistinguishable if $\Delta_p(x, y) = 0$ for every pattern p.

							X							
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1
0	2	1	1	0	2	1	0	2	1	0	2	2	1	0
2	1	0	2	2	1	0	2	1	0	2	1	1	0	2
1	0	2	1	1	0	2	1	0	2	1	0	2	2	1
0	2	1	0	2	2	1	0	2	1	0	2	1	1	0
2	1	0	2	1	1	0	2	1	0	2	1	0	2	2
1	0	2	1	0	2	2	1	0	2	1	0	2	1	1
0	2	1	0	2	1	1	0	2	1	0	2	1	0	2
2	1	0	2	1	0	2	2	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1

1	0	2	2	1	0	2	1	0	2	1	1	0	2	1
0	2	1	1	0	2	1	0	2	1	0	2	2	1	0
2	1	0	2	2	1	0	2	1	0	2	1	1	0	2
1	0	2	1	1	0	2	1	0	2	1	0	2	2	1
0	2	1	0	2	2	1	0	2	1	0	2	1	1	0
2	1	0	2	1	1	0	2	1	0	2	1	0	2	2
1	0	2	1	0	2	2	1	0	2	1	0	2	1	1
0	2	1	0	2	1	0	2	2	1	0	2	1	0	2
2	1	0	2	1	0	2	1	1	0	2	1	0	2	1
1	0	2	1	0	2	1	0	2	2	1	0	2	1	0
2	2	1	0	2	1	0	2	1	1	0	2	1	0	2
1	1	0	2	1	0	2	1	0	2	2	1	0	2	1
0	2	2	1	0	2	1	0	2	1	1	0	2	1	0
2	1	1	0	2	1	0	2	1	0	2	2	1	0	2
1	0	2	2	1	0	2	1	0	2	1	1	0	2	1

			(r		}	<u> </u>		
0	2	2	1	0	2	0	2	2	1	0	2
2	1	1	0	2	1	2	1	0	2	2	1
1	0	2	2	1	0	1	0	2	1	1	0
0	2	1	0	2	2	0	2	1	0	2	2

0 2 2 1 0 2 0 2 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 1 0		_	
2 1 1 0 2 1 2 1	_	_	
	2	2	1
1 0 2 2 1 0 1 0 2	1	1	0
0 2 1 0 2 2 0 2 1	0	2	2

0 0 0 1 0 0	
0 2 2 1 0 2	0 2 2 1 0 2
2 1 1 0 2 1	2 1 0 2 2
1 0 2 2 1 0	1 0 2 1 1 0
0 2 1 0 2 2	0 2 1 0 2 2

0 2 2 1 0 2 2 1 1 0 2 1		-	2			
2 1 1 0 2 1	2	1	\sim		_	
		1	U	2	2	1
1 0 2 2 1 0	1	0	2	1	1	0
0 2 1 0 2 2	0	2	1	0	2	2

0 2 2 1 0 2 1 0 2 2 1 1 0 2 1 0 2 2 1 0 2 2 1 1 0 2 1 0 2 1 1 0 2 1 1 0 0 2 1 0 2 1 0 2 2 1 0 2 2			>	(-, r-			}	<u>/</u>		
1 0 2 2 1 0 1 0 2 1 1 0	0	2	2	1	0	2	11	0	2	2	1	0	2
	2	1	1	0	2	1	1 1	2	1	0	2	2	1
0 2 1 0 2 2 0 2 1 0 2 2	1	0	2	2	1	0	11	1	0	2	1	1	0
	0	2	1	0	2	2	1.1	0	2	1	0	2	2

0 2 2	1 (
	1 () 2	0	2	2	1	0	2
2 1 1	0 2	2 1	2	1	0	2	2	1
1 0 2	2 1	L 0		0				
0 2 1	0 2	2 2	0	2	1	0	2	2

			(
0	2	2	1	0	2
2	1	1	0	2	1
1	0	2	2	1	0
0	2	1	0	2	2

			(
0	2	2	1	0	2
2	1	1	0	2	1
1	0	2	2	1	0
0	2	1	0	2	2

						, y						
0	2	2	1	0	2	0	2	2	1	0	2	
2	1	1	0	2	1	2	1	0	2	2	1	
1	0	2	2	1	0	1	0	2	1	1	0	
0	2	1	0	2	2	0	2	1	0	2	2	

0 2 2 1 0 2	Ο	_	_			
	0	2	2	1	0	2
2 1 1 0 2 1	2	1	0	2	2	1
1 0 2 2 1 0	1	0	2	1	1	C
0 2 1 0 2 2	0	2	1	0	2	2

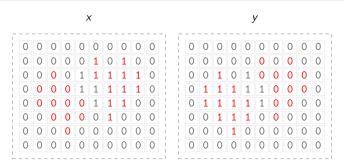
So for every pattern p with support S, we have $\Delta_p(x,y)=0$.

Examples:

• (x,x) for any $x \in A^{\mathbb{Z}^d}$ is an indistinguishable asymptotic pair. We call it **trivial**.

Examples:

- (x,x) for any $x \in A^{\mathbb{Z}^d}$ is an indistinguishable asymptotic pair. We call it **trivial**.
- If $x, y \in A^{\mathbb{Z}^d}$ are asymptotic and on the same orbit $(\sigma^n(y) = x \text{ for some } n \in \mathbb{Z}^d)$ then they are indistinguishable.



Does there exist indistinguishable asymptotic pairs which are not on the same orbit?

Motivation

Consider n balls with real weights given by a map f.

(3) (4) (5) (6) (7) ...

f(1) f(2) f(3) f(4) f(5) f(6) f(7)

f(n)

Motivation

Consider n balls with real weights given by a map f.

$$1) 2 3 4 5 6 7 \cdots n$$

$$f(1)$$
 $f(2)$ $f(3)$ $f(4)$ $f(5)$ $f(6)$ $f(7)$

¿What is the probability distribution $\mu = (\mu_1, \dots, \mu_n)$ on $\{1, \dots, n\}$ that maximizes entropy plus average weight?

$$\max_{\mu} \left(H(\mu) + \int f d\mu \right) = \max_{\mu} \sum_{i=1}^{n} \left(-\mu_i \log(\mu_i) + f(i)\mu_i \right).$$

Motivation

Consider n balls with real weights given by a map f.

$$1) 2 3 4 5 6 7 \cdots n$$

$$f(1)$$
 $f(2)$ $f(3)$ $f(4)$ $f(5)$ $f(6)$ $f(7)$

¿What is the probability distribution $\mu = (\mu_1, \dots, \mu_n)$ on $\{1, \dots, n\}$ that maximizes entropy plus average weight?

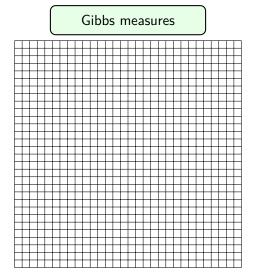
$$\max_{\mu} \left(H(\mu) + \int f d\mu \right) = \max_{\mu} \sum_{i=1}^{n} \left(-\mu_{i} \log(\mu_{i}) + f(i)\mu_{i} \right).$$

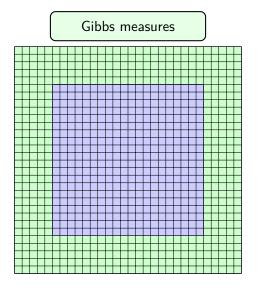
Answer: Boltzmann's distribution.

$$\mu_k = \frac{\exp(f(k))}{\sum_{i=1}^n \exp(f(i))}.$$

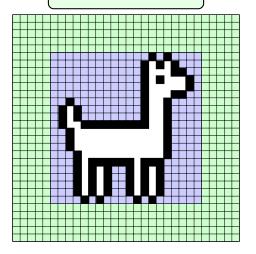
1 U 7 1 U 7 1 E 7 1 E 7 E 7 E 7 (1)

We can extend this idea to sets of configurations, yielding the notion of **Gibbs measures**.

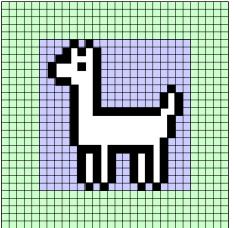




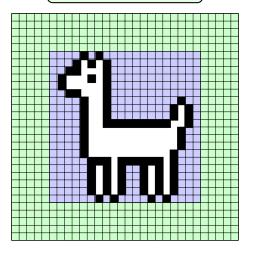
Gibbs measures



Gibbs measures



Gibbs measures



 $\mu(\exists \Box)$ and $\mu(\exists \Box)$ follow Boltzmann's distribution for some f.

Gibbs Measures

Denote the set of all asymptotic pairs (x,y) by \mathcal{A} . The Boltzmann distribution of a Gibbs measure is determined by a **cocycle** $\Psi \colon \mathcal{A} \to \mathbb{R}$, that is, a map which satisfies:

$$\Psi(x,y) = \Psi(x,z) + \Psi(z,y)$$
 for all $(x,y), (y,z) \in \mathcal{A}$.

Gibbs Measures

Denote the set of all asymptotic pairs (x,y) by \mathcal{A} . The Boltzmann distribution of a Gibbs measure is determined by a **cocycle** $\Psi \colon \mathcal{A} \to \mathbb{R}$, that is, a map which satisfies:

$$\Psi(x,y) = \Psi(x,z) + \Psi(z,y)$$
 for all $(x,y), (y,z) \in \mathcal{A}$.

Example: if all configurations all equally likely (that is, there is no associated weight) we obtain the cocycle $\Psi = 0$ and the sole Gibbs measure for Ψ is the uniform Bernoulli measure on $A^{\mathbb{Z}^d}$.

• The space of continuous, shift-invariant cocycles \mathcal{B} is a Banach space with an appropriate norm.

- ② There is a natural evaluation map on \mathcal{B}^* . For $(x,y) \in \mathcal{A}$ we have $\operatorname{ev}_{x,y} \in \mathcal{B}^*$ given by

$$\operatorname{ev}_{x,y}(\Psi) = \Psi(x,y)$$
 for every $\Psi \in \mathcal{B}$.

- $\bullet \ \ \, \text{The space of continuous, shift-invariant cocycles } \mathcal{B} \text{ is a} \\ \text{Banach space with an appropriate norm.}$
- ② There is a natural evaluation map on \mathcal{B}^* . For $(x,y) \in \mathcal{A}$ we have $\operatorname{ev}_{x,y} \in \mathcal{B}^*$ given by

$$\operatorname{ev}_{x,y}(\Psi) = \Psi(x,y)$$
 for every $\Psi \in \mathcal{B}$.

lacktriangledown It can be shown that the strong norm on \mathcal{B}^* is given by

$$\|\operatorname{ev}_{x,y}\| = \sup_{S \in \mathbb{Z}^d} \frac{1}{|S|} \sum_{p \in A^S} |\Delta_p(x,y)|.$$

- $\bullet \ \ \, \text{The space of continuous, shift-invariant cocycles } \mathcal{B} \text{ is a} \\ \text{Banach space with an appropriate norm.}$
- ② There is a natural evaluation map on \mathcal{B}^* . For $(x,y) \in \mathcal{A}$ we have $ev_{x,y} \in \mathcal{B}^*$ given by

$$\operatorname{ev}_{x,y}(\Psi) = \Psi(x,y)$$
 for every $\Psi \in \mathcal{B}$.

lacktriangledown It can be shown that the strong norm on \mathcal{B}^* is given by

$$\|\operatorname{ev}_{x,y}\| = \sup_{S \in \mathbb{Z}^d} \frac{1}{|S|} \sum_{p \in A^S} |\Delta_p(x,y)|.$$

4 An asymptotic pair gives the trivial linear functional if and only if it is indistinguishable.

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

Yes.

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

Yes. We completely characterize them on \mathbb{Z} .

TM (2018): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

SL (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

ŠS (2019): Probably not, it should be possible to prove this using the Fine and Wilf theorem.

Theorem (SB + SL + ŠS, 2021)

Yes. We completely characterize them on \mathbb{Z} . They are closely connected to Sturmian codings of irrational rotations.

(x,y) is indistinguishable if and only if $\Delta_p(x,y)=0$ for every $S \subseteq \mathbb{Z}^d$ and pattern $p \in A^S$.

(x,y) is indistinguishable if and only if $\Delta_p(x,y)=0$ for every $S \subseteq \mathbb{Z}^d$ and pattern $p \in A^S$.

Let $(S_n)_{n\in\mathbb{N}}$ with $S_n\nearrow\mathbb{Z}^d$. Then (x,y) is indistinguishable if and only if $\Delta_p(x,y)=0$ for every pattern p with support some S_n .

In particular, it suffices to check the property on rectangular patterns (or words in the case of \mathbb{Z}).

(x,y) is indistinguishable if and only if $\Delta_p(x,y)=0$ for every $S \subseteq \mathbb{Z}^d$ and pattern $p \in A^S$.

Let $(S_n)_{n\in\mathbb{N}}$ with $S_n\nearrow\mathbb{Z}^d$. Then (x,y) is indistinguishable if and only if $\Delta_p(x,y)=0$ for every pattern p with support some S_n .

In particular, it suffices to check the property on rectangular patterns (or words in the case of \mathbb{Z}).

Indistinguishable asymptotic pairs are invariant under actions of the affine group of \mathbb{Z}^d .

In particular, they are invariant under the shift map.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

We say a sequence of asymptotic pairs $(x_n, y_n)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) if both $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ converge to x, y respectively, and there is $F \in \mathbb{Z}^d$ such that the difference set of (x_n, y_n) is contained in F for every $n \in \mathbb{N}$.

If (x, y) is an indistinguishable asymptotic pair and τ is a sliding block code, then $(\tau(x), \tau(y))$ is an indistinguishable asymptotic pair.

We say a sequence of asymptotic pairs $(x_n, y_n)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) if both $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ converge to x, y respectively, and there is $F \in \mathbb{Z}^d$ such that the difference set of (x_n, y_n) is contained in F for every $n \in \mathbb{N}$.

If $(x_n, y_n)_{n \in \mathbb{N}}$ converges in the asymptotic relation to (x, y) and every pair (x_n, y_n) is indistinguishable, then (x, y) is indistinguishable.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

Proof: Suppose x is not recurrent. Then there exists $p \in A^S$ which occurs at x exactly once (say $\sigma^k(x) \in [p]$).

• As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^m(y) \in [p]$.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

- As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^m(y) \in [p]$.
- ② Let $(S_n)_{n\in\mathbb{N}}$ with $S_n\nearrow\mathbb{Z}^d$ and $S\subset S_n$. Let $p_n=\sigma^k(x)|_{S_n}$

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

- As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^m(y) \in [p]$.
- ② Let $(S_n)_{n\in\mathbb{N}}$ with $S_n\nearrow\mathbb{Z}^d$ and $S\subset S_n$. Let $p_n=\sigma^k(x)|_{S_n}$
- **3** By definition $\sigma^k(x) \in [p_n]$. Also, this n is unique. By indistinguishability, we must have $\sigma^m(y) \in [p_n]$.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is not recurrent, then x and y lie on the same orbit.

- As x, y are indistinguishable, p also occurs exactly once on y, say $\sigma^m(y) \in [p]$.
- ② Let $(S_n)_{n\in\mathbb{N}}$ with $S_n\nearrow\mathbb{Z}^d$ and $S\subset S_n$. Let $p_n=\sigma^k(x)|_{S_n}$
- **9** By definition $\sigma^k(x) \in [p_n]$. Also, this n is unique. By indistinguishability, we must have $\sigma^m(y) \in [p_n]$.
- **1** As $\bigcap_{n\in\mathbb{N}}[p_n]=\sigma^k(x)$, we conclude that $\sigma^k(x)=\sigma^m(y)$.

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

The case of \mathbb{Z}

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

On \mathbb{Z} life is easier (as opposed to \mathbb{Z}^d with $d \geq 2$):

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If a pattern p occurs in x, then it occurs intersecting their difference set.

Corollary: If x, y are indistinguishable with difference set $F = [\![0, k-1]\!]$ then their word complexity satisfies

$$|\mathcal{L}_n(x)| \leq k + n - 1.$$

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

 \bullet x, y are uniformly recurrent.

Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

- \bullet x, y are uniformly recurrent.
- $|\mathcal{L}_n(x)| = |\mathcal{L}_n(y)| = n + 1$

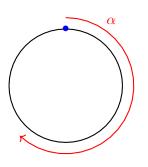
Let (x, y) be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then it is uniformly recurrent.

In particular, if (x, y) is an indistinguishable asymptotic pair, with x recurrent and difference set $F = \{0, 1\}$ then:

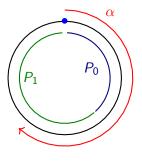
- \bullet x, y are uniformly recurrent.
- **2** $|\mathcal{L}_n(x)| = |\mathcal{L}_n(y)| = n + 1$

Thus x, y must be Sturmian configurations!

Let $\alpha \in [0,1] \setminus \mathbb{Q}$. Consider the rotation $R_{\alpha} \colon S^1 \to S^1$ given by $R_{\alpha}(x) = x + \alpha$. Consider the partition $\mathcal{P} = \{P_0 = [0,1-\alpha), [1-\alpha,1)\}$.

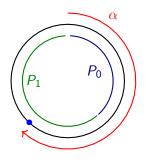


$$\alpha = \frac{\sqrt{5}-1}{2}.$$



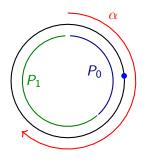
$$\alpha = \frac{\sqrt{5-1}}{2}.$$

$$\varphi(x) = \dots 0 \dots$$



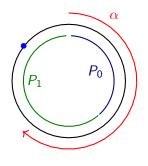
$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 01 \dots$$



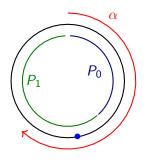
$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 010\dots$$



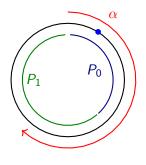
$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 0101\dots$$



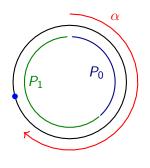
$$\alpha = \frac{\sqrt{5-1}}{2}.$$

$$\varphi(x) = \dots 01011\dots$$



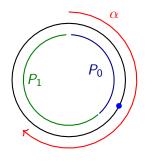
$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 010110\dots$$



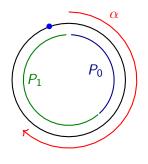
$$\alpha = \frac{\sqrt{5-1}}{2}.$$

$$\varphi(x) = \dots 0101101\dots$$



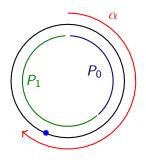
$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 01011010\dots$$



$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 010110101\dots$$



$$\alpha = \frac{\sqrt{5-1}}{2}$$

$$\varphi(x) = \dots 0101101011\dots$$

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

Choosing instead the partition $\mathcal{P}' = \{P_0 = (0, 1 - \alpha], (1 - \alpha, 1]\}$ gives

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

Choosing instead the partition $\mathcal{P}' = \{P_0 = (0, 1 - \alpha], (1 - \alpha, 1]\}$ gives

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

The pair $(c_{\alpha}, c'_{\alpha})$ is asymptotic with difference set $F = \{-1, 0\}$.

$$c_{\alpha}(n) = \lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor.$$

Choosing instead the partition $\mathcal{P}' = \{P_0 = (0, 1 - \alpha], (1 - \alpha, 1]\}$ gives

$$c'_{\alpha}(n) = \lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil.$$

The pair $(c_{\alpha}, c'_{\alpha})$ is asymptotic with difference set $F = \{-1, 0\}$.

The pair $(c_{\alpha}, c'_{\alpha})$ is indistinguishable. In fact, every pattern in their language occurs exactly once intersecting each of their difference sets.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume that x is recurrent. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$
- There exists $\alpha \in [0,1] \setminus \mathbb{Q}$ such that $x = c_{\alpha}$ and $y = c'_{\alpha}$ are the lower and upper characteristic Sturmian sequences of slope α .

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$ and assume that x is recurrent. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$
- There exists $\alpha \in [0,1] \setminus \mathbb{Q}$ such that $x = c_{\alpha}$ and $y = c'_{\alpha}$ are the lower and upper characteristic Sturmian sequences of slope α .

But there is more...

The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$
- there exists $(\alpha_n)_{n\in\mathbb{N}}$ with $\alpha_n\in[0,1]\setminus\mathbb{Q}$ such that

$$x = \lim_{n \to \infty} c_{\alpha_n}$$
 and $y = \lim_{n \to \infty} c'_{\alpha_n}$.

The non-recurrent case is an asymptotic limit of Sturmians.

Theorem: B, Labbé and Starosta

Let $x, y \in \{0, 1\}^{\mathbb{Z}}$. The following are equivalent:

- (x, y) is an indistinguishable asymptotic pair with difference set $F = \{-1, 0\}$ such that $x_{-1}x_0 = 10$ and $y_{-1}y_0 = 01$
- there exists $(\alpha_n)_{n\in\mathbb{N}}$ with $\alpha_n\in[0,1]\setminus\mathbb{Q}$ such that

$$x = \lim_{n \to \infty} c_{\alpha_n}$$
 and $y = \lim_{n \to \infty} c'_{\alpha_n}$.

But there is more...

The general case can be obtained from Sturmians using shifts and substitutions.

Theorem: B, Labbé and Starosta

Let A be a finite alphabet and $x, y \in A^{\mathbb{Z}}$ a non-trivial asymptotic pair. Then x, y is indistinguishable if and only if either

• x is recurrent and there exists $\alpha \in [0,1] \setminus \mathbb{Q}$, a substitution $\varphi \colon \{0,1\} \to A^+$ and an integer $m \in \mathbb{Z}$ such that

$$\{x,y\} = \{\sigma^m \varphi(\sigma(c_\alpha)), \sigma^m \varphi(\sigma(c'_\alpha))\},\$$

• x is not recurrent and there exists a substitution $\varphi \colon \{0,1\} \to A^+$ and an integer $m \in \mathbb{Z}$ such that

$$\{x,y\} = \{\sigma^m \varphi(\infty 0.10^\infty), \sigma^m \varphi(\infty 0.010^\infty)\}.$$

What about d > 2?

Things are much harder:

- Patterns may occur without intersecting the difference set.
- recurrent indistinguishable pairs may not be uniformly recurrent.
- Substitutions do not help reduce the problem to a small size difference set (no good notion of derived sequences).
- In general, there is no complexity bound.

Example:

)	<					
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
1	0	0	1	0	0	1	0	1	0	0	1
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2

The horizontal configuration is a 1-dimensional indistinguishable pair, everything else is the symbol 2.

Example:

)	<					
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
1	0	0	1	0	0	1	0	1	0	0	1
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2

The horizontal configuration is a 1-dimensional indistinguishable pair, everything else is the symbol 2.

- Recurrent but not uniformly recurrent.
- Some patterns do not occur in the difference set.

Theorem: B and Labbé.

Let $d \ge 1$ and $x, y \in \{0, ..., d\}^{\mathbb{Z}^d}$ be an asymptotic pair with difference set $F = \{0, -e_1, ..., -e_d\}$. TFAE:

- The asymptotic pair (x, y) is indistinguishable, satisfies the **flip condition** and x is uniformly recurrent.
- ② There exists a totally irrational vector $\alpha \in [0,1)^d$ such that $x = c_\alpha$ and $y = c'_\alpha$ are the characteristic multidimensional Sturmian configurations of slope α .

Theorem: B and Labbé.

Let $d \ge 1$ and $x, y \in \{0, ..., d\}^{\mathbb{Z}^d}$ be an asymptotic pair such that x is uniformly recurrent and which satisfies the **flip condition** with difference set $F = \{0, -e_1, ..., -e_d\}$. TFAE:

- **1** The asymptotic pair (x, y) is indistinguishable.
- ② For every nonempty finite connected subset $S \subset \mathbb{Z}^d$ and $p \in \mathcal{L}_S(x) \cup \mathcal{L}_S(y)$, p intersects the difference set F exactly once in both x and y.
- **③** For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_{S}(x)| = |\mathcal{L}_{S}(y)| = |F - S|.$$

• There exists a totally irrational vector $\alpha \in [0,1)^d$ such that $x = c_\alpha$ and $y = c'_\alpha$ are the characteristic multidimensional Sturmian configurations of slope α .

Multidimensional Sturmian Configurations

Let $(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$ and consider the associated rotations $R_{\alpha_1}, \ldots, R_{\alpha_d}$.

Multidimensional Sturmian Configurations

Let $(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$ and consider the associated rotations $R_{\alpha_1}, \ldots, R_{\alpha_d}$.

• If $(1, \alpha_1, \dots, \alpha_d)$ is rationally independent, then the \mathbb{Z}^d -action on S^1 generated by the R_{α_i} is free.

Multidimensional Sturmian Configurations

Let $(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$ and consider the associated rotations $R_{\alpha_1}, \ldots, R_{\alpha_d}$.

- If $(1, \alpha_1, \dots, \alpha_d)$ is rationally independent, then the \mathbb{Z}^d -action on S^1 generated by the R_{α_i} is free.
- Consider the partition \mathcal{W} of S^1 generated by refining the Sturmian partitions $\mathcal{P}_i = \{[0, 1 \alpha_i), [1 \alpha_i, 1)\}$ for every 1 < i < d.

Multidimensional Sturmian Configurations

Let $(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$ and consider the associated rotations $R_{\alpha_1}, \ldots, R_{\alpha_d}$.

- If $(1, \alpha_1, \dots, \alpha_d)$ is rationally independent, then the \mathbb{Z}^d -action on S^1 generated by the R_{α_i} is free.
- Consider the partition \mathcal{W} of S^1 generated by refining the Sturmian partitions $\mathcal{P}_i = \{[0, 1 \alpha_i), [1 \alpha_i, 1)\}$ for every $1 \leq i \leq d$.
- Respectively, let \mathcal{W}' be the partition of S^1 generated by refining the Sturmian partitions $\mathcal{P}'_i = \{(0, 1 \alpha_i], (1 \alpha_i, 1]\}$ for every $1 \leq i \leq d$.

Multidimensional Sturmian Configurations

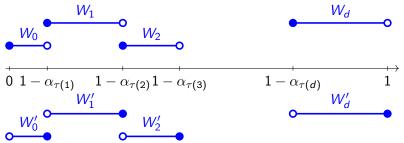
Let $(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d$ and consider the associated rotations $R_{\alpha_1}, \ldots, R_{\alpha_d}$.

- If $(1, \alpha_1, \dots, \alpha_d)$ is rationally independent, then the \mathbb{Z}^d -action on S^1 generated by the R_{α_i} is free.
- Consider the partition \mathcal{W} of S^1 generated by refining the Sturmian partitions $\mathcal{P}_i = \{[0, 1 \alpha_i), [1 \alpha_i, 1)\}$ for every $1 \leq i \leq d$.
- Respectively, let \mathcal{W}' be the partition of S^1 generated by refining the Sturmian partitions $\mathcal{P}'_i = \{(0, 1 \alpha_i], (1 \alpha_i, 1]\}$ for every $1 \leq i \leq d$.

The characteristic Sturmian configurations c_{α} , c'_{α} of slope α are the codings of 0 under the \mathbb{Z}^d -orbit generated by the rotations R_{α_i} and the partitions \mathcal{W} and \mathcal{W}' respectively.

Given
$$\alpha = (\alpha_1, \dots, \alpha_d) \in [0, 1]^d$$
, let $\tau \in S_d$ such that
$$1 \ge \alpha_{\tau(1)} \ge \alpha_{\tau(2)} \ge \dots \ge \alpha_{\tau(d)} \ge 0.$$

Then the partitions $\mathcal W$ and $\mathcal W'$ are given by:



Explicitly, given $\alpha = (\alpha_1, \dots, \alpha_d)$ we have

$$c_{\alpha}: \mathbb{Z}^{d} \rightarrow \{0, \ldots, d\}$$

$$n \mapsto \sum_{i=1}^{d} (\lfloor \alpha_{i} + n \cdot \alpha \rfloor - \lfloor n \cdot \alpha \rfloor),$$

and

$$c'_{\alpha}: \mathbb{Z}^d \rightarrow \{0,\ldots,d\}$$

$$n \mapsto \sum_{i=1}^d (\lceil \alpha_i + n \cdot \alpha \rceil - \lceil n \cdot \alpha \rceil).$$

Explicitly, given $\alpha = (\alpha_1, \dots, \alpha_d)$ we have

$$c_{\alpha}: \mathbb{Z}^{d} \rightarrow \{0, \ldots, d\}$$

$$n \mapsto \sum_{i=1}^{d} (\lfloor \alpha_{i} + n \cdot \alpha \rfloor - \lfloor n \cdot \alpha \rfloor),$$

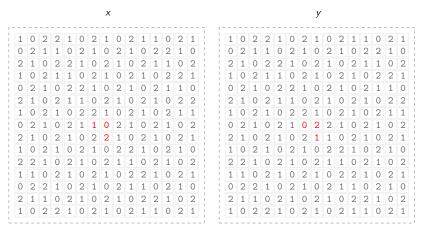
and

$$c'_{\alpha}: \mathbb{Z}^d \rightarrow \{0,\ldots,d\}$$

$$n \mapsto \sum_{i=1}^d (\lceil \alpha_i + n \cdot \alpha \rceil - \lceil n \cdot \alpha \rceil).$$

The configurations c_{α} , c'_{α} are asymptotic with difference set $F = \{0, -e_1, \dots, -e_d\}$.

Recall the picture from the beginning:



We have $x = c_{\alpha}$ and $y = c'_{\alpha}$ respectively for

$$\alpha = \left(\frac{\sqrt{2}}{2}, \sqrt{19} - 4\right).$$

Flip Condition

Let $x, y \in \{0, \dots, d\}^{\mathbb{Z}^d}$ be an asymptotic pair. We say it satisfies the **flip condition** if:

- the difference set of x and y is $F = \{0, -e_1, \dots, -e_d\}$,
- ② the restriction $x|_F$ is a bijection $F \to \{0, \dots, d\}$ such that $x_0 = 0$,

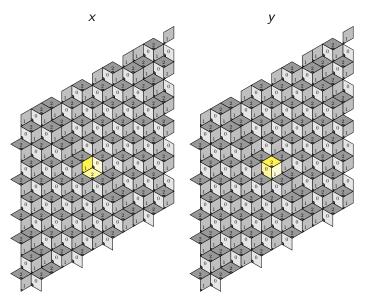
Flip Condition

Let $x, y \in \{0, \dots, d\}^{\mathbb{Z}^d}$ be an asymptotic pair. We say it satisfies the **flip condition** if:

- **1** the difference set of x and y is $F = \{0, -e_1, \dots, -e_d\}$,
- ② the restriction $x|_F$ is a bijection $F \to \{0, \dots, d\}$ such that $x_0 = 0$,

The conditions above induce a permutation on $\{0, ..., d\}$ defined by $y_n \mapsto x_n$ for every $n \in F$, which is the cyclic permutation (0, 1, ..., d) of the alphabet.

The flip condition can be interpreted as flipping the unit hypercube on a co-dimension 1 discrete subspace.



Theorem: B and Labbé.

Let $d \ge 1$ and $x, y \in \{0, ..., d\}^{\mathbb{Z}^d}$ be an asymptotic pair such that x is uniformly recurrent and which satisfies the **flip condition** with difference set $F = \{0, -e_1, ..., -e_d\}$. TFAE:

- **1** The asymptotic pair (x, y) is indistinguishable.
- ② For every nonempty finite connected subset $S \subset \mathbb{Z}^d$ and $p \in \mathcal{L}_S(x) \cup \mathcal{L}_S(y)$, p intersects the difference set F exactly once in both x and y.
- **③** For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_{S}(x)| = |\mathcal{L}_{S}(y)| = |F - S|.$$

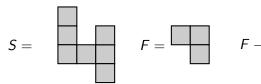
• There exists a totally irrational vector $\alpha \in [0,1)^d$ such that $x = c_\alpha$ and $y = c'_\alpha$ are the characteristic multidimensional Sturmian configurations of slope α .

For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_{S}(x)| = |\mathcal{L}_{S}(y)| = |F - S|.$$

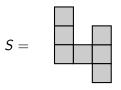
For every nonempty finite connected subset $S \subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_S(x)| = |\mathcal{L}_S(y)| = |F - S|.$$



For every nonempty finite connected subset $S\subset \mathbb{Z}^d$, we have

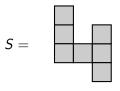
$$|\mathcal{L}_S(x)| = |\mathcal{L}_S(y)| = |F - S|.$$



$$F = \Box$$

For every nonempty finite connected subset $S\subset \mathbb{Z}^d$, we have

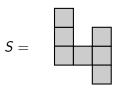
$$|\mathcal{L}_S(x)| = |\mathcal{L}_S(y)| = |F - S|.$$



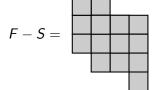
$$F = \Box$$

For every nonempty finite connected subset $S\subset \mathbb{Z}^d$, we have

$$|\mathcal{L}_S(x)| = |\mathcal{L}_S(y)| = |F - S|.$$



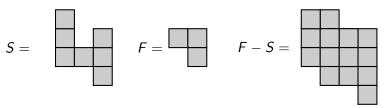
$$F = \Box$$



For every nonempty finite connected subset $S\subset\mathbb{Z}^d$, we have

$$|\mathcal{L}_{S}(x)| = |\mathcal{L}_{S}(y)| = |F - S|.$$

Say $c_{\alpha} \in \{0,1,2\}^{\mathbb{Z}^d}$ and you need to know how many patterns with support $S \subseteq \mathbb{Z}^2$ there are.



There are exactly 14 patterns with support S on a 2-dimensional Sturmian configuration.

Let $(m_1, \ldots, m_d) \in \mathbb{N}^d$ and consider the rectangle

$$R = \prod_{i=1}^{d} [0, m_i - 1].$$

In this case we get a beautiful formula for the rectangular complexity of a multidimensional Sturmian configuration x:

$$|\mathcal{L}_R(x)| = |\mathcal{L}_{(m_1,...,m_d)}(x)| = m_1 \cdots m_d \left(1 + \frac{1}{m_1} + \cdots + \frac{1}{m_d}\right).$$

Let $(m_1, \ldots, m_d) \in \mathbb{N}^d$ and consider the rectangle

$$R = \prod_{i=1}^{d} [0, m_i - 1].$$

In this case we get a beautiful formula for the rectangular complexity of a multidimensional Sturmian configuration x:

$$|\mathcal{L}_{R}(x)| = |\mathcal{L}_{(m_{1},...,m_{d})}(x)| = m_{1} \cdots m_{d} \left(1 + \frac{1}{m_{1}} + \cdots + \frac{1}{m_{d}}\right).$$

We can interpret it as |F - R|, which is the volume of R, plus the volume of each of the d - 1 dimensional faces.

Let $(m_1, \ldots, m_d) \in \mathbb{N}^d$ and consider the rectangle

$$R = \prod_{i=1}^{d} [0, m_i - 1].$$

In this case we get a beautiful formula for the rectangular complexity of a multidimensional Sturmian configuration x:

$$|\mathcal{L}_{R}(x)| = |\mathcal{L}_{(m_{1},...,m_{d})}(x)| = m_{1} \cdots m_{d} \left(1 + \frac{1}{m_{1}} + \cdots + \frac{1}{m_{d}}\right).$$

We can interpret it as |F-R|, which is the volume of R, plus the volume of each of the d-1 dimensional faces.

$$\triangleright$$
 For $d=1$ we recover $L_n(x)=n+1$.

Thanks!

Indistinguishable asymptotic pairs and multidimensional Sturmian configurations.

S. Barbieri, S. Labbé

https://arxiv.org/abs/2204.06413

△ A characterization of Sturmian sequences by indistinguishable asymptotic pairs

S. Barbieri, S. Labbé, Š. Starosta

https://doi.org/10.1016/j.ejc.2021.103318