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Motivation

B Finitely presented group.

Γ = 〈s1, . . . , sn | r1, . . . , rk〉.

B Finitely generated recursively presented group.

Γ = 〈s1, . . . , sn | (ri )i∈N〉.

Where the sequence (ri )i∈N can be enumerated by a Turing
machine.

Theorem (Higman 1961)
Every (finitely generated) recursively presented group occurs as a
subgroup of a finitely presented group.
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Setting

B Topological dynamics.

Γ y X
Countable group Compact metrizable space

Γ- action by homeomorphisms
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Setting

What would a dynamical analogue of Higman’s theorem look like?

Finitely presented group
l

Subshift of finite type

Recursively presented group
l

X can be described by a
Turing machine.
The action Γ y X can be
described by a Turing
machine.

B We want something like: “every action which can be described
by a Turing machine is the topological factor of a subshift of finite
type.”
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Definitions

Subshift of finite type

Let A be a finite set and consider AΓ = {x : Γ→ A} with the
prodiscrete topology and the action Γ y AΓ given by

(gx)(h) = x(g−1h) for every g , h ∈ Γ.

A subset X ⊆ AΓ is called a Γ-subshift if it is closed and
Γ-invariant.
Subshift of finite type
A set Z ⊆ AΓ is a Γ-subshift of finite type (SFT) is there is a
finite set F ⊆ Γ and F ⊆ AF such that z ∈ Z if and only if

(gz)|F /∈ F for every g ∈ Γ.

A subshift is of finite type if it is the set of configurations x ∈ AΓ

which avoid a finite list of forbidden patterns (represented by F).
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Examples

Hard-square shift. Z = {x : Z2 → {0, 1}} such that there are no
vertical or horizontally adjacent 1s.
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Examples

Hard-square in F2.
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Definitions

X can be described by a Turing machine

For a word w = w0w1 . . .wn−1 ∈ {0, 1}n consider the cylinder set

[w ] = {x ∈ {0, 1}N : x |{0,...,n−1} = w}.

Effectively closed set
A set X ⊆ {0, 1}N is called effectively closed if it is closed and
there is a Turing machine which enumerates a sequence of words
(wn)n∈N such that

X = {0, 1}N \
⋃

n∈N

[wn].
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Definitions

Γ y X can be described by a Turing machine

Let Γ be finitely generated by a symmetric set S 3 1Γ and
X ⊆ {0, 1}N. Given Γ y X consider the set

Y = {y ∈ ({0, 1}S)N : πs(y) = s · π1Γ(y) ∈ X for every s ∈ S}.

Where πs(y) ∈ {0, 1}N is such that πs(y)(n) = y(n)(s).

Effectively closed action
An action Γ y X ⊆ {0, 1}N is effectively closed if Y is an
effectively closed set.

Intuitively: there is an algorithm telling me (1) when x /∈ X and
(2) when x 6= s · y .
Note: In this talk we will always suppose that Γ has decidable
word problem to avoid certain technicalities.
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Examples

Odometer
Z y (Z/2Z)N given by x 7→ x + 1 in binary.

Subshifts of finite type
SFTs are topologically conjugate to effectively closed actions.

Topological factors
Topological factors of effectively closed actions are effectively
closed.

Recall that Γ y Y is a topological factor of Γ y X if there exists
a continuous surjective map ϕ : X → Y which is Γ-equivariant

(gφ(x) = φ(gx) for every g ∈ Γ, x , y ∈ X ).
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Examples
Consider X = {0, 1}N and let u1, . . . , un and v1, . . . , vn be
non-empty words in {0, 1}∗ such that

X = [u1] t [u2] t · · · t [un] = [v1] t [v2] t · · · t [vn].

Let ϕ be the homeomorphism of {0, 1}N which maps every
cylinder [ui ] to [vi ] by replacing prefixes, that is

ϕ(uix) = vix for every x ∈ {0, 1}N.

u1 = 00, u2 = 01, u3 = 1 and v1 = 0, v2 = 10, v3 = 11.

ϕ(0101010 . . . ) = 1001010 . . . ϕ(0000000 . . . ) = 0000000 . . .

ϕ(1111111 . . . ) = 1111111 . . . ϕ(0011001 . . . ) = 011001 . . .

0100
1

7→

1110
0
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Natural action of Thompson’s groups
F is the group of all such homeomorphisms where u1, . . . , un
and v1, . . . , vn are given in lexicographical order.
T is the group of all such homeomorphisms where u1, . . . , un
and v1, . . . , vn are given in lexicographical order up to a cyclic
permutation.
V is the group of all such homeomorphisms.

Then F 6 T 6 V are the Thompson’s groups.

B these groups are finitely presented and have decidable word
problem.

Their natural action on {0, 1}N is effectively closed.
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What results are known?

Hochman’s theorem, 2009
Every effectively closed action Z y X is the topological factor of a
subaction of a Z3-subshift of finite Z .

Z3 y Z

Z y Z ZyX

subaction

factor

Moreover, the factor is nice (mod a group rotation, 1-1 in a set of
full measure with respect to any invariant measure.)
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Hochman’s theorem, 2009

Z3 y Z

Z y Z ZyX

subaction

factor

B The dimension is optimal: there are effectively closed Z-actions
that cannot be obtained from Z2-SFTs.

(unless the Z-effectively closed action is expansive)

An action Γ y X on a metric space is expansive if there is C > 0
such that whenever d(gx , gy) ≤ C for every g ∈ Γ then x = y .

expansive + zero-dimensional ⇐⇒ subshift.
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Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010
Every effectively closed expansive action ZyX is topologically
conjugate to the Z-subaction of a symbolic factor of a Z2-SFT Z .

Z2 y Z Z2 y Y

ZyX

symbolic factor

subaction

Many classical results are easy corollaries from this:
Existence of Z2-SFTs where the action is free (Berger,
Robinson)
Undecidability of whether a Z2-SFT X given by a finite list of
forbidden patterns is empty (Berger)
Characterization of the topological entropies of Z2-SFTs
(Hochman-Meyerovitch).
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Similar results for actions of groups

B. Sablik, 2019

Zd oφ Γ y Z

Γ y Z ΓyX

subaction

factor

d ≥ 2
φ : Γ→ GLd (Z)

B, 2019

Γ× H × V y Z

Γ y Z ΓyX

subaction

factor

H,V infinite f.g.
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A crazy question

Are there any groups Γ such that the diagram is as simple as
possible?

Holy grail

Γ y Z ΓyX
factor

In words: are there finitely generated groups Γ such that every
effectively closed action Γ y X is the factor of a Γ-SFT Z?

Theorem (B., Sablik, Salo 2021)
Yes.
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Why is the question crazy?

Self-simulable group
A finitely generated group Γ is self-simulable if every effectively
closed action Γ y X is the factor of a Γ-SFT Z

B there are a lot of obstructions to self-simulability.
Amenable groups cannot be self-simulable (topological
entropy is an obstruction).
Groups with infinitely many ends cannot be self-simulable.
Some one-ended non-amenable groups are not self-simulable
(ex: F2 × Z).
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Our main result

Theorem (B., Sablik, Salo 2021)
The direct product Γ = Γ1 × Γ2 of any pair of non-amenable
finitely generated groups is self-simulable.

No need for self-similar or hierarchical structures as in the
other results in the literature.
Proof based on the existence of paradoxical decompositions.
The technique is very flexible and allows for many other
applications.

18
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Amenable and non-amenable groups

Let Γ be a group and let K ⊆ Γ be finite and δ > 0.
B we say F ⊆ Γ is (K , δ)-invariant if

|KF4F | ≤ δ|F |.

Γ = Z2

K = {(1, 1)}
F = J−n, nK2

KF4F

Amenable group
A group Γ is amenable if for every pair (K , δ) there exists a finite
F ⊆ Γ which is (K , δ)-invariant.
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Amenable and non-amenable groups

B A non-amenable group is a group which is not amenable (duh!)

Non-amenable group
A group Γ is non-amenable if and only if it admits a paradoxical
decomposition.

There is a partition Γ = A t B and subpartitions

A =
n⊔

i=1
Ai , B =

k⊔
j=1

Bj ,

and elements a1, . . . , an ∈ Γ, b1, . . . , bk ∈ Γ such that

Γ =
n⊔

i=1
aiAi =

k⊔
j=1

bjBj .

20



Amenable and non-amenable groups

B A non-amenable group is a group which is not amenable (duh!)

Non-amenable group
A group Γ is non-amenable if and only if it admits a paradoxical
decomposition.

There is a partition Γ = A t B and subpartitions

A =
n⊔

i=1
Ai , B =

k⊔
j=1

Bj ,

and elements a1, . . . , an ∈ Γ, b1, . . . , bk ∈ Γ such that

Γ =
n⊔

i=1
aiAi =

k⊔
j=1

bjBj .

20



Amenable and non-amenable groups

Example: F2 = 〈a, b〉.
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Amenable and non-amenable groups

B Paradoxical decompositions can be expressed analytically.

Non-amenable group
A group Γ is non-amenable if and only if there exists a finite set
K ⊆ Γ and a 2-to-1 map ϕ : Γ→ Γ such that

g−1ϕ(g) ∈ K for every g ∈ Γ.

B The collection of all such maps can be coded using a Γ-subshift
of finite type.

Alphabet = K 3 × {G, B}.

Three directions K 3: one pointing to ϕ(g), the next two
pointing to the two preimages
A color (green or blue) (partitioning the elements of the group
into two paradoxical sets).
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The paradoxical subshift

In pictures, the alphabet represents the following structure.

(k1, k2, k3, G) ∈ K 3 × {G, B}

h©g©

a©

b©

k3

k1

k2

a 6= b,
ϕ(a) = ak−1

1 = g ,
ϕ(b) = bk−1

2 = g ,
ϕ(g) = gk3 = h.
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The paradoxical subshift

The local rules of the subshift impose that every node has two
preimages of distinct color, and left arrows must match with right
arrows.

d©a©

b©

c©

©

©

©

©

RG(a)

LG(a)

RG(b)

LB(a)

RB(c)

LG(b)

LB(b)

LG(c)

LB(c)

B This induces a binary tree structure.
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B Key observation: In a bi-colored infinite binary tree, there is a
canonical way to assign one-sided infinite paths to every node.
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B Key observation: In a bi-colored infinite binary tree, there is a
canonical way to assign one-sided infinite paths to every node.

Follow the arrow tails of the opposite color!
The paths do not intersect.
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The paradoxical shift

Lemma
In every non-amenable group Γ there is a Γ-subshift of finite type
P called the paradoxical shift and a continuous function

γ : P× N× Γ→ Γ.

Such that for every ρ ∈ P the map

(n, g) 7→ γ(ρ, n, g) for every n ∈ N, g ∈ Γ,

is 1-to-1.

In words: every configuration in the paradoxical shift encodes an
assignment to every g ∈ Γ of an infinite one-sided path with moves
in a finite set K ⊆ Γ. Moreover, the paths do not intersect.
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The paradoxical shift

Let Γ = Γ1 × Γ2 be the product of two non-amenable groups.

B taking the paradoxical subshift on each component, we obtain a
subshift of finite type on Γ with the property that every
configuration induces:

a N2-grid with moves in a finite set K ⊆ Γ for every g ∈ Γ.
The grids are pairwise disjoint.

g©
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What do we do with grids? encode Turing machines

B We use the grids to encode computation using Wang tilings.

Given a Turing machine with alphabet Σ, states Q, starting state
q0 and transition function

δ : Q × Σ→ Q × Σ→ {−1, 0, 1},

(q0, a) a

a

a

(s ′, b′)

(s, b)

c ′

`′←
(`, c)

d ′

r ′
→

(r , d)

(q, a)
q→

a

(q, a)
q←

a

Where δ(s, b) = (s ′, b′, 0), δ(`, c) = (`′, c ′,−1) and δ(r , d) = (r ′, d ′, 1).
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What do we do with grids? encode Turing machines

B We use the grids to encode computation using Wang tilings.
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What do we do with grids? encode Turing machines

In our case:
Take the alphabet of the set representation of Γ y X and use
it as tape alphabet.

Encode the Turing machine which enumerates all cylinders
which are in the complement of the set representation.
Take out the tiles containing the accepting state.

Result: The only remaining configurations are the ones in the set
representation.

30



What do we do with grids? encode Turing machines

In our case:
Take the alphabet of the set representation of Γ y X and use
it as tape alphabet.
Encode the Turing machine which enumerates all cylinders
which are in the complement of the set representation.

Take out the tiles containing the accepting state.

Result: The only remaining configurations are the ones in the set
representation.

30



What do we do with grids? encode Turing machines

In our case:
Take the alphabet of the set representation of Γ y X and use
it as tape alphabet.
Encode the Turing machine which enumerates all cylinders
which are in the complement of the set representation.
Take out the tiles containing the accepting state.

Result: The only remaining configurations are the ones in the set
representation.

30



What do we do with grids? encode Turing machines

In our case:
Take the alphabet of the set representation of Γ y X and use
it as tape alphabet.
Encode the Turing machine which enumerates all cylinders
which are in the complement of the set representation.
Take out the tiles containing the accepting state.

Result: The only remaining configurations are the ones in the set
representation.

30



Start with x = x0x1x2x3 · · · ∈ AN

g©
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Start with x = x0x1x2x3 · · · ∈ AN

g©

x0 x1 x2 x3 x4 x5

If the configuration survives (i.e. If the Turing machine does not
stop), then x is in the set representation of Γ y X .
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Finishing touches

Now we have:
A subshift which assigns to every g ∈ Γ a N2-grid.

For every g ∈ Γ, we have an element y ∈ Y of the set
representation of Γ y X .
That is, for every g ∈ Γ we have encoded {sxg}s∈S ⊆ X for a
generating set S of Γ.
Weave together all the N2-grids imposing that the
configuration xgs in gs coincides with s−1xg through local
rules.

Thus we obtain a natural factor map from this subshift of finite
type to Γ y X .
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Our main result

Theorem (B., Sablik, Salo 2021)
The direct product Γ = Γ1 × Γ2 of any pair of non-amenable
finitely generated groups is self-simulable.

But we have more!
Self-simulable groups are stable under commensurability.
Self-simulable groups are stable under quasi-isometries of
finitely presented groups.
Any group which has a normal self-simulable group is
self-simulable.
Any group Γ generated by S which has a self-simulable group
∆ with the property that ∆ ∩ s∆s−1 is non-amenable for
every s ∈ S is self-simulable.
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Applications

Mixing the stability properties of this class, we obtain handy ways
to show self-simulability:

Lemma
Let Γ be a group which acts faithfully on X = {0, 1}N such that
for any non-empty open set U the subgroup ΓU which fixes every
element of X \ U is non-amenable. Then Γ is self-simulable.

Theorem: Thompson’s V is self-simulable

Proof: Consider the natural action V y {0, 1}N of Thompson’s
V . For any non-trivial word w ∈ {0, 1}∗ the subgroup of V which
fixes X \ [w ] is isomorphic to V (which is non-amenable).
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Applications

Very old and hard question: is Thompson’s F amenable?

We get a computable reformulation of this open question:

Theorem: Thompson’s F is self-simulable if and only if F is
non-amenable.

Proof: Amenable recursively presented groups are never
self-simulable.
Consider the natural action F y {0, 1}N of Thompson’s F . For
any non-trivial word w ∈ {0, 1}∗ the subgroup of F which fixes
X \ [w ] is isomorphic to F . As we suppose that F is non-amenable,
the lemma holds and we get that F is self-simulable.

To show that F is amenable, it would then suffice to construct an
effectively closed F -action which is not the factor of an F -subshift
of finite type (no idea how to do this).
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Applications

The following groups are self-simulable:
Finitely generated non-amenable branch groups.
The finitely presented simple groups of Burger and Mozes.
Thompson’s group V and higher-dimensional
Brin-Thompson’s groups nV .
The general linear groups GLn(Z) and special linear groups
SLn(Z) for n ≥ 5.
The automorphism group Aut(Fn) and outter automorphism
group Out(Fn) of the free group on at least n ≥ 5 generators.
Braid groups Bn on at least n ≥ 7 strands.
Right-angled Artin groups associated to the complement of a
finite connected graph for which there are two edges at
distance at least 3.
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Applications

B Suppose Γ y X admits a free effectively closed action (for every
x ∈ X then gx = x implies that g = 1Γ)

(SFT) Γ y Z ΓyX
factor

Then the shift action of Γ on Z is free.

Theorem (Aubrun, B., Thomassé 2019)
Every finitely generated group with decidable word problem Γ
admits an effectively closed Γ-subshift on which Γ acts freely.

Corollary
Every self-simulable group Γ with decidable word problem admits a
Γ-SFT on which Γ acts freely.
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Thank you for your attention!

Groups with self-simulable zero-dimensional dynamics
S. Barbieri, M. Sablik and V. Salo
https://arxiv.org/abs/2104.05141
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