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Dynamical systems

What’s a dynamical system?

Answer: https://arxiv.org/list/math.DS/recent

1



Dynamical systems

What’s a dynamical system?

Answer: https://arxiv.org/list/math.DS/recent

1



Dynamical systems

Dynamical system

Γ y X
(Countable) group Set

Γ- action
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Dynamical systems

Topological Dynamical Systems

Γ y X
(Countable) group Topological space

(compact metrizable)
Γ- action by homeomorphisms
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Dynamical systems

Algebraic Dynamical Systems

Γ y X
(Countable) group Compact (abelian) group

Γ- action by automorphisms
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Dynamical systems

Measurable Dynamical Systems
(ergodic theory)

Γ y (X , µ)

(Countable) group
Standard Borel space

Borel probability measure

Probability measure preserving action
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Effective dynamical systems

Effective Dynamical Systems

Γ y X
(Finitely generated)

group
Effective space

Effective Γ- action

Effective ↔ “Can be described through an algorithm”
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Algorithms

B Informal: An algorithm is a list of instructions that are applied
sequentially.

Computer program.
Cooking recipe.

GCD
On input a, b ∈ N:

if b = 0:
return a;

else:
return GCD(b, a mod b);

B Formal: Turing machine.
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Turing machines

A Turing machine T is given (essentially) by:
A finite set Σ (alphabet).
A finite set Q (states).
A map δT : Σ×Q → Σ×Q×{−1, 0, 1} (transition function).

Additionally it has:
A special blank symbol t.
Some extra “auxiliary” symbols Σ′ 3 t.

δT : (Σ ∪ Σ′)× Q → (Σ ∪ Σ′)× Q × {−1, 0, 1}.

An initial state q0 ∈ Q.
A halting state qH ∈ Q.
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Turing machines

Turing machines induce a map on the space

ΣZ × Q × Z

Example:
Σ = { , }.

q

δT ( , q) = ( , r ,−1)
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Turing machines

Let w0 . . .wn−1 ∈ Σn and consider w̃ ∈ (Σ ∪ Σ′)Z given by

w̃(k) =
{

w(i) if 0 ≤ i ≤ n − 1
t otherwise.

B A Turing machine T with alphabet Σ accepts w if a finite
number of applications of the map induced by T on (w̃ , q0, 0)
eventually reaches a configuration of the form (?, qH , ·).

B If T does not accept w , we say it loops on w .
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Turing machines

Example:
Σ = { , }.
w = .

t t t t t t t t t t t t t t t
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Turing machines

Example:
Σ = { , }.
w = .

t t t t t t t t t t t t t t t

qH

The machine accepts w
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Turing machines

Let L ⊂ Σ∗ be a language.

We say L is recursively enumerable (RE):
if there’s a Turing machine T such that w ∈ L if and only if
w is accepted by T .
We say L is co-recursively enumerable (co-RE):
if Σ∗ \ L is recursively enumerable.
We say L is decidable:
if L is both RE and co-RE.

Examples
The language of words in {0, 1}∗ which represent numbers
which are divisible by 7 is decidable.
The language of words in {a, b}∗ that are palindromes is
decidable
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Encoding stuff in languages

Many objects can be encoded as words in a language:

Non-negative integers 7→ binary representations in {0, 1}∗.

Integers 7→ sign bit + binary representation.
Rationals 7→ two integers.
Rational polynomials 7→ a non-negative integer for the degree,
a finite sequence of rationals for the coefficients.
A finite graph 7→ a non-negative integer for the number of
vertices, a sequence of pairs for the edges.
Matrices with rational entries, simplicial complexes, finitely
presented groups, Turing machines, etc.

We can talk about decidability of sets of a certain object through
their encodings as words in a language.
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Effective dynamics

Let us consider a very simple setting Γ y X where X ⊂ {0, 1}N is
endowed with the prodiscrete topology.

For a word w = w0w1 . . .wn−1 ∈ {0, 1}n consider the cylinder set

[w ] = {x ∈ {0, 1}N : x |{0,...,n−1} = w}.

Effectively closed set
A set X ⊂ {0, 1}N is called effectively closed if it is closed and
there is a recursively enumerable language L ⊂ {0, 1}∗ such that

X = {0, 1}N \
⋃

w∈L
[w ].
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Effective dynamics

Effectively closed set
A set X ⊂ {0, 1}N is called effectively closed if it is closed and
there is a recursively enumerable language L ⊂ {0, 1}∗ such that

X = {0, 1}N \
⋃

w∈L
[w ].

Intuition: When given x ∈ {0, 1}N, there is an algorithm, which if
left to work for an arbitrary long time, will eventually tell you if
x /∈ X (will say nothing if x ∈ X ).

Note: We can replace (for convenience) {0, 1} with any finite
alphabet A and the definition is the same.
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Effective dynamics

Γ y X can be described by a Turing machine

Let Γ be finitely generated by a symmetric set S 3 1Γ and
X ⊂ {0, 1}N be effectively closed. Given Γ y X consider the set

Y = {y ∈ ({0, 1}S)N : πs(y) = s · π1Γ(y) ∈ X for every s ∈ S}.

Where πs(y) ∈ {0, 1}N is such that πs(y)(n) = y(n)(s).

Effectively closed action
An action Γ y X is effectively closed if Y is an effectively closed
set.

Intuition: there is an algorithm telling me (1) when x /∈ X and (2)
when x 6= s · y .
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Effective dynamics

Effectively closed action
An action Γ y X is effectively closed if

Y = {y ∈ ({0, 1}S)N : πs(y) = s · π1Γ(y) ∈ X for every s ∈ S}.

is an effectively closed set.

Here’s an equivalent definition:

Effectively closed action v2.0
An action Γ y X is effectively closed if X is effectively closed and
there is a Turing machine T , which, given s ∈ S, n ∈ N and
“oracle” access to all coordinates of x ∈ X , can compute the value
(sx)(n).
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Examples

Odometer
Z y (Z/2Z)N given by x 7→ x + 1 in binary.

Subshifts of finite type
SFTs are topologically conjugate to effectively closed actions.

Topological factors
Γ y Y is a topological factor of Γ y X if there exists a continuous
surjective map ϕ : X → Y which is Γ-equivariant (gφ(x) = φ(gx)

for every g ∈ Γ, x , y ∈ X ).

Topological factors of effectively closed actions are effectively
closed.
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Examples
Consider X = {0, 1}N and let u1, . . . , un and v1, . . . , vn be
non-empty words in {0, 1}∗ such that

X = [u1] t [u2] t · · · t [un] = [v1] t [v2] t · · · t [vn].

Let ϕ be the homeomorphism of {0, 1}N which maps every
cylinder [ui ] to [vi ] by replacing prefixes, that is

ϕ(uix) = vix for every x ∈ {0, 1}N.

u1 = 00, u2 = 01, u3 = 1 and v1 = 0, v2 = 10, v3 = 11.

ϕ(0101010 . . . ) = 1001010 . . . ϕ(0000000 . . . ) = 0000000 . . .

ϕ(1111111 . . . ) = 1111111 . . . ϕ(0011001 . . . ) = 011001 . . .

0100
1

7→

1110
0
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Natural action of Thompson’s groups
F is the group of all such homeomorphisms where u1, . . . , un
and v1, . . . , vn are given in lexicographical order.
T is the group of all such homeomorphisms where u1, . . . , un
and v1, . . . , vn are given in lexicographical order up to a cyclic
permutation.
V is the group of all such homeomorphisms.

F 6 T 6 V are the Thompson’s groups.
They are finitely generated (even finitely presented).

Their natural action on {0, 1}N is effectively closed.
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Why care about effective actions?

(1) Many interesting classes of dynamical
systems are effective.

(2) Many problems about those classes can
be answered in terms of computability.
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Why care about effective actions?

Universality
There is a Turing machine which on input a description of another

Turing machine, simulates their behavior.

This is easy to prove for Turing machines, and from there the
result takes different shapes in different contexts:

There is a universal finitely presented group which contains
copies of all recursively presented groups.
There is a universal polynomial which can realize all
diophantine sets by fixing one of its variables as some integer.

Let us see a dynamical version of this notion of simulation.
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Definitions

Subshift of finite type

Let A be a finite set and consider AZd = {x : Zd → A} with the
prodiscrete topology and the action Zd y AZd given by

(nx)(m) = x(n + m) for every n,m ∈ Zd .

A subset X ⊆ AZd is called a Zd -subshift if it is closed and
Zd -invariant.
Subshift of finite type

A set Z ⊆ AZd is a Zd -subshift of finite type (SFT) is there is a
finite set F ⊆ Zd and F ⊆ AF such that z ∈ Z if and only if

(mz)|F /∈ F for every m ∈ Zd .

Intuition: A subshift is of finite type if it is the set of
configurations x ∈ AZd which avoid a finite list of forbidden
patterns (represented by F).

24
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Examples

Hard-square shift. Z = {x : Z2 → {0, 1}} such that there are no
vertical or horizontally adjacent 1s.
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What results are known?

Hochman’s theorem, 2009
Every effectively closed action Z y X is the topological factor of a
subaction of a Z3-subshift of finite Z .

Z3 y Z

Z y Z ZyX

subaction

factor

Moreover, the factor is nice (mod a group rotation, 1-1 in a set of
full measure with respect to any invariant measure.)

26



What results are known?

Hochman’s theorem, 2009
Every effectively closed action Z y X is the topological factor of a
subaction of a Z3-subshift of finite Z .

Z3 y Z

Z y Z ZyX

subaction

factor

Moreover, the factor is nice (mod a group rotation, 1-1 in a set of
full measure with respect to any invariant measure.)

26



Hochman’s theorem, 2009

Z3 y Z

Z y Z ZyX

subaction

factor

B The dimension is optimal: there are effectively closed Z-actions
that cannot be obtained from Z2-SFTs.

(unless the Z-effectively closed action is expansive)

An action Γ y X on a metric space is expansive if there is C > 0
such that whenever d(gx , gy) ≤ C for every g ∈ Γ then x = y .

expansive + zero-dimensional ⇐⇒ subshift.
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Expansive effectively closed actions Z y X are topologically
conjugate to effectively closed subshifts.

Effectively closed subshift
A set Z ⊆ AZ is an effectively closed subshift is there is a
recursively enumerable set F of words in A∗ such that z ∈ Z if and
only if

(mz)|{0,...,n−1} /∈ F for every m ∈ Z and n ∈ N.
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Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010
Every effectively closed expansive action ZyX is topologically
conjugate to the Z-subaction of a symbolic factor of a Z2-SFT Z .

Z2 y Z Z2 y Y

ZyX

symbolic factor

subaction

Many classical results are easy corollaries from this:
Existence of Z2-SFTs where the action is free (Berger,
Robinson)
Undecidability of whether a Z2-SFT X given by a finite list of
forbidden patterns is empty (Berger)
Characterization of the topological entropies of Z2-SFTs
(Hochman-Meyerovitch).
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Let X ⊂ AZd be a Zd -subshift.
Let Bn = J0, n − 1Kd .
Let Ln(X ) = {p ∈ ABn : there is x ∈ X , x |Bn = p}.

Topological entropy
The topological entropy of X is given by the formula

h(Zd y X ) = lim
n→∞

1
|Bn|

log(|Ln(X )|) = inf
n→∞

1
|Bn|

log(|Ln(X )|).
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The case d = 1

Example
Let X ⊂ {0, 1}Z be the subshift of finite type where no pair of 1s
can be adjacent. It is easy to verify that

L1(X ) = {0, 1}, L2(X ) = {00, 01, 10}.

|Ln(X )| = |Ln−1(X )|+ |Ln−2(X )| for n ≥ 3.
Thus |Ln(X )| ∼

(
1+
√

5
2

)n

It follows that

h(Z y X ) = log
(
1 +
√
5

2

)
.

There are countably many SFTs. What is the class of their
topological entropies?
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The case d = 1

D. Lind 1986
The entropies of Z-subshifts of finite type are precisely the
non-negative rational multiples of logarithms of Perron numbers λ

h(Z y X ) = p
q log(λ).

That is, λ is an algebraic integer which strictly dominates all of its
algebraic conjugates.

What about Zd for d ≥ 2?
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The case d ≥ 2

M. Hochman and T. Meyerovitch 2010
The entropies of Zd -subshifts of finite type for d ≥ 2 are precisely
the non-negative real numbers which are upper semi-computable

A real r is upper semi-computable if there is a Turing machine
which on input n ∈ N outputs a rational qn ∈ Q such that

inf
n∈N

qn = r

33
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Proof sketch

M. Hochman and T. Meyerovitch 2010
The entropies of Zd -subshifts of finite type for d ≥ 2 are precisely
the non-negative real numbers which are upper semi-computable

The entropy of a Zd -SFT is upper semi-computable:
Let Lloc,nk (X ) be the set of patterns p ∈ ABk for which there
is a pattern q ∈ ABn such that p = q|Bk and q contains no
forbidden patterns.
By compactness, for every k ∈ N there is N ∈ N such that

Lk(X ) = Lloc,Nk (X ).

Let
qn = min

k≤n

1
|Bk |

log(|Lloc,nk (X )|)

Then infn∈N qn = h(Z y X ).
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Proof sketch

Let r be upper semi-computable, we need to find a Z2-SFT with
entropy r .

Write r = r ′ log(κ) with r ′ ∈ [0, 1], κ ∈ N.
r ′ is upper semi-computable, it follows there is an algorithm
which produces (qn)n∈N with infn∈N qn = r ′.
Let Z ⊂ {0, 1}Z be given by the forbidden patterns F where
p ∈ {0, 1}n is in F if

|{0 ≤ k ≤ n − 1 : p(k) = 1}|
n > qn

Idea: the density of 1s in words of length n is bounded above
by qn, thus asymptotically the density is r .
Z is an effectively closed subshift.
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Proof sketch

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Z2 y X

SFT
h(Z2 y X ) = 0

Z2 y Y

ZyZ

symbolic factor

subaction

Let X ⊂ AZ2 as above, and consider

X ′ ⊆ X × {0, 1, . . . , κ}Z2

where x ′ = (x , t) ∈ X ′ satisfies that for every k:

φ(x)(k) = 0 ⇐⇒ t(k) = 0.

Intuition: We create κ independent copies of every symbol that
maps into 1 to generate entropy with density r ′ log(κ).
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|Ln(X ′)| ≈ |Ln(X )| · κn2qn

As qn → r and log |Ln(X )| = o(n2), it follows that

h(Z2 y X ′) = r ′ log(κ) = r .

37
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Wrapping up

Many well-known dynamical systems are effective.
Several problems in dynamics admit solutions in terms of
computability.
Universality results can be used as black boxes to solve
problems.

Next week
A strong universality property for certain classes of
non-amenable groups.
Self-simulable groups (effective actions are factors of SFTs)
Rigidity properties of these groups.
A computability characterization of the (?) amenability of
Thompson’s F .
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Thank you for your attention!
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