Effective Dynamics

Sebastián Barbieri Lemp

Universidad de Santiago de Chile
UT Groups \& Dynamics seminar
September, 2021

Dynamical systems

What's a dynamical system?

What's a dynamical system?

Answer: https://arxiv.org/list/math.DS/recent

Dynamical systems

Dynamical system

Dynamical systems

Topological Dynamical Systems

Γ - action by homeomorphisms

Dynamical systems

Algebraic Dynamical Systems

Γ - action by automorphisms

Dynamical systems

Measurable Dynamical Systems (ergodic theory)

Probability measure preserving action

Effective dynamical systems

Effective Dynamical Systems

Effective dynamical systems

Effective Dynamical Systems

Effective \leftrightarrow "Can be described through an algorithm"

Algorithms

\triangleright Informal: An algorithm is a list of instructions that are applied sequentially.

- Computer program.
- Cooking recipe.

GCD

On input $a, b \in \mathbb{N}$:
if $b=0$:
return a;
else:
return $\operatorname{GCD}(b, a \bmod b)$;

Algorithms

\triangleright Informal: An algorithm is a list of instructions that are applied sequentially.

- Computer program.
- Cooking recipe.

GCD

On input $a, b \in \mathbb{N}$:
if $b=0$:
return a;
else:
return $\operatorname{GCD}(b, a \bmod b)$;
\triangleright Formal: Turing machine.

Turing machines

A Turing machine T is given (essentially) by:

- A finite set Σ (alphabet).
- A finite set Q (states).
- A map $\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}$ (transition function).

Turing machines

A Turing machine T is given (essentially) by:

- A finite set Σ (alphabet).
- A finite set Q (states).
- A map $\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}$ (transition function).

Additionally it has:

- A special blank symbol \sqcup.
- Some extra "auxiliary" symbols $\Sigma^{\prime} \ni \sqcup$.

$$
\delta_{T}:\left(\Sigma \cup \Sigma^{\prime}\right) \times Q \rightarrow\left(\Sigma \cup \Sigma^{\prime}\right) \times Q \times\{-1,0,1\} .
$$

- An initial state $q_{0} \in Q$.
- A halting state $q_{H} \in Q$.

Turing machines

Turing machines induce a map on the space

$$
\Sigma^{\mathbb{Z}} \times Q \times \mathbb{Z}
$$

Turing machines

Turing machines induce a map on the space

$$
\Sigma^{\mathbb{Z}} \times Q \times \mathbb{Z}
$$

Example:

- $\Sigma=\{\square, \square\}$.

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Turing machines

Turing machines induce a map on the space

$$
\Sigma^{\mathbb{Z}} \times Q \times \mathbb{Z}
$$

Example:

- $\Sigma=\{\square, \square\}$.

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Turing machines

Let $w_{0} \ldots w_{n-1} \in \Sigma^{n}$ and consider $\widetilde{w} \in\left(\Sigma \cup \Sigma^{\prime}\right)^{\mathbb{Z}}$ given by

$$
\widetilde{w}(k)= \begin{cases}w(i) & \text { if } 0 \leq i \leq n-1 \\ \sqcup & \text { otherwise } .\end{cases}
$$

\triangleright A Turing machine T with alphabet Σ accepts w if a finite number of applications of the map induced by T on ($\widetilde{w}, q_{0}, 0$) eventually reaches a configuration of the form ($\left.\star, q_{H}, \cdot\right)$.

Let $w_{0} \ldots w_{n-1} \in \Sigma^{n}$ and consider $\widetilde{w} \in\left(\Sigma \cup \Sigma^{\prime}\right)^{\mathbb{Z}}$ given by

$$
\widetilde{w}(k)= \begin{cases}w(i) & \text { if } 0 \leq i \leq n-1 \\ \sqcup & \text { otherwise }\end{cases}
$$

\triangleright A Turing machine T with alphabet Σ accepts w if a finite number of applications of the map induced by T on ($\widetilde{w}, q_{0}, 0$) eventually reaches a configuration of the form ($\left.\star, q_{H}, \cdot\right)$.
\triangleright If T does not accept w, we say it loops on w.

Turing machines

Example:

- $\Sigma=\{\square, \square\}$.
- $w=\square \square$.

$$
\delta_{T}(\square, q)=(\square, a,-1) .
$$

Turing machines

Example:

- $\Sigma=\{\square, \square\}$.
- $w=\square \square$.

$$
\delta_{T}(\sqcup, a)=(\square, b,+1) .
$$

Turing machines

Example:

- $\Sigma=\{\square, \square\}$.
- $w=\square \square$.

$$
\delta_{T}(\square, b)=\left(\square, q_{H},+1\right) .
$$

Turing machines

Example:

- $\Sigma=\{\square, \square\}$.
- $w=\square \square$.

The machine accepts w

Turing machines

Let $L \subset \Sigma^{*}$ be a language.

- We say L is recursively enumerable (RE):
if there's a Turing machine T such that $w \in L$ if and only if w is accepted by T.
- We say L is co-recursively enumerable (co-RE): if $\Sigma^{*} \backslash L$ is recursively enumerable.
- We say L is decidable:
if L is both RE and co-RE.

Let $L \subset \Sigma^{*}$ be a language.

- We say L is recursively enumerable (RE):
if there's a Turing machine T such that $w \in L$ if and only if w is accepted by T.
- We say L is co-recursively enumerable (co-RE): if $\Sigma^{*} \backslash L$ is recursively enumerable.
- We say L is decidable:
if L is both RE and co-RE.

Examples

- The language of words in $\{0,1\}^{*}$ which represent numbers which are divisible by 7 is decidable.
- The language of words in $\{a, b\}^{*}$ that are palindromes is decidable

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.
- Integers \mapsto sign bit + binary representation.

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.
- Integers \mapsto sign bit + binary representation.
- Rationals \mapsto two integers.

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.
- Integers \mapsto sign bit + binary representation.
- Rationals \mapsto two integers.
- Rational polynomials \mapsto a non-negative integer for the degree, a finite sequence of rationals for the coefficients.

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.
- Integers \mapsto sign bit + binary representation.
- Rationals \mapsto two integers.
- Rational polynomials \mapsto a non-negative integer for the degree, a finite sequence of rationals for the coefficients.
- A finite graph \mapsto a non-negative integer for the number of vertices, a sequence of pairs for the edges.

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.
- Integers \mapsto sign bit + binary representation.
- Rationals \mapsto two integers.
- Rational polynomials \mapsto a non-negative integer for the degree, a finite sequence of rationals for the coefficients.
- A finite graph \mapsto a non-negative integer for the number of vertices, a sequence of pairs for the edges.
- Matrices with rational entries, simplicial complexes, finitely presented groups, Turing machines, etc.

Encoding stuff in languages

Many objects can be encoded as words in a language:

- Non-negative integers \mapsto binary representations in $\{0,1\}^{*}$.
- Integers \mapsto sign bit + binary representation.
- Rationals \mapsto two integers.
- Rational polynomials \mapsto a non-negative integer for the degree, a finite sequence of rationals for the coefficients.
- A finite graph \mapsto a non-negative integer for the number of vertices, a sequence of pairs for the edges.
- Matrices with rational entries, simplicial complexes, finitely presented groups, Turing machines, etc.

We can talk about decidability of sets of a certain object through their encodings as words in a language.

Effective dynamical systems

Effective Dynamical Systems

Effective dynamical systems

Effective Dynamical Systems

Effective \leftrightarrow "Can be described through a Turing machine"

Effective dynamics

Let us consider a very simple setting $\Gamma \curvearrowright X$ where $X \subset\{0,1\}^{\mathbb{N}}$ is endowed with the prodiscrete topology.

Effective dynamics

Let us consider a very simple setting $\Gamma \curvearrowright X$ where $X \subset\{0,1\}^{\mathbb{N}}$ is endowed with the prodiscrete topology.

For a word $w=w_{0} w_{1} \ldots w_{n-1} \in\{0,1\}^{n}$ consider the cylinder set

$$
[w]=\left\{x \in\{0,1\}^{\mathbb{N}}:\left.x\right|_{\{0, \ldots, n-1\}}=w\right\} .
$$

Effectively closed set

A set $X \subset\{0,1\}^{\mathbb{N}}$ is called effectively closed if it is closed and there is a recursively enumerable language $L \subset\{0,1\}^{*}$ such that

$$
X=\{0,1\}^{\mathbb{N}} \backslash \bigcup_{w \in L}[w]
$$

Effective dynamics

Effectively closed set

A set $X \subset\{0,1\}^{\mathbb{N}}$ is called effectively closed if it is closed and there is a recursively enumerable language $L \subset\{0,1\}^{*}$ such that

$$
X=\{0,1\}^{\mathbb{N}} \backslash \bigcup_{w \in L}[w] .
$$

Effective dynamics

Effectively closed set

A set $X \subset\{0,1\}^{\mathbb{N}}$ is called effectively closed if it is closed and there is a recursively enumerable language $L \subset\{0,1\}^{*}$ such that

$$
X=\{0,1\}^{\mathbb{N}} \backslash \bigcup_{w \in L}[w] .
$$

Intuition: When given $x \in\{0,1\}^{\mathbb{N}}$, there is an algorithm, which if left to work for an arbitrary long time, will eventually tell you if $x \notin X$ (will say nothing if $x \in X$).

Effective dynamics

Effectively closed set

A set $X \subset\{0,1\}^{\mathbb{N}}$ is called effectively closed if it is closed and there is a recursively enumerable language $L \subset\{0,1\}^{*}$ such that

$$
X=\{0,1\}^{\mathbb{N}} \backslash \bigcup_{w \in L}[w]
$$

Intuition: When given $x \in\{0,1\}^{\mathbb{N}}$, there is an algorithm, which if left to work for an arbitrary long time, will eventually tell you if $x \notin X$ (will say nothing if $x \in X$).

Note: We can replace (for convenience) $\{0,1\}$ with any finite alphabet A and the definition is the same.

Effective dynamics

$\Gamma \curvearrowright X$ can be described by a Turing machine
Let Γ be finitely generated by a symmetric set $S \ni 1_{\Gamma}$ and $X \subset\{0,1\}^{\mathbb{N}}$ be effectively closed. Given $\Gamma \curvearrowright X$ consider the set

$$
Y=\left\{y \in\left(\{0,1\}^{S}\right)^{\mathbb{N}}: \pi_{s}(y)=s \cdot \pi_{1_{\Gamma}}(y) \in X \text { for every } s \in S\right\}
$$

Where $\pi_{s}(y) \in\{0,1\}^{\mathbb{N}}$ is such that $\pi_{s}(y)(n)=y(n)(s)$.

Effective dynamics

$\Gamma \curvearrowright X$ can be described by a Turing machine
Let Γ be finitely generated by a symmetric set $S \ni 1_{\Gamma}$ and $X \subset\{0,1\}^{\mathbb{N}}$ be effectively closed. Given $\Gamma \curvearrowright X$ consider the set

$$
Y=\left\{y \in\left(\{0,1\}^{S}\right)^{\mathbb{N}}: \pi_{s}(y)=s \cdot \pi_{1_{\Gamma}}(y) \in X \text { for every } s \in S\right\}
$$

Where $\pi_{s}(y) \in\{0,1\}^{\mathbb{N}}$ is such that $\pi_{s}(y)(n)=y(n)(s)$.

Effectively closed action

An action $\Gamma \curvearrowright X$ is effectively closed if Y is an effectively closed set.

Intuition: there is an algorithm telling me (1) when $x \notin X$ and (2) when $x \neq s \cdot y$.

Effective dynamics

Effectively closed action
An action $\Gamma \curvearrowright X$ is effectively closed if

$$
Y=\left\{y \in\left(\{0,1\}^{S}\right)^{\mathbb{N}}: \pi_{s}(y)=s \cdot \pi_{1_{\Gamma}}(y) \in X \text { for every } s \in S\right\}
$$

is an effectively closed set.

Effective dynamics

Effectively closed action

An action $\Gamma \curvearrowright X$ is effectively closed if

$$
Y=\left\{y \in\left(\{0,1\}^{S}\right)^{\mathbb{N}}: \pi_{s}(y)=s \cdot \pi_{1_{\Gamma}}(y) \in X \text { for every } s \in S\right\}
$$

is an effectively closed set.

Here's an equivalent definition:

Effectively closed action v2.0

An action $\Gamma \curvearrowright X$ is effectively closed if X is effectively closed and there is a Turing machine T, which, given $s \in S, n \in \mathbb{N}$ and "oracle" access to all coordinates of $x \in X$, can compute the value $(s x)(n)$.

Examples

ur Odometer

$\mathbb{Z} \curvearrowright(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ given by $x \mapsto x+1$ in binary.

Examples

4 Odometer

$\mathbb{Z} \curvearrowright(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ given by $x \mapsto x+1$ in binary.
\mathfrak{r} Subshifts of finite type
SFTs are topologically conjugate to effectively closed actions.

Examples

4 Odometer

$\mathbb{Z} \curvearrowright(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ given by $x \mapsto x+1$ in binary.
un Subshifts of finite type
SFTs are topologically conjugate to effectively closed actions.

(r)Topological factors

$\Gamma \curvearrowright Y$ is a topological factor of $\Gamma \curvearrowright X$ if there exists a continuous surjective map $\varphi: X \rightarrow Y$ which is Γ-equivariant $(g \phi(x)=\phi(g x)$ for every $g \in \Gamma, x, y \in X)$.

Topological factors of effectively closed actions are effectively closed.

Examples

Consider $X=\{0,1\}^{\mathbb{N}}$ and let u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} be non-empty words in $\{0,1\}^{*}$ such that

$$
X=\left[u_{1}\right] \sqcup\left[u_{2}\right] \sqcup \cdots \sqcup\left[u_{n}\right]=\left[v_{1}\right] \sqcup\left[v_{2}\right] \sqcup \cdots \sqcup\left[v_{n}\right] .
$$

Let φ be the homeomorphism of $\{0,1\}^{\mathbb{N}}$ which maps every cylinder $\left[u_{i}\right]$ to $\left[v_{i}\right]$ by replacing prefixes, that is

$$
\varphi\left(u_{i} x\right)=v_{i} x \text { for every } x \in\{0,1\}^{\mathbb{N}} .
$$

Consider $X=\{0,1\}^{\mathbb{N}}$ and let u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} be non-empty words in $\{0,1\}^{*}$ such that

$$
X=\left[u_{1}\right] \sqcup\left[u_{2}\right] \sqcup \cdots \sqcup\left[u_{n}\right]=\left[v_{1}\right] \sqcup\left[v_{2}\right] \sqcup \cdots \sqcup\left[v_{n}\right] .
$$

Let φ be the homeomorphism of $\{0,1\}^{\mathbb{N}}$ which maps every cylinder $\left[u_{i}\right]$ to $\left[v_{i}\right]$ by replacing prefixes, that is

$$
\varphi\left(u_{i} x\right)=v_{i} x \text { for every } x \in\{0,1\}^{\mathbb{N}} .
$$

$$
\begin{aligned}
& u_{1}=00, u_{2}=01, u_{3}=1 \text { and } v_{1}=0, v_{2}=10, v_{3}=11 . \\
& \varphi(0101010 \ldots)=1001010 \ldots \quad \varphi(0000000 \ldots)=0000000 \ldots \\
& \varphi(1111111 \ldots)=1111111 \ldots \quad \varphi(0011001 \ldots)=011001 \ldots
\end{aligned}
$$

nd Natural action of Thompson's groups

- F is the group of all such homeomorphisms where u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are given in lexicographical order.
- T is the group of all such homeomorphisms where u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are given in lexicographical order up to a cyclic permutation.
- V is the group of all such homeomorphisms.

natural action of Thompson's groups

- F is the group of all such homeomorphisms where u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are given in lexicographical order.
- T is the group of all such homeomorphisms where u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are given in lexicographical order up to a cyclic permutation.
- V is the group of all such homeomorphisms.
- $F \leqslant T \leqslant V$ are the Thompson's groups.
- They are finitely generated (even finitely presented).

natural action of Thompson's groups

- F is the group of all such homeomorphisms where u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are given in lexicographical order.
- T is the group of all such homeomorphisms where u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are given in lexicographical order up to a cyclic permutation.
- V is the group of all such homeomorphisms.
- $F \leqslant T \leqslant V$ are the Thompson's groups.
- They are finitely generated (even finitely presented).

Their natural action on $\{0,1\}^{\mathbb{N}}$ is effectively closed.

Why care about effective actions?

Why care about effective actions?

(1) Many interesting classes of dynamical systems are effective.

Why care about effective actions?

(1) Many interesting classes of dynamical systems are effective.
(2) Many problems about those classes can be answered in terms of computability.

Why care about effective actions?

Universality

There is a Turing machine which on input a description of another Turing machine, simulates their behavior.

Why care about effective actions?

Universality

There is a Turing machine which on input a description of another Turing machine, simulates their behavior.

This is easy to prove for Turing machines, and from there the result takes different shapes in different contexts:

- There is a universal finitely presented group which contains copies of all recursively presented groups.
- There is a universal polynomial which can realize all diophantine sets by fixing one of its variables as some integer.

Why care about effective actions?

Universality

There is a Turing machine which on input a description of another Turing machine, simulates their behavior.

This is easy to prove for Turing machines, and from there the result takes different shapes in different contexts:

- There is a universal finitely presented group which contains copies of all recursively presented groups.
- There is a universal polynomial which can realize all diophantine sets by fixing one of its variables as some integer.

Let us see a dynamical version of this notion of simulation.

Definitions

Subshift of finite type

Let A be a finite set and consider $A^{\mathbb{Z}^{d}}=\left\{x: \mathbb{Z}^{d} \rightarrow A\right\}$ with the prodiscrete topology and the action $\mathbb{Z}^{d} \curvearrowright A^{\mathbb{Z}^{d}}$ given by

$$
(n x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

Definitions

Subshift of finite type

Let A be a finite set and consider $A^{\mathbb{Z}^{d}}=\left\{x: \mathbb{Z}^{d} \rightarrow A\right\}$ with the prodiscrete topology and the action $\mathbb{Z}^{d} \curvearrowright A^{\mathbb{Z}^{d}}$ given by

$$
(n x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

A subset $X \subseteq A^{\mathbb{Z}^{d}}$ is called a \mathbb{Z}^{d}-subshift if it is closed and \mathbb{Z}^{d}-invariant.

Definitions

Subshift of finite type

Let A be a finite set and consider $A^{\mathbb{Z}^{d}}=\left\{x: \mathbb{Z}^{d} \rightarrow A\right\}$ with the prodiscrete topology and the action $\mathbb{Z}^{d} \curvearrowright A^{\mathbb{Z}^{d}}$ given by

$$
(n x)(m)=x(n+m) \text { for every } n, m \in \mathbb{Z}^{d}
$$

A subset $X \subseteq A^{\mathbb{Z}^{d}}$ is called a \mathbb{Z}^{d}-subshift if it is closed and \mathbb{Z}^{d}-invariant.

Subshift of finite type

A set $Z \subseteq A^{\mathbb{Z}^{d}}$ is a \mathbb{Z}^{d}-subshift of finite type (SFT) is there is a finite set $F \subseteq \mathbb{Z}^{d}$ and $\mathcal{F} \subseteq A^{F}$ such that $z \in Z$ if and only if

$$
\left.(m z)\right|_{F} \notin \mathcal{F} \text { for every } m \in \mathbb{Z}^{d}
$$

Intuition: A subshift is of finite type if it is the set of configurations $x \in A^{\mathbb{Z}^{d}}$ which avoid a finite list of forbidden patterns (represented by \mathcal{F}).

Examples

Hard-square shift. $Z=\left\{x: \mathbb{Z}^{2} \rightarrow\{0,1\}\right\}$ such that there are no vertical or horizontally adjacent 1 s .

What results are known?

Hochman's theorem, 2009

Every effectively closed action $\mathbb{Z} \curvearrowright X$ is the topological factor of a subaction of a \mathbb{Z}^{3}-subshift of finite Z.

What results are known?

Hochman's theorem, 2009

Every effectively closed action $\mathbb{Z} \curvearrowright X$ is the topological factor of a subaction of a \mathbb{Z}^{3}-subshift of finite Z.

Moreover, the factor is nice (mod a group rotation, 1-1 in a set of full measure with respect to any invariant measure.)

Hochman's theorem, 2009

Hochman's theorem, 2009

\triangleright The dimension is optimal: there are effectively closed \mathbb{Z}-actions that cannot be obtained from \mathbb{Z}^{2}-SFTs.

Hochman's theorem, 2009

\triangleright The dimension is optimal: there are effectively closed \mathbb{Z}-actions that cannot be obtained from \mathbb{Z}^{2}-SFTs.
(unless the \mathbb{Z}-effectively closed action is expansive)

Hochman's theorem, 2009

\triangleright The dimension is optimal: there are effectively closed \mathbb{Z}-actions that cannot be obtained from \mathbb{Z}^{2}-SFTs.

$$
\text { (unless the } \mathbb{Z} \text {-effectively closed action is expansive) }
$$

An action $\Gamma \curvearrowright X$ on a metric space is expansive if there is $C>0$ such that whenever $d(g x, g y) \leq C$ for every $g \in \Gamma$ then $x=y$.
expansive + zero-dimensional \Longleftrightarrow subshift.

Expansive effectively closed actions $\mathbb{Z} \curvearrowright X$ are topologically conjugate to effectively closed subshifts.

Expansive effectively closed actions $\mathbb{Z} \curvearrowright X$ are topologically conjugate to effectively closed subshifts.

Effectively closed subshift

A set $Z \subseteq A^{\mathbb{Z}}$ is an effectively closed subshift is there is a recursively enumerable set \mathcal{F} of words in A^{*} such that $z \in Z$ if and only if

$$
\left.(m z)\right|_{\{0, \ldots, n-1\}} \notin \mathcal{F} \text { for every } m \in \mathbb{Z} \text { and } n \in \mathbb{N} .
$$

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Every effectively closed expansive action $\mathbb{Z} \curvearrowright X$ is topologically conjugate to the \mathbb{Z}-subaction of a symbolic factor of a \mathbb{Z}^{2}-SFT Z.

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Every effectively closed expansive action $\mathbb{Z} \curvearrowright X$ is topologically conjugate to the \mathbb{Z}-subaction of a symbolic factor of a \mathbb{Z}^{2}-SFT Z.

Many classical results are easy corollaries from this:

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Every effectively closed expansive action $\mathbb{Z} \curvearrowright X$ is topologically conjugate to the \mathbb{Z}-subaction of a symbolic factor of a \mathbb{Z}^{2}-SFT Z.

Many classical results are easy corollaries from this:

- Existence of \mathbb{Z}^{2}-SFTs where the action is free (Berger, Robinson)

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Every effectively closed expansive action $\mathbb{Z} \curvearrowright X$ is topologically conjugate to the \mathbb{Z}-subaction of a symbolic factor of a \mathbb{Z}^{2}-SFT Z.

Many classical results are easy corollaries from this:

- Existence of \mathbb{Z}^{2}-SFTs where the action is free (Berger, Robinson)
- Undecidability of whether a \mathbb{Z}^{2}-SFT X given by a finite list of forbidden patterns is empty (Berger)

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Every effectively closed expansive action $\mathbb{Z} \curvearrowright X$ is topologically conjugate to the \mathbb{Z}-subaction of a symbolic factor of a \mathbb{Z}^{2}-SFT Z.

Many classical results are easy corollaries from this:

- Existence of \mathbb{Z}^{2}-SFTs where the action is free (Berger, Robinson)
- Undecidability of whether a \mathbb{Z}^{2}-SFT X given by a finite list of forbidden patterns is empty (Berger)
- Characterization of the topological entropies of \mathbb{Z}^{2}-SFTs (Hochman-Meyerovitch).
- Let $X \subset A^{\mathbb{Z}^{d}}$ be a \mathbb{Z}^{d}-subshift.
- Let $B_{n}=\llbracket 0, n-1 \rrbracket^{d}$.
- Let $L_{n}(X)=\left\{p \in A^{B_{n}}\right.$: there is $\left.x \in X,\left.x\right|_{B_{n}}=p\right\}$.
- Let $X \subset A^{\mathbb{Z}^{d}}$ be a \mathbb{Z}^{d}-subshift.
- Let $B_{n}=\llbracket 0, n-1 \rrbracket^{d}$.
- Let $L_{n}(X)=\left\{p \in A^{B_{n}}\right.$: there is $\left.x \in X,\left.x\right|_{B_{n}}=p\right\}$.

Topological entropy

The topological entropy of X is given by the formula

$$
h\left(\mathbb{Z}^{d} \curvearrowright X\right)=\lim _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \log \left(\left|L_{n}(X)\right|\right)=\inf _{n \rightarrow \infty} \frac{1}{\left|B_{n}\right|} \log \left(\left|L_{n}(X)\right|\right) .
$$

The case $d=1$

Example

Let $X \subset\{0,1\}^{\mathbb{Z}}$ be the subshift of finite type where no pair of 1 s can be adjacent. It is easy to verify that

- $L_{1}(X)=\{0,1\}, L_{2}(X)=\{00,01,10\}$.

Example

Let $X \subset\{0,1\}^{\mathbb{Z}}$ be the subshift of finite type where no pair of 1 s can be adjacent. It is easy to verify that

- $L_{1}(X)=\{0,1\}, L_{2}(X)=\{00,01,10\}$.
- $\left|L_{n}(X)\right|=\left|L_{n-1}(X)\right|+\left|L_{n-2}(X)\right|$ for $n \geq 3$.

Example

Let $X \subset\{0,1\}^{\mathbb{Z}}$ be the subshift of finite type where no pair of 1 s can be adjacent. It is easy to verify that

- $L_{1}(X)=\{0,1\}, L_{2}(X)=\{00,01,10\}$.
- $\left|L_{n}(X)\right|=\left|L_{n-1}(X)\right|+\left|L_{n-2}(X)\right|$ for $n \geq 3$.
- Thus $\left|L_{n}(X)\right| \sim\left(\frac{1+\sqrt{5}}{2}\right)^{n}$
- It follows that

$$
h(\mathbb{Z} \curvearrowright X)=\log \left(\frac{1+\sqrt{5}}{2}\right) .
$$

Example

Let $X \subset\{0,1\}^{\mathbb{Z}}$ be the subshift of finite type where no pair of 1 s can be adjacent. It is easy to verify that

- $L_{1}(X)=\{0,1\}, L_{2}(X)=\{00,01,10\}$.
- $\left|L_{n}(X)\right|=\left|L_{n-1}(X)\right|+\left|L_{n-2}(X)\right|$ for $n \geq 3$.
- Thus $\left|L_{n}(X)\right| \sim\left(\frac{1+\sqrt{5}}{2}\right)^{n}$
- It follows that

$$
h(\mathbb{Z} \curvearrowright X)=\log \left(\frac{1+\sqrt{5}}{2}\right) .
$$

There are countably many SFTs. What is the class of their topological entropies?

D. Lind 1986

The entropies of \mathbb{Z}-subshifts of finite type are precisely the non-negative rational multiples of logarithms of Perron numbers λ

$$
h(\mathbb{Z} \curvearrowright X)=\frac{p}{q} \log (\lambda) .
$$

That is, λ is an algebraic integer which strictly dominates all of its algebraic conjugates.

D. Lind 1986

The entropies of \mathbb{Z}-subshifts of finite type are precisely the non-negative rational multiples of logarithms of Perron numbers λ

$$
h(\mathbb{Z} \curvearrowright X)=\frac{p}{q} \log (\lambda) .
$$

That is, λ is an algebraic integer which strictly dominates all of its algebraic conjugates.

What about \mathbb{Z}^{d} for $d \geq 2$?
M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

A real r is upper semi-computable if there is a Turing machine which on input $n \in \mathbb{N}$ outputs a rational $q_{n} \in \mathbb{Q}$ such that

$$
\inf _{n \in \mathbb{N}} q_{n}=r
$$

M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

The entropy of a \mathbb{Z}^{d}-SFT is upper semi-computable:

- Let $L_{k}^{\text {loc, } n}(X)$ be the set of patterns $p \in A^{B_{k}}$ for which there is a pattern $q \in A^{B_{n}}$ such that $p=\left.q\right|_{B_{k}}$ and q contains no forbidden patterns.

M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

The entropy of a \mathbb{Z}^{d}-SFT is upper semi-computable:

- Let $L_{k}^{\text {loc, } \mathrm{n}}(X)$ be the set of patterns $p \in A^{B_{k}}$ for which there is a pattern $q \in A^{B_{n}}$ such that $p=\left.q\right|_{B_{k}}$ and q contains no forbidden patterns.
- By compactness, for every $k \in \mathbb{N}$ there is $N \in \mathbb{N}$ such that

$$
L_{k}(X)=L_{k}^{\operatorname{loc}, \mathrm{N}}(X)
$$

M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

The entropy of a \mathbb{Z}^{d}-SFT is upper semi-computable:

- Let $L_{k}^{\text {loc, } n}(X)$ be the set of patterns $p \in A^{B_{k}}$ for which there is a pattern $q \in A^{B_{n}}$ such that $p=\left.q\right|_{B_{k}}$ and q contains no forbidden patterns.
- By compactness, for every $k \in \mathbb{N}$ there is $N \in \mathbb{N}$ such that

$$
L_{k}(X)=L_{k}^{\operatorname{loc}, \mathrm{N}}(X)
$$

- Let

$$
q_{n}=\min _{k \leq n} \frac{1}{\left|B_{k}\right|} \log \left(\left|L_{k}^{\operatorname{loc}, \mathrm{n}}(X)\right|\right)
$$

M. Hochman and T. Meyerovitch 2010

The entropies of \mathbb{Z}^{d}-subshifts of finite type for $d \geq 2$ are precisely the non-negative real numbers which are upper semi-computable

The entropy of a \mathbb{Z}^{d}-SFT is upper semi-computable:

- Let $L_{k}^{\text {loc, } \mathrm{n}}(X)$ be the set of patterns $p \in A^{B_{k}}$ for which there is a pattern $q \in A^{B_{n}}$ such that $p=\left.q\right|_{B_{k}}$ and q contains no forbidden patterns.
- By compactness, for every $k \in \mathbb{N}$ there is $N \in \mathbb{N}$ such that

$$
L_{k}(X)=L_{k}^{\operatorname{loc}, \mathrm{N}}(X)
$$

- Let

$$
q_{n}=\min _{k \leq n} \frac{1}{\left|B_{k}\right|} \log \left(\left|L_{k}^{\operatorname{loc}, \mathrm{n}}(X)\right|\right)
$$

- Then $\inf _{n \in \mathbb{N}} q_{n}=h(\mathbb{Z} \curvearrowright X)$.

Proof sketch

Let r be upper semi-computable, we need to find a \mathbb{Z}^{2}-SFT with entropy r.

Proof sketch

Let r be upper semi-computable, we need to find a \mathbb{Z}^{2}-SFT with entropy r.

- Write $r=r^{\prime} \log (\kappa)$ with $r^{\prime} \in[0,1], \kappa \in \mathbb{N}$.

Proof sketch

Let r be upper semi-computable, we need to find a \mathbb{Z}^{2}-SFT with entropy r.

- Write $r=r^{\prime} \log (\kappa)$ with $r^{\prime} \in[0,1], \kappa \in \mathbb{N}$.
- r^{\prime} is upper semi-computable, it follows there is an algorithm which produces $\left(q_{n}\right)_{n \in \mathbb{N}}$ with $\inf _{n \in \mathbb{N}} q_{n}=r^{\prime}$.

Let r be upper semi-computable, we need to find a \mathbb{Z}^{2}-SFT with entropy r.

- Write $r=r^{\prime} \log (\kappa)$ with $r^{\prime} \in[0,1], \kappa \in \mathbb{N}$.
- r^{\prime} is upper semi-computable, it follows there is an algorithm which produces $\left(q_{n}\right)_{n \in \mathbb{N}}$ with $\inf _{n \in \mathbb{N}} q_{n}=r^{\prime}$.
- Let $Z \subset\{0,1\}^{\mathbb{Z}}$ be given by the forbidden patterns \mathcal{F} where $p \in\{0,1\}^{n}$ is in \mathcal{F} if

$$
\frac{|\{0 \leq k \leq n-1: p(k)=1\}|}{n}>q_{n}
$$

Let r be upper semi-computable, we need to find a \mathbb{Z}^{2}-SFT with entropy r.

- Write $r=r^{\prime} \log (\kappa)$ with $r^{\prime} \in[0,1], \kappa \in \mathbb{N}$.
- r^{\prime} is upper semi-computable, it follows there is an algorithm which produces $\left(q_{n}\right)_{n \in \mathbb{N}}$ with $\inf _{n \in \mathbb{N}} q_{n}=r^{\prime}$.
- Let $Z \subset\{0,1\}^{\mathbb{Z}}$ be given by the forbidden patterns \mathcal{F} where $p \in\{0,1\}^{n}$ is in \mathcal{F} if

$$
\frac{|\{0 \leq k \leq n-1: p(k)=1\}|}{n}>q_{n}
$$

- Idea: the density of 1 s in words of length n is bounded above by q_{n}, thus asymptotically the density is r.

Let r be upper semi-computable, we need to find a \mathbb{Z}^{2}-SFT with entropy r.

- Write $r=r^{\prime} \log (\kappa)$ with $r^{\prime} \in[0,1], \kappa \in \mathbb{N}$.
- r^{\prime} is upper semi-computable, it follows there is an algorithm which produces $\left(q_{n}\right)_{n \in \mathbb{N}}$ with $\inf _{n \in \mathbb{N}} q_{n}=r^{\prime}$.
- Let $Z \subset\{0,1\}^{\mathbb{Z}}$ be given by the forbidden patterns \mathcal{F} where $p \in\{0,1\}^{n}$ is in \mathcal{F} if

$$
\frac{|\{0 \leq k \leq n-1: p(k)=1\}|}{n}>q_{n}
$$

- Idea: the density of 1 s in words of length n is bounded above by q_{n}, thus asymptotically the density is r.
- Z is an effectively closed subshift.

Proof sketch

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

$$
\begin{array}{cr}
\mathbb{Z}^{2} \curvearrowright X \longrightarrow \mathbb{Z}^{2} \curvearrowright Y \\
\text { SFT } & \text { symbolic factor } \\
h\left(\mathbb{Z}^{2} \curvearrowright X\right)=0 & \text { subaction }\left.\right|^{\downarrow} \quad \underset{\mathbb{Z} \curvearrowright Z}{ }
\end{array}
$$

Proof sketch

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Let $X \subset A^{\mathbb{Z}^{2}}$ as above, and consider

$$
X^{\prime} \subseteq X \times\{0,1, \ldots, \kappa\}^{\mathbb{Z}^{2}}
$$

where $x^{\prime}=(x, t) \in X^{\prime}$ satisfies that for every k :

$$
\phi(x)(k)=0 \Longleftrightarrow t(k)=0 .
$$

Proof sketch

Aubrun-Sablik 2013, Durand-Romaschenko-Shen 2010

Let $X \subset A^{\mathbb{Z}^{2}}$ as above, and consider

$$
X^{\prime} \subseteq X \times\{0,1, \ldots, \kappa\}^{\mathbb{Z}^{2}}
$$

where $x^{\prime}=(x, t) \in X^{\prime}$ satisfies that for every k :

$$
\phi(x)(k)=0 \Longleftrightarrow t(k)=0 .
$$

Intuition: We create κ independent copies of every symbol that maps into 1 to generate entropy with density $r_{\square}^{\prime} \log (\kappa)$.

0	1	0	3	0	0	2	0	0	2	0	2	0	0	3	0	1	0
0	2	0	3	0	0	2	0	0	1	0	2	0	0	2	0	2	0
0	2	0	1	0	0	3	0	0	3	0	3	0	0	1	0	2	0
0	3	0	1	0	0	1	0	0	1	0	1	0	0	1	0	3	0
0	1	0	2	0	0	1	0	0	3	0	2	0	0	1	0	2	0
0	3	0	2	0	0	1	0	0	2	0	3	0	0	2	0	3	0
0	1	0	3	0	0	3	0	0	3	0	3	0	0	3	0	1	0
0	2	0	3	0	0	1	0	0	1	0	1	0	0	3	0	3	0
0	1	0	3	0	0	2	0	0	1	0	3	0	0	2	0	3	0

0	1	0	3	0	0	2	0	0	2	0	2	0	0	3	0	1	0
0	2	0	3	0	0	2	0	0	1	0	2	0	0	2	0	2	0
0	2	0	1	0	0	3	0	0	3	0	3	0	0	1	0	2	0
0	3	0	1	0	0	1	0	0	1	0	1	0	0	1	0	3	0
0	1	0	2	0	0	1	0	0	3	0	2	0	0	1	0	2	0
0	3	0	2	0	0	1	0	0	2	0	3	0	0	2	0	3	0
0	1	0	3	0	0	3	0	0	3	0	3	0	0	3	0	1	0
0	2	0	3	0	0	1	0	0	1	0	1	0	0	3	0	3	0
0	1	0	3	0	0	2	0	0	1	0	3	0	0	2	0	3	0

$$
\left|L_{n}\left(X^{\prime}\right)\right| \approx\left|L_{n}(X)\right| \cdot \kappa^{n^{2} q_{n}}
$$

0	1	0	3	0	0	2	0	0	2	0	2	0	0	3	0	1	0
0	2	0	3	0	0	2	0	0	1	0	2	0	0	2	0	2	0
0	2	0	1	0	0	3	0	0	3	0	3	0	0	1	0	2	0
0	3	0	1	0	0	1	0	0	1	0	1	0	0	1	0	3	0
0	1	0	2	0	0	1	0	0	3	0	2	0	0	1	0	2	0
0	3	0	2	0	0	1	0	0	2	0	3	0	0	2	0	3	0
0	1	0	3	0	0	3	0	0	3	0	3	0	0	3	0	1	0
0	2	0	3	0	0	1	0	0	1	0	1	0	0	3	0	3	0
0	1	0	3	0	0	2	0	0	1	0	3	0	0	2	0	3	0

$$
\left|L_{n}\left(X^{\prime}\right)\right| \approx\left|L_{n}(X)\right| \cdot \kappa^{n^{2} q_{n}}
$$

As $q_{n} \rightarrow r$ and $\log \left|L_{n}(X)\right|=o\left(n^{2}\right)$, it follows that

$$
h\left(\mathbb{Z}^{2} \curvearrowright X^{\prime}\right)=r^{\prime} \log (\kappa)=r .
$$

Wrapping up

- Many well-known dynamical systems are effective.
- Several problems in dynamics admit solutions in terms of computability.
- Universality results can be used as black boxes to solve problems.

Wrapping up

- Many well-known dynamical systems are effective.
- Several problems in dynamics admit solutions in terms of computability.
- Universality results can be used as black boxes to solve problems.

Next week

- A strong universality property for certain classes of non-amenable groups.
- Self-simulable groups (effective actions are factors of SFTs)
- Rigidity properties of these groups.
- A computability characterization of the (?) amenability of Thompson's F.

Thank you for your attention！

References：

沓 On the dynamics and recursive properties of multidimensional symbolic systems．M．Hochman．
Inventiones mathematicae 2008，（176）：1－131． https：／／link．springer．com／article／10．1007／s00222－008－0161－7
珮
A Characterization of the Entropies of Multidimensional Shifts of Finite Type．M．Hochman and T．Meyerovitch．
Annals of Mathematics 2010，（171）：2011－2038．
https：／／arxiv．org／abs／math／0703206
药
Simulation of effective subshifts by two－dimensional subshifts of finite type．N．Aubrun and M．Sablik．
Acta Applicandae Mathematicae 2013，（126）：35－63．
https：／／arxiv．org／abs／1602．06095
药
Effective Closed Subshifts in 1D Can Be Implemented in 2D．B．Durand，
A．Romashchenko and A．Shen
Fields of Logic and Computation 2010，208－226
https：／／arxiv．org／abs／1003．3103

