On the relation between topological entropy and asymptotic pairs

Sebastián Barbieri

From joint work with Felipe García-Ramos and Hanfeng Li

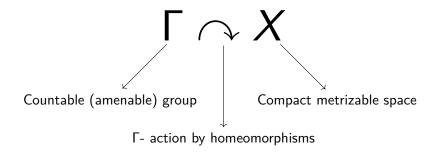
LaBRI, Université de Bordeaux (soon: USACH)

Seminario de Sistemas Dinámicos de Santiago June, 2020

0

・ロト ・ 四ト ・ ヨト ・ ヨト - ヨ

• Topological dynamics.



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

Setting

Two properties of $\Gamma \frown X$ that indicate the action is not too simple.

• Existence of asymptotic pairs $(x, y) \in X^2$

(x, y) is asymptotic if the orbits $\Gamma x, \Gamma y$ are arbitrarily close for all but finitely many $g \in \Gamma$.

Two properties of $\Gamma \frown X$ that indicate the action is not too simple.

• Existence of asymptotic pairs $(x, y) \in X^2$

(x, y) is asymptotic if the orbits $\Gamma x, \Gamma y$ are arbitrarily close for all but finitely many $g \in \Gamma$.

• Positive topological entropy $h_{\mathrm{top}}(\Gamma \curvearrowright X) > 0.$

 $\Gamma \curvearrowright X$ has positive topological entropy if at every scale, the number of distinguishable orbits grows exponentially fast.

Two properties of $\Gamma \frown X$ that indicate the action is not too simple.

• Existence of asymptotic pairs $(x, y) \in X^2$

(x, y) is asymptotic if the orbits $\Gamma x, \Gamma y$ are arbitrarily close for all but finitely many $g \in \Gamma$.

- Positive topological entropy $h_{top}(\Gamma \frown X) > 0$.
 - $\Gamma \curvearrowright X$ has positive topological entropy if at every scale, the number of distinguishable orbits grows exponentially fast.

Question

How are these two properties related?

イロン イロン イヨン イヨン 一日

Let d be a compatible metric on X.

Definition of asymptotic pairs

(x, y) is an asymptotic pair of $\Gamma \curvearrowright X$ if for every $\varepsilon > 0$ there exists a finite $F \subseteq \Gamma$ such that

 $d(gx,gy) \leq \varepsilon$ for every $g \in \Gamma \setminus F$.

Denote by $A(\Gamma \frown X)$ the **asymptotic relation** of $\Gamma \frown X$.

・ロ・・日・・日・・日・・日・

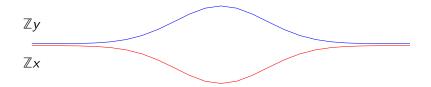
Let d be a compatible metric on X.

Definition of asymptotic pairs

(x, y) is an asymptotic pair of $\Gamma \curvearrowright X$ if for every $\varepsilon > 0$ there exists a finite $F \subseteq \Gamma$ such that

$$d(gx,gy) \leq \varepsilon$$
 for every $g \in \Gamma \setminus F$.

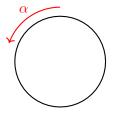
Denote by $A(\Gamma \frown X)$ the **asymptotic relation** of $\Gamma \frown X$.



(日) (部) (注) (注) (三)

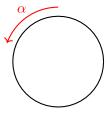
Let $X = \mathbb{R}/\mathbb{Z}$ and $\alpha \in \mathbb{R}$. Consider the rotation $\mathbb{Z} \curvearrowright \mathbb{R}/\mathbb{Z}$ given by

 $x \mapsto x + \alpha \mod 1.$



Let $X = \mathbb{R}/\mathbb{Z}$ and $\alpha \in \mathbb{R}$. Consider the rotation $\mathbb{Z} \curvearrowright \mathbb{R}/\mathbb{Z}$ given by

 $x \mapsto x + \alpha \mod 1.$



$$A(\mathbb{Z} \frown \mathbb{R}/\mathbb{Z}) = \{(x, x) : x \in \mathbb{R}/\mathbb{Z}\} = \triangle_{\mathbb{R}/\mathbb{Z}}.$$

For isometries, there are only trivial (x = y) asymptotic pairs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let
$$X = \{0,1\}^{\Gamma}$$
 and $\Gamma \curvearrowright \{0,1\}^{\Gamma}$ be the shift action

$$gx(h) = x(g^{-1}h)$$
, for every $g, h \in \Gamma, x \in \{0, 1\}^{\Gamma}$.

Then $(x, y) \in A(\Gamma \frown \{0, 1\}^{\Gamma})$ if and only if there is a finite $F \subseteq \Gamma$ such that

$$x(g) = y(g)$$
 for every $g \in \Gamma \setminus F$.

・ロ・・母・・ヨ・・ヨ・ うへの

Let
$$X = \{0,1\}^{\Gamma}$$
 and $\Gamma \frown \{0,1\}^{\Gamma}$ be the shift action
 $gx(h) = x(g^{-1}h)$, for every $g, h \in \Gamma, x \in \{0,1\}^{\Gamma}$.
Then $(x, y) \in A(\Gamma \ominus \{0,1\}^{\Gamma})$ if and only if there is a finite Γ .

Then $(x, y) \in A(\Gamma \frown \{0, 1\}^{\Gamma})$ if and only if there is a finite $F \subseteq \Gamma$ such that

$$x(g) = y(g)$$
 for every $g \in \Gamma \setminus F$.

$$\overline{\mathsf{A}(\Gamma \frown \{0,1\}^{\Gamma})} = (\{0,1\}^{\Gamma})^2.$$

For the full shift, asymptotic points are dense.

Let $X = \Gamma \cup \{\infty\}$ be the one-point compactification of Γ with the discrete topology. Consider the action $\Gamma \curvearrowright X$ given by

$$gx = \begin{cases} gh & \text{if } x = h \in \Gamma \\ \infty & \text{if } x = \infty \end{cases}$$

٠

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

Let $X = \Gamma \cup \{\infty\}$ be the one-point compactification of Γ with the discrete topology. Consider the action $\Gamma \curvearrowright X$ given by

$$gx = \begin{cases} gh & \text{if } x = h \in \Gamma \\ \infty & \text{if } x = \infty \end{cases}$$

$$\mathsf{A}(\Gamma \curvearrowright X) = X^2.$$

Let $X = \Gamma \cup \{\infty\}$ be the one-point compactification of Γ with the discrete topology. Consider the action $\Gamma \curvearrowright X$ given by

$$gx = \begin{cases} gh & \text{if } x = h \in \Gamma \\ \infty & \text{if } x = \infty \end{cases}$$

$$\mathsf{A}(\Gamma \frown X) = X^2.$$

This action is conjugate to the sunny-side up subshift:

$$X_{\leq 1} = \{x \in \{0,1\}^{\Gamma} : \#\{g \in \Gamma : x(g) = 1\} \leq 1\}$$

by identifying $g \mapsto 1_{\{g\}}$ and $\infty \mapsto 0^{\Gamma}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

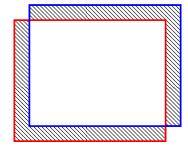
Topological entropy

Given $\delta > 0$ and a finite $K \subset \Gamma$, a set $F \subset \Gamma$ is called left (K, δ) -invariant if

 $|\mathsf{KF} \triangle \mathsf{F}| \le \delta |\mathsf{F}|$

$$F = [-n, n]^2$$

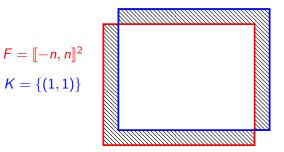
 $K = \{(1, 1)\}$



Topological entropy

Given $\delta > 0$ and a finite $K \subset \Gamma$, a set $F \subset \Gamma$ is called left (K, δ) -invariant if

 $|\mathsf{KF} \triangle \mathsf{F}| \le \delta |\mathsf{F}|$



A group Γ is amenable if for every δ , K as above, there exists a finite set $F \subseteq \Gamma$ which is (K, δ) -invariant.

A sequence $\{F_n\}_{n \in \mathbb{N}}$ which is eventually (K, δ) -invariant for every K, δ is called Følner.

Let Γ be amenable, $\Gamma \curvearrowright X$ an action. For an open cover \mathcal{U} of X and $F \subseteq \Gamma$ let \mathcal{U}^F be the refinement

$$\mathcal{U}^{\mathsf{F}} = \bigvee_{g \in \mathsf{F}} g^{-1} \mathcal{U},$$

and denote by $N(\mathcal{U})$ the minimum cardinality of a subcover.

The **topological entropy** of $\Gamma \curvearrowright X$ is given by

$$h_{\mathrm{top}}(\Gamma \frown X) = \sup_{\mathcal{U}} \lim \frac{1}{|F|} \log N(\mathcal{U}^F).$$

where the limit is taken as F becomes more and more left-invariant and the supremum is over all open covers of X.

・ロト ・ 日 ト ・ 日 ト ・ 日

• A circle rotation $x \mapsto x + \alpha \mod 1$ has topological entropy 0.

- A circle rotation $x \mapsto x + \alpha \mod 1$ has topological entropy 0.
- $\bullet\,$ The full shift $\Gamma \curvearrowright \{0,1\}^{\Gamma}$ has entropy

 $h_{\mathrm{top}}(\Gamma \curvearrowright \{0,1\}^{\Gamma}) = \log 2.$

- A circle rotation $x \mapsto x + \alpha \mod 1$ has topological entropy 0.
- $\bullet\,$ The full shift $\Gamma \curvearrowright \{0,1\}^{\Gamma}$ has entropy

$$h_{top}(\Gamma \frown \{0,1\}^{\Gamma}) = \log 2.$$

• The sunny-side up subshift has entropy 0.

$$h_{\mathrm{top}}(\Gamma \curvearrowright X_{\leq 1}) = 0.$$

- A circle rotation $x \mapsto x + \alpha \mod 1$ has topological entropy 0.
- \bullet The full shift $\Gamma \curvearrowright \{0,1\}^{\Gamma}$ has entropy

$$h_{\mathrm{top}}(\Gamma \curvearrowright \{0,1\}^{\Gamma}) = \log 2.$$

• The sunny-side up subshift has entropy 0.

$$h_{ ext{top}}(\Gamma \frown X_{\leq 1}) = 0.$$

Main question

Under which conditions do we have that:

non-trivial asymptotic pairs imply positive entropy. positive entropy implies non-trivial asymptotic pairs.

イロン イロン イヨン

Non-trivial asymptotic pairs and zero entropy

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

煓 FAIL

• (Boring example) The sunny-side up subshift

$$X_{\leq 1} = \{x \in \{0,1\}^{\Gamma} : \#\{g \in \Gamma : x(g) = 1\} \leq 1\}$$

has zero topological entropy and $A(\Gamma \frown X_{\leq 1}) = (X_{\leq 1})^2$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの

煓 FAIL

• (Boring example) The sunny-side up subshift

$$X_{\leq 1} = \{x \in \{0,1\}^{\Gamma} : \#\{g \in \Gamma : x(g) = 1\} \leq 1\}$$

has zero topological entropy and $A(\Gamma \frown X_{\leq 1}) = (X_{\leq 1})^2$.

(Strictly ergodic example) For α ∈ ℝ \ Q, the Sturmian subshift associated to the rotation x → x + α mod 1 has zero topological entropy and non-trivial asymptotic pairs. For example, the codings x, y of 0 using the partitions

$$\{[0, 1 - \alpha), [1 - \alpha, 1)\}$$
 and $\{(0, 1 - \alpha], (1 - \alpha, 1]\}$

respectively.

イロン イロン イヨン イヨン 一日

 $\operatorname{\mathbb{G}FAIL}$ For this direction the examples are more complicated.

Trivial asymptotic pairs and positive entropy

FAIL For this direction the examples are more complicated.

(Lind and Schmidt, 1999 [Example 3.4]) Let A ∈ GL(Z, d) so that the characteristic polynomial χ_A(t) is irreducible over Q and has some but not all eigenvalues on the unit circle. Then the toral automorphism of (R/Z)^d given by

 $x \mapsto Ax \mod 1.$

has positive entropy and trivial asymptotic relation.

(日) (四) (문) (문) (문)

Trivial asymptotic pairs and positive entropy

FAIL For this direction the examples are more complicated.

(Lind and Schmidt, 1999 [Example 3.4]) Let A ∈ GL(Z, d) so that the characteristic polynomial χ_A(t) is irreducible over Q and has some but not all eigenvalues on the unit circle. Then the toral automorphism of (R/Z)^d given by

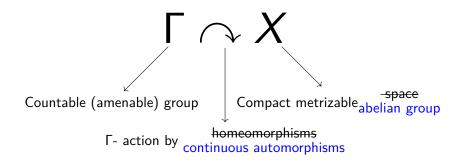
 $x \mapsto Ax \mod 1$.

has positive entropy and trivial asymptotic relation.

• (Meyerovitch 2017, [Theorem 1.3]) For every amenable residually finite group Γ, there is a Γ-subshift X with positive topological entropy and trivial asymptotic relation.

Algebraic actions

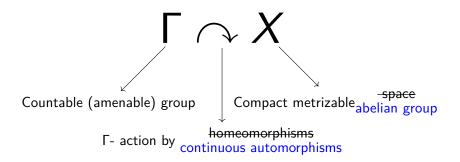
• Topological Algebraic dynamics.



イロト イヨト イヨト イヨト 三日

Algebraic actions

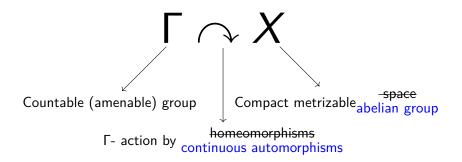
• Topological Algebraic dynamics.



Example: toral automorphisms.

Algebraic actions

• Topological Algebraic dynamics.



Example: toral automorphisms.

Remark: If (x, y) is asymptotic for an algebraic action, then $(y^{-1}x, e_X)$ is also asymptotic. The **homoclinic group of** $\Delta(\Gamma \frown X)$ of $\Gamma \frown X$ is the subgroup of $x \in X$ so that (x, e_X) is asymptotic.

Theorem (Lind and Schmidt, 1999)

Let $\mathbb{Z}^d \curvearrowright X$ be an expansive algebraic action, then:

$$\ \, \lim^{s} \ \, h_{\mathrm{top}}(\mathbb{Z}^d \curvearrowright X) > 0 \iff \Delta(\mathbb{Z}^d \curvearrowright X) \neq \{e_X\}. \ \, \lim^{s}$$

Theorem (Lind and Schmidt, 1999)

Let $\mathbb{Z}^d \curvearrowright X$ be an expansive algebraic action, then:

Theorem (Chung and Li, 2014)

Let $\Gamma \curvearrowright X$ be an expansive algebraic action and Γ be polycyclic-by-finite, then:

$$\ \, \overleftrightarrow{} \quad h_{\mathrm{top}}(\Gamma \frown X) > 0 \iff \Delta(\Gamma \frown X) \neq \{e_X\}.$$

(日) (部) (注) (注) (三)

Theorem (Meyerovitch, 2018)

Let $\Gamma \curvearrowright X$ be an expansive action of a countable amenable group which satisfies **the pseudo-orbit tracing property**, then:

 $h_{
m top}(\Gamma \curvearrowright X) > 0 \implies$ There are non-trivial asymptotic pairs

The converse also holds if some non-trivial asymptotic pair is in the support of a Γ -invariant Borel probability measure.

イロト イヨト イヨト イヨト 三日

Theorem (Meyerovitch, 2018)

Let $\Gamma \curvearrowright X$ be an expansive action of a countable amenable group which satisfies **the pseudo-orbit tracing property**, then:

 $h_{
m top}(\Gamma \curvearrowright X) > 0 \implies$ There are non-trivial asymptotic pairs

The converse also holds if some non-trivial asymptotic pair is in the support of a Γ -invariant Borel probability measure.

Remark: The pseudo-orbit tracing property (POTP) is also known as **shadowing**.

The POTP

A sequence $\{x_g\}_{g\in\Gamma}$ is an (S, δ) -pseudo orbit if

 $d(sx_g, x_{sg}) \leq \delta$ for every $s \in S, g \in \Gamma$.

The POTP

A sequence $\{x_g\}_{g\in\Gamma}$ is an (S, δ) -pseudo orbit if

$$d(sx_g, x_{sg}) \leq \delta$$
 for every $s \in S, g \in \Gamma$.

"if you blur your eyes, the sequence locally looks like an orbit"

The POTP

A sequence $\{x_g\}_{g\in\Gamma}$ is an (S, δ) -pseudo orbit if

$$d(sx_g, x_{sg}) \leq \delta$$
 for every $s \in S, g \in \Gamma$.

"if you blur your eyes, the sequence locally looks like an orbit"

An action $\Gamma \curvearrowright X$ has the **pseudo-orbit tracing property** (POTP) if for every $\varepsilon > 0$ there is a finite $S \subseteq \Gamma$ and $\delta > 0$ so that every (S, δ) -pseudo orbit $\{x_g\}_{g \in \Gamma}$ is ε -traced by some $y \in X$.

 $d(x_g, gy) \leq \varepsilon$ for every $g \in \Gamma$.

イロト イヨト イヨト イヨト 三日

The POTP

A sequence $\{x_g\}_{g\in\Gamma}$ is an (S, δ) -pseudo orbit if

$$d(sx_g, x_{sg}) \leq \delta$$
 for every $s \in S, g \in \Gamma$.

"if you blur your eyes, the sequence locally looks like an orbit"

An action $\Gamma \curvearrowright X$ has the **pseudo-orbit tracing property** (POTP) if for every $\varepsilon > 0$ there is a finite $S \subseteq \Gamma$ and $\delta > 0$ so that every (S, δ) -pseudo orbit $\{x_g\}_{g \in \Gamma}$ is ε -traced by some $y \in X$.

$$d(x_g, gy) \leq \varepsilon$$
 for every $g \in \Gamma$.

"sequences that locally look like orbits, are close to real orbits"

イロト イヨト イヨト イヨト 三日

The POTP

A sequence $\{x_g\}_{g\in\Gamma}$ is an (S, δ) -pseudo orbit if

$$d(sx_g, x_{sg}) \leq \delta$$
 for every $s \in S, g \in \Gamma$.

"if you blur your eyes, the sequence locally looks like an orbit"

An action $\Gamma \curvearrowright X$ has the **pseudo-orbit tracing property** (POTP) if for every $\varepsilon > 0$ there is a finite $S \subseteq \Gamma$ and $\delta > 0$ so that every (S, δ) -pseudo orbit $\{x_g\}_{g \in \Gamma}$ is ε -traced by some $y \in X$.

$$d(x_g, gy) \leq \varepsilon$$
 for every $g \in \Gamma$.

"sequences that locally look like orbits, are close to real orbits"

Examples: hyperbolic toral automorphisms, subshifts of finite type.

・ロ・・四・・ヨ・・ヨ・ ヨー

Is the dynamical condition the right one?

Does Meyerovitch's result imply the results on algebraic actions?

Is the dynamical condition the right one?

Does Meyerovitch's result imply the results on algebraic actions?

Meyerovitch \Rightarrow Lind and Schmidt \checkmark

Every expansive algebraic action of \mathbb{Z}^d has the POTP.

Is the dynamical condition the right one?

Does Meyerovitch's result imply the results on algebraic actions?

Meyerovitch \Rightarrow Lind and Schmidt \checkmark

Every expansive algebraic action of \mathbb{Z}^d has the POTP.

Meyerovitch \Rightarrow Chung and Li X

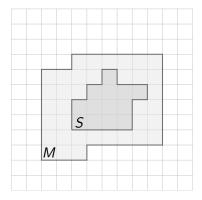
[Bhattacharya, 2019] There exists an expansive algebraic action of a polycyclic group which does not have the POTP.

: we need to find a weaker property...

イロト イヨト イヨト イヨト 三日

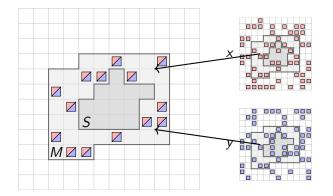
A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if

A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if for all finite $S \subseteq \Gamma$ there exists a finite "memory set" $M \supseteq S$

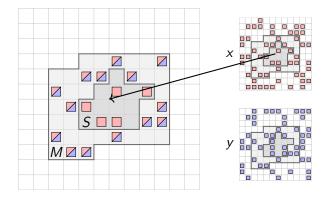


17

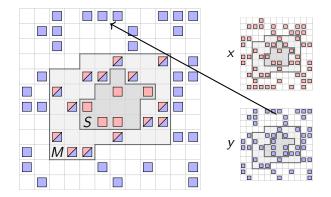
A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if for all finite $S \subseteq \Gamma$ there exists a finite "memory set" $M \supseteq S$ such that whenever $x, y \in X$ satisfy $x_{M \setminus S} = y_{M \setminus S}$



A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if for all finite $S \subseteq \Gamma$ there exists a finite "memory set" $M \supseteq S$ such that whenever $x, y \in X$ satisfy $x_{M \setminus S} = y_{M \setminus S}$, then $x|_S \lor y_{\Gamma \setminus S} \in X$.

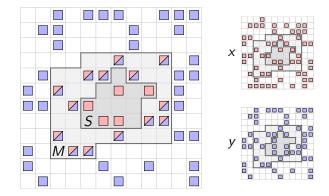


A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if for all finite $S \subseteq \Gamma$ there exists a finite "memory set" $M \supseteq S$ such that whenever $x, y \in X$ satisfy $x_{M \setminus S} = y_{M \setminus S}$, then $x|_S \lor y_{\Gamma \setminus S} \in X$.

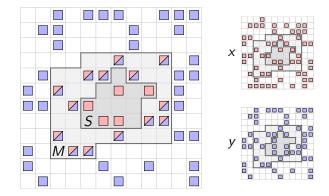


イロト イボト イヨト イヨト 二日

A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if for all finite $S \subseteq \Gamma$ there exists a finite "memory set" $M \supseteq S$ such that whenever $x, y \in X$ satisfy $x_{M \setminus S} = y_{M \setminus S}$, then $x|_S \lor y_{\Gamma \setminus S} \in X$.



A closed subset $X \subseteq A^{\Gamma}$ satisfies the TMP if for all finite $S \subseteq \Gamma$ there exists a finite "memory set" $M \supseteq S$ such that whenever $x, y \in X$ satisfy $x_{M \setminus S} = y_{M \setminus S}$, then $x|_S \lor y_{\Gamma \setminus S} \in X$.



A subshift $X \subseteq A^{\Gamma}$ satisfies the

• **TMP**, if every finite $S \subseteq \Gamma$ admits a memory set M.

A subshift $X \subseteq A^{\Gamma}$ satisfies the

- **TMP**, if every finite $S \subseteq \Gamma$ admits a memory set M.
- strong TMP, if there exists a finite F ⊆ Γ, so that every finite S ⊆ Γ admits M = SF as a memory set.

イロト イヨト イヨト イヨト 三日

A subshift $X \subseteq A^{\Gamma}$ satisfies the

- **TMP**, if every finite $S \subseteq \Gamma$ admits a memory set M.
- strong TMP, if there exists a finite F ⊆ Γ, so that every finite S ⊆ Γ admits M = SF as a memory set.

Strong TMP is a bounded version of TMP.

A subshift $X \subseteq A^{\Gamma}$ satisfies the

- **TMP**, if every finite $S \subseteq \Gamma$ admits a memory set M.
- strong TMP, if there exists a finite F ⊆ Γ, so that every finite S ⊆ Γ admits M = SF as a memory set.

Strong TMP is a bounded version of TMP.

Topological Markov property

Let $\Gamma \curvearrowright X$ and $\varepsilon, \delta > 0$. A finite set $M \subseteq \Gamma$ is an (ε, δ) -memory set for $S \subseteq \Gamma$ if for every $x, y \in X$ so that

 $d(gx, gy) \leq \delta$ for every $g \in M \setminus S$,

there exists $z \in X$ so that

 $d(gx,gz) \le \varepsilon$ for every $g \in M$, $d(gy,gz) \le \varepsilon$ for every $g \in \Gamma \setminus S$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Topological Markov property

Let $\Gamma \curvearrowright X$ and $\varepsilon, \delta > 0$. A finite set $M \subseteq \Gamma$ is an (ε, δ) -memory set for $S \subseteq \Gamma$ if for every $x, y \in X$ so that

 $d(gx, gy) \leq \delta$ for every $g \in M \setminus S$,

there exists $z \in X$ so that

$$d(gx,gz) \leq \varepsilon$$
 for every $g \in M$,
 $d(gy,gz) \leq \varepsilon$ for every $g \in \Gamma \setminus S$.

An action $\Gamma \curvearrowright X$ has the

• **TMP**, if for every $\varepsilon > 0$ there exists $\delta > 0$ so that every finite $S \subseteq \Gamma$ admits an (ε, δ) -memory set M.

Topological Markov property

Let $\Gamma \curvearrowright X$ and $\varepsilon, \delta > 0$. A finite set $M \subseteq \Gamma$ is an (ε, δ) -memory set for $S \subseteq \Gamma$ if for every $x, y \in X$ so that

 $d(gx, gy) \leq \delta$ for every $g \in M \setminus S$,

there exists $z \in X$ so that

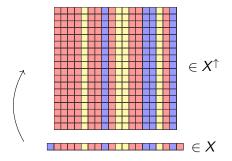
$$d(gx,gz) \leq \varepsilon$$
 for every $g \in M$,
 $d(gy,gz) \leq \varepsilon$ for every $g \in \Gamma \setminus S$.

An action $\Gamma \curvearrowright X$ has the

- **TMP**, if for every $\varepsilon > 0$ there exists $\delta > 0$ so that every finite $S \subseteq \Gamma$ admits an (ε, δ) -memory set M.
- strong TMP, if for every ε > 0 there exists δ > 0 and a finite F ⊆ Γ, so that every finite S ⊆ Γ admits M = SF as a memory set.

Example (trivial)

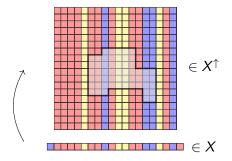
Let $X \subseteq A^{\Gamma}$ be a \mathbb{Z} -subshift. Let X^{\uparrow} be its trivial extension to \mathbb{Z}^2 :



 X^{\uparrow} has the strong TMP with $F = \{(0,1)\}.$

Example (trivial)

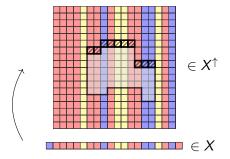
Let $X \subseteq A^{\Gamma}$ be a \mathbb{Z} -subshift. Let X^{\uparrow} be its trivial extension to \mathbb{Z}^2 :



 X^{\uparrow} has the strong TMP with $F = \{(0,1)\}.$

Example (trivial)

Let $X \subseteq A^{\Gamma}$ be a \mathbb{Z} -subshift. Let X^{\uparrow} be its trivial extension to \mathbb{Z}^2 :



 X^{\uparrow} has the strong TMP with $F = \{(0, 1)\}$.

- The class of \mathbb{Z}^2 -subshifts with strong TMP is **uncountable**.
- All non-negative real numbers are top. entropies of subshifts with strong TMP. (Take X = sturmian with slope α and split the symbol with measure α in X[↑].)

• Subshifts which are the support of Markovian measures have the strong TMP.

- Subshifts which are the support of Markovian measures have the strong TMP.
- Every expansive action with trivial asymptotic relation has the TMP.

- Subshifts which are the support of Markovian measures have the strong TMP.
- Every expansive action with trivial asymptotic relation has the TMP.
- Minimal expansive actions have TMP if and only if the asymptotic relation is trivial.

・ロト ・ 日 ト ・ 日 ト ・ 日

- Subshifts which are the support of Markovian measures have the strong TMP.
- Every expansive action with trivial asymptotic relation has the TMP.
- Minimal expansive actions have TMP if and only if the asymptotic relation is trivial.
- Every action $\Gamma \curvearrowright X$ on a compact metrizable group X by continuous automorphisms has the TMP.

・ロト ・ 日 ト ・ 日 ト ・ 日

- Subshifts which are the support of Markovian measures have the strong TMP.
- Every expansive action with trivial asymptotic relation has the TMP.
- Minimal expansive actions have TMP if and only if the asymptotic relation is trivial.
- Every action $\Gamma \curvearrowright X$ on a compact metrizable group X by continuous automorphisms has the TMP.
- Every expansive algebraic action of a polycyclic-by-finite group has the strong TMP (\checkmark).

イロン イロン イヨン イヨン 一日

- Subshifts which are the support of Markovian measures have the strong TMP.
- Every expansive action with trivial asymptotic relation has the TMP.
- Minimal expansive actions have TMP if and only if the asymptotic relation is trivial.
- Every action $\Gamma \curvearrowright X$ on a compact metrizable group X by continuous automorphisms has the TMP.
- Every expansive algebraic action of a polycyclic-by-finite group has the strong TMP (✓).
- Every expansive and finitely presented algebraic action of an amenable group which satisfies the **strong Atiyah conjecture** has the strong TMP.
 - Torsion-free elementary amenable groups.
 - Left-orderable amenable groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Meyerovitch, 2018)

Let Γ be amenable and $\Gamma \curvearrowright X$ expansive with POTP, then:

 $h_{top}(\Gamma \frown X) > 0 \implies$ There are non-trivial asymptotic pairs

Theorem (Meyerovitch, 2018)

Let Γ be amenable and $\Gamma \curvearrowright X$ expansive with POTP, then:

 $h_{ ext{top}}(\Gamma \frown X) > 0 \implies$ There are non-trivial asymptotic pairs

Theorem (B, García Ramos, Li)

Let Γ be amenable and $\Gamma \curvearrowright X$ be an expansive action then:

- If Γ
 ∧ X has strong TMP and positive entropy, then Γ
 ∧ X admits non-trivial asymptotic pairs.
- If Γ ¬ X has **TMP** and non-trivial asymptotic pairs in the support of an invariant measure, then Γ ¬ X has positive entropy.

イロト イヨト イヨト イヨト 三日

Theorem (Meyerovitch, 2018)

Let Γ be amenable and $\Gamma \curvearrowright X$ expansive with POTP, then:

 $h_{ ext{top}}(\Gamma \frown X) > 0 \implies$ There are non-trivial asymptotic pairs

Theorem (B, García Ramos, Li)

Let Γ be amenable and $\Gamma \curvearrowright X$ be an expansive action then:

- If Γ ¬ X has TMP and non-trivial asymptotic pairs in the support of an invariant measure, then Γ ¬ X has positive entropy. This one also works for sofic entropy!

Local entropy theory

• Entropy is a global notion \longleftrightarrow asymptotic pairs is a local notion.

We need way to deal with positive entropy locally \rightarrow entropy pairs.

Local entropy theory

• Entropy is a global notion \longleftrightarrow asymptotic pairs is a local notion.

We need way to deal with positive entropy locally \rightarrow entropy pairs.

Original notion by Blanchard, improved by Glasner and Weiss, and Kerr and Li.

Local entropy theory

• Entropy is a global notion \longleftrightarrow asymptotic pairs is a local notion.

We need way to deal with positive entropy locally \rightarrow entropy pairs.

Original notion by Blanchard, improved by Glasner and Weiss, and Kerr and Li.

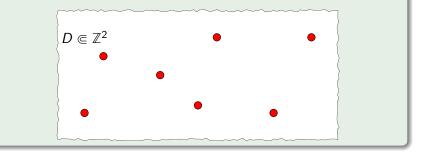
 $(x, y) \in X^2$ is an **independence entropy pair** (IE-pair), if for every pair of open neighborhoods U_x , U_y of x and y there exists a set $D \subseteq \Gamma$ of *positive density* such that for every finite $I \subseteq D$ and function $\varphi \colon I \to \{x, y\}$ such that:

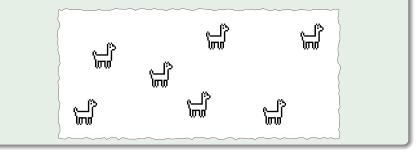
$$\bigcap_{g\in I}g^{-1}U_{\varphi(g)}\neq \varnothing.$$

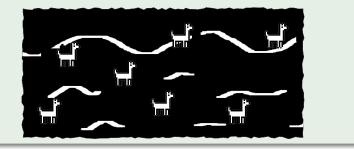
D has positive density if for some Følner squence $\{F_n\}_{n\in\mathbb{N}}$ we have

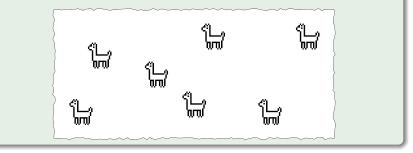
$$\lim_{n\to\infty}\frac{|F_n\cap D|}{|F|}>0.$$

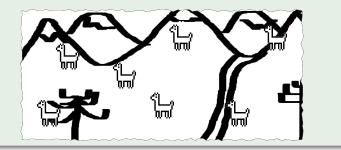
Example: Let $x, y \in \{\Box, \blacksquare\}^{\mathbb{Z}^2}$ such that \mathbb{W} and \mathbb{W} occurs in x and y respectively. If (x, y) is an IE-pair, then:

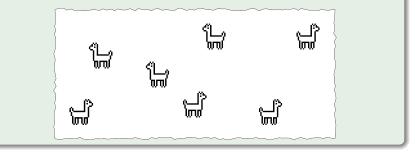


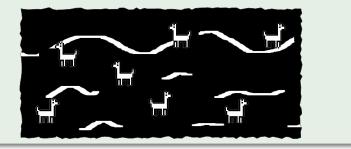


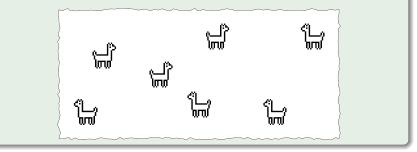




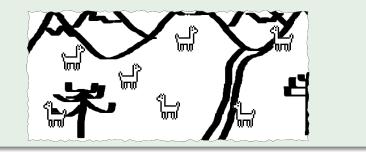








イロト イヨト イヨト イヨト



Theorem [Blanchard, 1993], [Kerr Li, 2007]

 $h_{top}(\Gamma \frown X) > 0$ if and only if there is an IE-pair (x, y) with $x \neq y$.

Let us prove it for a subshift $X \subseteq A^{\Gamma}$. Suppose the entropy is positive and X has strong TMP.

• As $h_{top}(\Gamma \frown X) > 0$, then there is an IE-pair (x, y), $x \neq y$.

Let us prove it for a subshift $X \subseteq A^{\Gamma}$. Suppose the entropy is positive and X has strong TMP.

- As $h_{top}(\Gamma \frown X) > 0$, then there is an IE-pair (x, y), $x \neq y$.
- By strong TMP, there exists a finite K ⊆ Γ so that every finite set F admits KF as a memory set.

イロト イヨト イヨト イヨト 三日

Let us prove it for a subshift $X \subseteq A^{\Gamma}$. Suppose the entropy is positive and X has strong TMP.

- As $h_{top}(\Gamma \frown X) > 0$, then there is an IE-pair (x, y), $x \neq y$.
- By strong TMP, there exists a finite K ⊆ Γ so that every finite set F admits KF as a memory set.
- Let $S \subset \Gamma$ be a finite set such that $p_x = x|_S$ and $p_y = y|_S$ are distinct.

イロン イロン イヨン イヨン 一日

Let us prove it for a subshift $X \subseteq A^{\Gamma}$. Suppose the entropy is positive and X has strong TMP.

- As $h_{top}(\Gamma \frown X) > 0$, then there is an IE-pair (x, y), $x \neq y$.
- By strong TMP, there exists a finite K ⊆ Γ so that every finite set F admits KF as a memory set.
- Let $S \subset \Gamma$ be a finite set such that $p_x = x|_S$ and $p_y = y|_S$ are distinct.
- As (x, y) is an IE-pair, there exists a positive density set
 D ⊆ Γ so that for every finite I ⊆ D and φ: I → {x, y} there is z ∈ X such that for every g ∈ I

$$(g \cdot z)|_S = p_{\varphi(g)}.$$

Let $\{F_n\}_{n \in \mathbb{N}}$ be a Følner sequence:

Let $\{F_n\}_{n \in \mathbb{N}}$ be a Følner sequence: • The ratio $\frac{|KF_n \setminus F_n|}{|F_n|}$ tends to zero. Let $\{F_n\}_{n\in\mathbb{N}}$ be a Følner sequence:

• The ratio
$$\frac{|KF_n \setminus F_n|}{|F_n|}$$
 tends to zero.

• For sufficiently large *n*, there are at least $2^{\frac{dens(D)|F_n|}{2}}$ different choices of $\varphi \colon D \cap F_n \to \{x, y\}$.

<ロ> (四)、(四)、(三)、(三)、(三)

Let $\{F_n\}_{n\in\mathbb{N}}$ be a Følner sequence:

• The ratio
$$\frac{|KF_n \setminus F_n|}{|F_n|}$$
 tends to zero.

- For sufficiently large *n*, there are at least $2^{\frac{\operatorname{dens}(D)|F_n|}{2}}$ different choices of $\varphi: D \cap F_n \to \{x, y\}$.
- There are at most $|A|^{KF_n \setminus F_n}$ patterns with support $KF_n \setminus F_n$

(日) (四) (문) (문) (문)

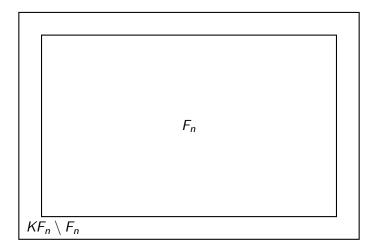
Let $\{F_n\}_{n\in\mathbb{N}}$ be a Følner sequence:

• The ratio
$$\frac{|KF_n \setminus F_n|}{|F_n|}$$
 tends to zero.

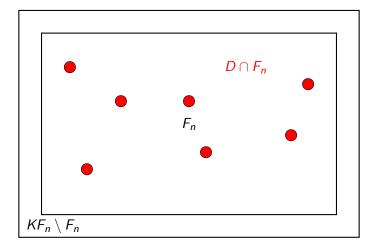
- For sufficiently large *n*, there are at least $2^{\frac{\operatorname{den}(D)|F_n|}{2}}$ different choices of $\varphi \colon D \cap F_n \to \{x, y\}$.
- There are at most $|A|^{KF_n \setminus F_n}$ patterns with support $KF_n \setminus F_n$
- There is *n* sufficiently large such that

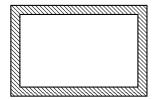
$$2^{\frac{\operatorname{dens}(D)|F_n|}{2}} \geq |A|^{KF_n \setminus F_n}.$$

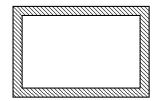
(日) (四) (문) (문) (문)

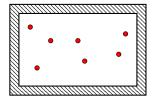


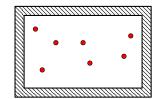
・ロト・西ト・ヨト・ヨー りゃく



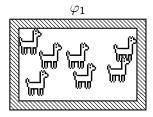


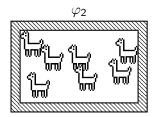


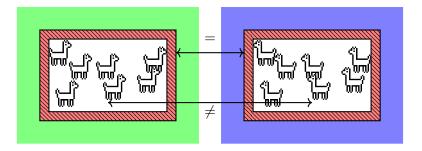




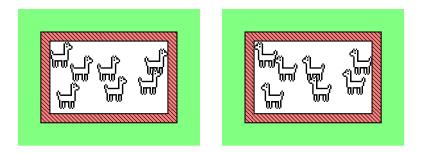
・ロ・・母・・由・・日・ シック







・ロト ・御 ト ・ ヨト ・ ヨト … ヨ



And we have our non-trivial asymptotic pair !

• Let $F \subseteq \Gamma$ be a finite set so that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$.

• Let $F \subseteq \Gamma$ be a finite set so that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$.

• Let *M* be a memory set for *F*, and let $p_x = x|_M$ and $p_y = y|_M$. By TMP p_x and p_y are interchangeable.

- Let $F \subseteq \Gamma$ be a finite set so that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$.
- Let *M* be a memory set for *F*, and let $p_x = x|_M$ and $p_y = y|_M$. By TMP p_x and p_y are interchangeable.
- Denote $[p_x] = \{z \in X : z |_M = p_x\}.$

- Let $F \subseteq \Gamma$ be a finite set so that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$.
- Let *M* be a memory set for *F*, and let $p_x = x|_M$ and $p_y = y|_M$. By TMP p_x and p_y are interchangeable.
- Denote $[p_x] = \{z \in X : z |_M = p_x\}.$
- As x is in the support of μ , we have $\mu(U_x) > 0$.

・ロト ・日 ・ モ ・ モ ・ う へ つ ・

- Let $F \subseteq \Gamma$ be a finite set so that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$.
- Let *M* be a memory set for *F*, and let $p_x = x|_M$ and $p_y = y|_M$. By TMP p_x and p_y are interchangeable.
- Denote $[p_x] = \{z \in X : z|_M = p_x\}.$
- As x is in the support of μ , we have $\mu(U_x) > 0$.
- Let {*F_n*}_{*n*∈ℕ} be a sequence which satisfies the pointwise ergodic theorem:

$$\lim_{n\to\infty}\frac{1}{|F_n|}\sum_{g\in F_n}f(g\cdot z)=\mathbb{E}_{\mu}(f)(z).\quad \mu\text{-a.e.}$$

where $\mathbb{E}_{\mu}(f)(z)$ is the conditional expectation with respect to the subspace of Γ -invariant functions in $L^{1}(X)$.

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ つ Q (0)</p>

- Let $F \subseteq \Gamma$ be a finite set so that $x|_{\Gamma \setminus F} = y|_{\Gamma \setminus F}$.
- Let *M* be a memory set for *F*, and let $p_x = x|_M$ and $p_y = y|_M$. By TMP p_x and p_y are interchangeable.
- Denote $[p_x] = \{z \in X : z |_M = p_x\}.$
- As x is in the support of μ , we have $\mu(U_x) > 0$.
- Let {*F_n*}_{*n*∈ℕ} be a sequence which satisfies the pointwise ergodic theorem:

$$\lim_{n\to\infty}\frac{1}{|F_n|}\sum_{g\in F_n}f(g\cdot z)=\mathbb{E}_{\mu}(f)(z).\quad \mu\text{-a.e.}$$

where $\mathbb{E}_{\mu}(f)(z)$ is the conditional expectation with respect to the subspace of Γ -invariant functions in $L^{1}(X)$.

• Take
$$f = 1_{[p_x]}$$

<ロト < 回 ト < 三 ト < 三 ト < 三 ・ つ Q (0)</p>

• We obtain that there exists a generic point z such that:

$$\lim_{n\to\infty}\frac{|\{g\in F_n:gz\in [p_x]\}|}{|F_n|}>0.$$

• We obtain that there exists a generic point *z* such that:

$$\lim_{n\to\infty}\frac{|\{g\in F_n:gz\in [p_x]\}|}{|F_n|}>0.$$

Let D = {g ∈ Γ : gz ∈ [p_x]}. It has positive density with respect to {F_n}_{n∈ℕ}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• We obtain that there exists a generic point z such that:

$$\lim_{n\to\infty}\frac{|\{g\in F_n:gz\in [p_x]\}|}{|F_n|}>0.$$

- Let D = {g ∈ Γ : gz ∈ [p_x]}. It has positive density with respect to {F_n}_{n∈ℕ}.
- Choose D' ⊂ D which is maximal and M-separated, i.e. such that dM ∩ d'M ≠ Ø implies that d = d'. Then D' still has positive density with respect to {F_n}_{n∈ℕ}.

• We obtain that there exists a generic point z such that:

$$\lim_{n\to\infty}\frac{|\{g\in F_n:gz\in [p_x]\}|}{|F_n|}>0.$$

- Let D = {g ∈ Γ : gz ∈ [p_x]}. It has positive density with respect to {F_n}_{n∈ℕ}.
- Choose D' ⊂ D which is maximal and M-separated, i.e. such that dM ∩ d'M ≠ Ø implies that d = d'. Then D' still has positive density with respect to {F_n}_{n∈ℕ}.
- As p_x, p_y are interchangeable, D' is a density set for the neighborhoods [p_x] and [p_y]. as F is arbitrary, we have that (x, y) is an IE-pair, and thus

$$h_{ ext{top}}(\Gamma \frown X) > 0.$$

Let $X \subseteq A^{\Gamma}$ be a subshift. A measure μ on X is Markovian if there is a finite $F \subseteq \Gamma$ such that for every finite $S \subseteq \Gamma$ and $p \in A^S$

 $\mu([p] \mid [x|_{B \setminus S}]) = \mu([p] \mid [x|_{FS \setminus S}]) \text{ for every } x \in X, B \subseteq \Gamma.$

Let $X \subseteq A^{\Gamma}$ be a subshift. A measure μ on X is Markovian if there is a finite $F \subseteq \Gamma$ such that for every finite $S \subseteq \Gamma$ and $p \in A^S$

 $\mu([p] \mid [x|_{B \setminus S}]) = \mu([p] \mid [x|_{FS \setminus S}]) \text{ for every } x \in X, B \subseteq \Gamma.$

If μ is a Markovian measure on X, then $\Gamma \curvearrowright \text{supp}(\mu)$ has the strong TMP.

Let $X \subseteq A^{\Gamma}$ be a subshift. A measure μ on X is Markovian if there is a finite $F \subseteq \Gamma$ such that for every finite $S \subseteq \Gamma$ and $p \in A^S$

 $\mu([p] \mid [x|_{B \setminus S}]) = \mu([p] \mid [x|_{FS \setminus S}]) \text{ for every } x \in X, B \subseteq \Gamma.$

If μ is a Markovian measure on X, then $\Gamma \curvearrowright \text{supp}(\mu)$ has the strong TMP.

Corollary [B, García Ramos, Li]

Let μ is a Markovian measure on X

- If h_µ(Γ ¬ X) > 0, then Γ ¬ supp(µ) has non-trivial asymptotic pairs.
- If Γ ∩ (X, μ) is K, then the asymptotic pairs of Γ ∩ supp(μ) are dense in supp(μ) × supp(μ).

It is known from Quas and Trow that every minimal \mathbb{Z}^d -SFT has zero topological entropy.

- The proof uses strongly that \mathbb{Z}^d is left-orderable.
- The same result can be extended to arbitrary amenable groups by a result of Frisch and Tamuz. (SFTs are maximal invariant sets in the Hausdorff topology)

イロン イロン イヨン イヨン 一日

It is known from Quas and Trow that every minimal \mathbb{Z}^d -SFT has zero topological entropy.

- The proof uses strongly that \mathbb{Z}^d is left-orderable.
- The same result can be extended to arbitrary amenable groups by a result of Frisch and Tamuz. (SFTs are maximal invariant sets in the Hausdorff topology)

Theorem (B, García Ramos, Li)

Let Γ be amenable and $\Gamma \curvearrowright X$ a minimal expansive action with the strong TMP. Then $\Gamma \curvearrowright X$ has zero topological entropy

イロト イヨト イヨト イヨト 三日

It is known from Quas and Trow that every minimal \mathbb{Z}^d -SFT has zero topological entropy.

- The proof uses strongly that \mathbb{Z}^d is left-orderable.
- The same result can be extended to arbitrary amenable groups by a result of Frisch and Tamuz. (SFTs are maximal invariant sets in the Hausdorff topology)

Theorem (B, García Ramos, Li)

Let Γ be amenable and $\Gamma \curvearrowright X$ a minimal expansive action with the strong TMP. Then $\Gamma \curvearrowright X$ has zero topological entropy

In particular, minimal SFTs on amenable groups have zero entropy.

イロト イヨト イヨト イヨト 三日

Let $\Gamma \curvearrowright X$ be an expansive action of an (amenable) group Γ on a compact metrizable group X by continuous automorphisms. One can define an IE-group, analogous to the homoclinic group.

Let $\Gamma \curvearrowright X$ be an expansive action of an (amenable) group Γ on a compact metrizable group X by continuous automorphisms. One can define an IE-group, analogous to the homoclinic group.

Corollary

- $\Delta(\Gamma \frown X) \subseteq IE(\Gamma \frown X).$
- If $\Delta(\Gamma \frown X) \neq \emptyset$, then $h_{top}(\Gamma \frown X) > 0$.

Let $\Gamma \curvearrowright X$ be an expansive action of an (amenable) group Γ on a compact metrizable group X by continuous automorphisms. One can define an IE-group, analogous to the homoclinic group.

Corollary

- $\Delta(\Gamma \frown X) \subseteq IE(\Gamma \frown X).$
- If $\Delta(\Gamma \frown X) \neq \emptyset$, then $h_{top}(\Gamma \frown X) > 0$.

Corollary

Let $\Gamma \curvearrowright X$ be an expansive algebraic action such that either

- $\mathbb{Z}\Gamma$ is left Noetherian or,
- Γ satisfies the strong Atiyah conjecture and the dual $\mathbb{Z}\Gamma$ -module of $\Gamma \curvearrowright X$ is finitely presented.

Then $\overline{\Delta(\Gamma \frown X)} = IE(\Gamma \frown X).$

Thank you for your attention!

References:

```
Homoclinic points of algebraic \mathbb{Z}^d-actions.
Lind and Schmidt
JAMS 1999, https://www.ams.org/journals/jams/1999-12-04/
S0894-0347-99-00306-9/S0894-0347-99-00306-9.pdf
   Homoclinic groups, IE groups, and expansive algebraic actions.
Chung and Li
Inventiones 2015, https://arxiv.org/abs/1103.1567
    Pseudo-Orbit Tracing and Algebraic actions of countable amenable
groups.
Meyerovitch
ETDS 2018, https://arxiv.org/abs/1701.01318
    Markovian properties of continuous group actions: algebraic
actions, entropy and the homoclinic group.
Barbieri, García Ramos and Li
Preprint 2019, https://arxiv.org/abs/1911.00785
```