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Setting

Topological dynamics.

Γ y X
Countable (amenable) group Compact metrizable space

Γ- action by homeomorphisms
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Setting

Two properties of Γ y X that indicate the action is not too
simple.

Existence of asymptotic pairs (x , y) ∈ X 2

(x , y) is asymptotic if the orbits Γx , Γy are arbitrarily close for
all but finitely many g ∈ Γ.

Positive topological entropy htop(Γ y X ) > 0.
Γ y X has positive topological entropy if at every scale, the
number of distinguishable orbits grows exponentially fast.

Question
How are these two properties related?
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Asymptotic pairs

Let d be a compatible metric on X .

Definition of asymptotic pairs
(x , y) is an asymptotic pair of Γ y X if for every ε > 0 there exists
a finite F ⊆ Γ such that

d(gx , gy) ≤ ε for every g ∈ Γ \ F .

Denote by A(Γ y X ) the asymptotic relation of Γ y X .

Zx

Zy
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Examples

Let X = R/Z and α ∈ R. Consider the rotation Z y R/Z given by

x 7→ x + α mod 1.

α

A(Z y R/Z) = {(x , x) : x ∈ R/Z} = 4R/Z.

For isometries, there are only trivial (x = y) asymptotic pairs.
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Examples

Let X = {0, 1}Γ and Γ y {0, 1}Γ be the shift action

gx(h) = x(g−1h), for every g , h ∈ Γ, x ∈ {0, 1}Γ.

Then (x , y) ∈ A(Γ y {0, 1}Γ) if and only if there is a finite F ⊆ Γ
such that

x(g) = y(g) for every g ∈ Γ \ F .

A(Γ y {0, 1}Γ) = ({0, 1}Γ)2.

For the full shift, asymptotic points are dense.
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Examples

Let X = Γ ∪ {∞} be the one-point compactification of Γ with the
discrete topology. Consider the action Γ y X given by

gx =
{
gh if x = h ∈ Γ
∞ if x =∞

.

A(Γ y X ) = X 2.

This action is conjugate to the sunny-side up subshift:

X≤1 = {x ∈ {0, 1}Γ : #{g ∈ Γ : x(g) = 1} ≤ 1}

by identifying g 7→ 1{g} and ∞ 7→ 0Γ.
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Topological entropy
Given δ > 0 and a finite K ⊂ Γ, a set F ⊂ Γ is called left
(K , δ)-invariant if

|KF4F | ≤ δ|F |

K = {(1, 1)}

F = J−n, nK2

A group Γ is amenable if for every δ,K as above, there exists a
finite set F ⊆ Γ which is (K , δ)-invariant.

A sequence {Fn}n∈N which is eventually (K , δ)-invariant for every
K , δ is called Følner.
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Topological entropy

Let Γ be amenable, Γ y X an action.
For an open cover U of X and F ⊆ Γ let UF be the refinement

UF =
∨

g∈F
g−1U ,

and denote by N(U) the minimum cardinality of a subcover.

The topological entropy of Γ y X is given by

htop(Γ y X ) = sup
U

lim 1
|F | logN(UF ).

where the limit is taken as F becomes more and more left-invariant
and the supremum is over all open covers of X .
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Examples

A circle rotation x 7→ x + α mod 1 has topological entropy 0.

The full shift Γ y {0, 1}Γ has entropy

htop(Γ y {0, 1}Γ) = log 2.

The sunny-side up subshift has entropy 0.

htop(Γ y X≤1) = 0.

Main question
Under which conditions do we have that:

non-trivial asymptotic pairs imply positive entropy.
positive entropy implies non-trivial asymptotic pairs.
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Non-trivial asymptotic pairs and zero entropy

FAIL

(Boring example) The sunny-side up subshift

X≤1 = {x ∈ {0, 1}Γ : #{g ∈ Γ : x(g) = 1} ≤ 1}

has zero topological entropy and A(Γ y X≤1) = (X≤1)2.

(Strictly ergodic example) For α ∈ R \ Q, the Sturmian
subshift associated to the rotation x 7→ x + α mod 1 has zero
topological entropy and non-trivial asymptotic pairs.
For example, the codings x , y of 0 using the partitions

{[0, 1− α), [1− α, 1)} and {(0, 1− α], (1− α, 1]}

respectively.
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Trivial asymptotic pairs and positive entropy

FAIL For this direction the examples are more complicated.

(Lind and Schmidt, 1999 [Example 3.4]) Let A ∈ GL(Z, d)
so that the characteristic polynomial χA(t) is irreducible over
Q and has some but not all eigenvalues on the unit circle.
Then the toral automorphism of (R/Z)d given by

x 7→ Ax mod 1.

has positive entropy and trivial asymptotic relation.
(Meyerovitch 2017, [Theorem 1.3]) For every amenable
residually finite group Γ, there is a Γ-subshift X with positive
topological entropy and trivial asymptotic relation.

11



Trivial asymptotic pairs and positive entropy

FAIL For this direction the examples are more complicated.
(Lind and Schmidt, 1999 [Example 3.4]) Let A ∈ GL(Z, d)
so that the characteristic polynomial χA(t) is irreducible over
Q and has some but not all eigenvalues on the unit circle.
Then the toral automorphism of (R/Z)d given by

x 7→ Ax mod 1.

has positive entropy and trivial asymptotic relation.

(Meyerovitch 2017, [Theorem 1.3]) For every amenable
residually finite group Γ, there is a Γ-subshift X with positive
topological entropy and trivial asymptotic relation.

11



Trivial asymptotic pairs and positive entropy

FAIL For this direction the examples are more complicated.
(Lind and Schmidt, 1999 [Example 3.4]) Let A ∈ GL(Z, d)
so that the characteristic polynomial χA(t) is irreducible over
Q and has some but not all eigenvalues on the unit circle.
Then the toral automorphism of (R/Z)d given by

x 7→ Ax mod 1.

has positive entropy and trivial asymptotic relation.
(Meyerovitch 2017, [Theorem 1.3]) For every amenable
residually finite group Γ, there is a Γ-subshift X with positive
topological entropy and trivial asymptotic relation.

11



Algebraic actions

Topological Algebraic dynamics.

Γ y X
Countable (amenable) group Compact metrizable space

abelian group

Γ- action by homeomorphisms
continuous automorphisms

Example: toral automorphisms.

Remark: If (x , y) is asymptotic for an algebraic action, then
(y−1x , eX ) is also asymptotic. The homoclinic group of
∆(Γ y X ) of Γ y X is the subgroup of x ∈ X so that (x , eX ) is
asymptotic.
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Known results for algebraic dynamics

Theorem (Lind and Schmidt, 1999)
Let Zd y X be an expansive algebraic action, then:

htop(Zd y X ) > 0 ⇐⇒ ∆(Zd y X ) 6= {eX}.

Theorem (Chung and Li, 2014)
Let Γ y X be an expansive algebraic action and Γ be
polycyclic-by-finite, then:

htop(Γ y X ) > 0 ⇐⇒ ∆(Γ y X ) 6= {eX}.
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A result for topological dynamics

Theorem (Meyerovitch, 2018 )
Let Γ y X be an expansive action of a countable amenable group
which satisfies the pseudo-orbit tracing property, then:

htop(Γ y X ) > 0 =⇒ There are non-trivial asymptotic pairs

The converse also holds if some non-trivial asymptotic pair is in
the support of a Γ-invariant Borel probability measure.

Remark: The pseudo-orbit tracing property (POTP) is also known
as shadowing.
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The POTP

A sequence {xg}g∈Γ is an (S, δ)-pseudo orbit if

d(sxg , xsg ) ≤ δ for every s ∈ S, g ∈ Γ.

“if you blur your eyes, the sequence locally looks like an orbit”

An action Γ y X has the pseudo-orbit tracing property (POTP)
if for every ε > 0 there is a finite S ⊆ Γ and δ > 0 so that every
(S, δ)-pseudo orbit {xg}g∈Γ is ε-traced by some y ∈ X .

d(xg , gy) ≤ ε for every g ∈ Γ.

“sequences that locally look like orbits, are close to real orbits”

Examples: hyperbolic toral automorphisms, subshifts of finite
type.
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Is the dynamical condition the right one?

Does Meyerovitch’s result imply the results on algebraic actions?

Meyerovitch ⇒ Lind and Schmidt X
Every expansive algebraic action of Zd has the POTP.

Meyerovitch ; Chung and Li X
[Bhattacharya, 2019] There exists an expansive algebraic action of
a polycyclic group which does not have the POTP.

/ we need to find a weaker property...
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Topological Markov property (subshifts)

A closed subset X ⊆ AΓ satisfies the TMP if
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Topological Markov property (subshifts)

A subshift X ⊆ AΓ satisfies the
TMP, if every finite S ⊆ Γ admits a memory set M.

strong TMP, if there exists a finite F ⊆ Γ, so that every
finite S ⊆ Γ admits M = SF as a memory set.

Strong TMP is a bounded version of TMP.

SFT
symbolic actions

with POTP

Strong TMP
Bounded

memory sets

TMP
Finite

memory sets
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Topological Markov property
Let Γ y X and ε, δ > 0. A finite set M ⊆ Γ is an (ε, δ)-memory
set for S ⊆ Γ if for every x , y ∈ X so that

d(gx , gy) ≤ δ for every g ∈ M \ S,

there exists z ∈ X so that

d(gx , gz) ≤ ε for every g ∈ M,

d(gy , gz) ≤ ε for every g ∈ Γ \ S.

An action Γ y X has the
TMP, if for every ε > 0 there exists δ > 0 so that every finite
S ⊆ Γ admits an (ε, δ)-memory set M.
strong TMP, if for every ε > 0 there exists δ > 0 and a finite
F ⊆ Γ, so that every finite S ⊆ Γ admits M = SF as a
memory set.

19
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Example (trivial)

Let X ⊆ AΓ be a Z-subshift. Let X ↑ be its trivial extension to Z2:

∈ X

∈ X ↑

X ↑ has the strong TMP with F = {(0, 1)}.

The class of Z2-subshifts with strong TMP is uncountable.
All non-negative real numbers are top. entropies of subshifts
with strong TMP. (Take X = sturmian with slope α and split the
symbol with measure α in X ↑.)

20



Example (trivial)

Let X ⊆ AΓ be a Z-subshift. Let X ↑ be its trivial extension to Z2:

∈ X

∈ X ↑

X ↑ has the strong TMP with F = {(0, 1)}.

The class of Z2-subshifts with strong TMP is uncountable.
All non-negative real numbers are top. entropies of subshifts
with strong TMP. (Take X = sturmian with slope α and split the
symbol with measure α in X ↑.)

20



Example (trivial)

Let X ⊆ AΓ be a Z-subshift. Let X ↑ be its trivial extension to Z2:

∈ X

∈ X ↑

X ↑ has the strong TMP with F = {(0, 1)}.

The class of Z2-subshifts with strong TMP is uncountable.
All non-negative real numbers are top. entropies of subshifts
with strong TMP. (Take X = sturmian with slope α and split the
symbol with measure α in X ↑.)

20



Examples (non-trivial)

Subshifts which are the support of Markovian measures have
the strong TMP.

Every expansive action with trivial asymptotic relation has the
TMP.
Minimal expansive actions have TMP if and only if the
asymptotic relation is trivial.
Every action Γ y X on a compact metrizable group X by
continuous automorphisms has the TMP.
Every expansive algebraic action of a polycyclic-by-finite group
has the strong TMP (X).
Every expansive and finitely presented algebraic action of an
amenable group which satisfies the strong Atiyah conjecture
has the strong TMP.

Torsion-free elementary amenable groups.
Left-orderable amenable groups.
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Back to Tom’s theorem

Theorem (Meyerovitch, 2018 )
Let Γ be amenable and Γ y X expansive with POTP, then:

htop(Γ y X ) > 0 =⇒ There are non-trivial asymptotic pairs

Theorem (B, García Ramos, Li)
Let Γ be amenable and Γ y X be an expansive action then:

If Γ y X has strong TMP and positive entropy, then Γ y X
admits non-trivial asymptotic pairs.
If Γ y X has TMP and non-trivial asymptotic pairs in the
support of an invariant measure, then Γ y X has positive
entropy.
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Let Γ be amenable and Γ y X expansive with POTP, then:

htop(Γ y X ) > 0 =⇒ There are non-trivial asymptotic pairs

Theorem (B, García Ramos, Li)
Let Γ be amenable and Γ y X be an expansive action then:

If Γ y X has strong TMP and positive entropy, then Γ y X
admits non-trivial asymptotic pairs. This one fails for sofic
entropy!
If Γ y X has TMP and non-trivial asymptotic pairs in the
support of an invariant measure, then Γ y X has positive
entropy. This one also works for sofic entropy!
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Local entropy theory

Entropy is a global notion! asymptotic pairs is a local
notion.

We need way to deal with positive entropy locally → entropy
pairs.

Original notion by Blanchard, improved by Glasner and Weiss, and
Kerr and Li.

(x , y) ∈ X 2 is an independence entropy pair (IE-pair), if for
every pair of open neighborhoods Ux ,Uy of x and y there exists a
set D ⊆ Γ of positive density such that for every finite I ⊆ D and
function ϕ : I → {x , y} such that:⋂

g∈I
g−1Uϕ(g) 6= ∅.

D has positive density if for some Følner squence {Fn}n∈N we have

lim
n→∞

|Fn ∩ D|
|F | > 0.
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Local entropy theory

Example: Let x , y ∈ {�,�}Z2 such that and occurs in x
and y respectively. If (x , y) is an IE-pair, then:

D b Z2

Theorem [Blanchard, 1993], [Kerr Li, 2007]
htop(Γ y X ) > 0 if and only if there is an IE-pair (x , y) with
x 6= y .
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Proof sketch I

Let us prove it for a subshift X ⊆ AΓ.
Suppose the entropy is positive and X has strong TMP.

As htop(Γ y X ) > 0, then there is an IE-pair (x , y), x 6= y .

By strong TMP, there exists a finite K ⊆ Γ so that every
finite set F admits KF as a memory set.
Let S ⊂ Γ be a finite set such that px = x |S and py = y |S are
distinct.
As (x , y) is an IE-pair, there exists a positive density set
D ⊆ Γ so that for every finite I ⊆ D and ϕ : I → {x , y} there
is z ∈ X such that for every g ∈ I

(g · z)|S = pϕ(g).
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Proof sketch II

Let {Fn}n∈N be a Følner sequence:

The ratio |KFn\Fn|
|Fn| tends to zero.

For sufficiently large n, there are at least 2
dens(D)|Fn|

2 different
choices of ϕ : D ∩ Fn → {x , y}.
There are at most |A|KFn\Fn patterns with support KFn \ Fn

There is n sufficiently large such that

2
dens(D)|Fn|

2 ≥ |A|KFn\Fn .
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Proof sketch III

KFn \ Fn

Fn

And we have our non-trivial asymptotic pair !
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Proof sketch III
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Proof sketch III
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Proof sketch: converse I
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Suppose X has the TMP and there is a non-trivial asymptotic pair
in the support of some Γ-invariant measure µ.

Let F ⊆ Γ be a finite set so that x |Γ\F = y |Γ\F .

Let M be a memory set for F , and let px = x |M and
py = y |M . By TMP px and py are interchangeable.
Denote [px ] = {z ∈ X : z |M = px}.
As x is in the support of µ, we have µ(Ux ) > 0.
Let {Fn}n∈N be a sequence which satisfies the pointwise
ergodic theorem:

lim
n→∞

1
|Fn|

∑
g∈Fn

f (g · z) = Eµ(f )(z). µ-a.e.

where Eµ(f )(z) is the conditional expectation with respect to
the subspace of Γ-invariant functions in L1(X ).
Take f = 1[px ].
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Proof sketch: converse II

We obtain that there exists a generic point z such that:

lim
n→∞

|{g ∈ Fn : gz ∈ [px ]}|
|Fn|

> 0.

Let D = {g ∈ Γ : gz ∈ [px ]}. It has positive density with
respect to {Fn}n∈N.
Choose D′ ⊂ D which is maximal and M-separated, i.e. such
that dM ∩ d ′M 6= ∅ implies that d = d ′. Then D′ still has
positive density with respect to {Fn}n∈N.
As px , py are interchangeable, D′ is a density set for the
neighborhoods [px ] and [py ]. as F is arbitrary, we have that
(x , y) is an IE-pair, and thus

htop(Γ y X ) > 0.
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Some applications

Let X ⊆ AΓ be a subshift. A measure µ on X is Markovian if there
is a finite F ⊆ Γ such that for every finite S ⊆ Γ and p ∈ AS

µ([p] | [x |B\S ]) = µ([p] | [x |FS\S ]) for every x ∈ X ,B ⊆ Γ.

If µ is a Markovian measure on X , then Γ y supp(µ) has the
strong TMP.

Corollary [B, García Ramos, Li]
Let µ is a Markovian measure on X

If hµ(Γ y X ) > 0, then Γ y supp(µ) has non-trivial
asymptotic pairs.
If Γ y (X , µ) is K , then the asymptotic pairs of Γ y supp(µ)
are dense in supp(µ)× supp(µ).
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Some applications

It is known from Quas and Trow that every minimal Zd -SFT has
zero topological entropy.

The proof uses strongly that Zd is left-orderable.
The same result can be extended to arbitrary amenable groups
by a result of Frisch and Tamuz. (SFTs are maximal invariant
sets in the Hausdorff topology)

Theorem (B, García Ramos, Li)
Let Γ be amenable and Γ y X a minimal expansive action with the
strong TMP. Then Γ y X has zero topological entropy

In particular, minimal SFTs on amenable groups have zero entropy.
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Some applications

Let Γ y X be an expansive action of an (amenable) group Γ on a
compact metrizable group X by continuous automorphisms.
One can define an IE-group, analogous to the homoclinic group.

Corollary
∆(Γ y X ) ⊆ IE (Γ y X ).
If ∆(Γ y X ) 6= ∅, then htop(Γ y X ) > 0.

Corollary
Let Γ y X be an expansive algebraic action such that either

ZΓ is left Noetherian or,
Γ satisfies the strong Atiyah conjecture and the dual
ZΓ-module of Γ y X is finitely presented.

Then ∆(Γ y X ) = IE (Γ y X ).
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Thank you for your attention!
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