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The shameful secret

Consider
o Z ~ X = {0,1}% with the Bernoulli measure (3, 1).
e Z~ Y ={0,1,3}* with the Bernoulli measure (3, 3,3).

The secret: ergodic theory cannot tell them appart.
Why: the Koopman operator of a system (G ~ X, p) is
kx: G — B(L3(X))

given by
rx(s)(f)=fost

And it happens that

Kx,ky are equivalent to 17 ® A%N.



The age of heroes



The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave
it to humanity.



The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave
it to humanity.

(Fire = Measure theoretical entropy theory)

And they showed that it was an invariant under isomorphism.



The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave
it to humanity.

(Fire = Measure theoretical entropy theory)

And they showed that it was an invariant under isomorphism.

This was great:

Theorem (Ornstein, 70.)

Two Bernoulli shifts are isomorphic if and only if they have the
same entropy.
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The age of heroes

A topological version of entropy was introduced in 65’ by Adler,
Konheim and McAndrew.

Let G be amenable, (F,),en @ Fglner sequence, U an open cover
of X and N(U).

htop(G ™~ X) = sup Jim log N(U™).

!F!
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An annoying question

Annoying question

Given a countable class of dynamical systems. What values can
their topological entropies take?

v

Some answers

e Z-SFTs [Lind, 84] Non-negative rational multiples of
logarithms of Perron numbers.

o Z9-SFTs, d > 2 [Hochman and Meyerovitch, 10] The set of
non-negative upper semi-computable numbers.

o Effectively closed Z-subshifts. The set of non-negative upper
semi-computable numbers.




Goal of this talk

Even more annoying question

Let G be a countable amenable group. Characterize the set
Ese1(G) of entropies attainable by G-SFTs
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Two simple remarks

Trivial realization result

If G is a countable amenable group and H < G, then

Eskr(H) C Espr(6)

Computability bound

If G is a finitely generated amenable group with decidable word
problem, then

Ese1(G) C Eser(Z?)
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G is polycyclic if there exists a sequence of IV;
G:N01>N1[>‘~'[>N,,I>Nn+1:{1(;}.

such that every quotient N;/N;11 is cyclic. The Hirsch index of G
is the number of infinite quotients in such a series.



A simple consequence:

G is polycyclic if there exists a sequence of IV;
G = N0[>N1[>‘-'[>N,,I>Nn+1:{1(;}.

such that every quotient N;/N;11 is cyclic. The Hirsch index of G
is the number of infinite quotients in such a series.

Theorem (B., 19.)
Let G be a polycyclic-by-finite group and denote by h(G) its
Hirsch index.
@ I/f h(G) =0 then Eser(G) = {|—é| log(n) | ne Z4}.
@ Ifh(G) =1 then Espr(G) = Espr(Z), the set of non-negative
rational multiples of logarithms of Perron eigenvalues.

© If h(G) > 2 then Espr(G) = Espr(Z?), the set of
non-negative upper semi-computable numbers.




Something a little bit more interesting

Theorem (B,. 19.)

Let G be a finitely generated amenable group such that
@ G has decidable word problem.
e G admits a translation-like action by Z?.

Then the set of entropies attainable by G-subshifts of finite type is
the set of non-negative upper semi-computable numbers.

Esrr(G) = Esrr(Z?).

Translation-like action
H ~ G is translation-like if
Q@ H~Gisfree. h-g=g = h=1p.

@ H ~ G is bounded.
{(h-g)g~' | g € G} is finite for every h € H.

| \

\




Corollaries

Products of f.g. groups

If G1, Gy are f.g, amenable, and have decidable word problem, then

Eser(G1 % Go) = Espr(2?).
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Corollaries

Products of f.g. groups

If G1, Gy are f.g, amenable, and have decidable word problem, then

Eser(G1 % Go) = Espr(2?).

Products of countable, non-locally finite groups

If Gi, Gy are countable, amenable, non-locally finite and admit a
presentation with decidable word problem, then

Esr1(G1 x Gp) = Espr(ZP).

| A\

Branch groups

If G is an infinite, f.g, amenable branch group with decidable word
problem (ex: Grigorchuk group), then

Esr1(G) = Eskr(Z2).

A

10
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To prove the main theorem, we need to introduce group charts.

Consider G ~ X. A continuous function v: H x X — G is an
H-cocycle if it satisfies

~v(h1ha, x) = v(h1,v(h2, x)x) - v(h2, x) for every hy, hy in H.

Remark: every H-cocycle induces a family of left actions H A G

h-x g = 7(h7gx)g

A pair (X,7) is called a G-chart of H. If every induced action
H A G is free, it is called a free G-chart of H.

11



Let H < G, then for any G ~ X if we define:

v(h,x) =hforxe X,he H

Then ~ is an H-cocycle and (X, ~) is a free G-chart of H.

12



Let G = Z?2 and consider the set of tiles X

eI =T Al HId-E U HE]

Let X C 2 the set of all configurations such that every outgoing
arrow matches with an incoming arrow.

13



Group charts
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Let v: Z x X — Z? be the cocycle such that: (1, x) is the unit
vector represented by the outgoing arrowhead of x((0,0)) and
~v(—1, x) the vector represented by the incoming arrow.

if x(0,0) = El ~v(1,x) = (0,1)
’7(_17X) = (_170)
£ y(0,0) = L} H(Ly) = (1,0)

7(=1,y) = (0,-1)
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Let v: Z x X — Z? be the cocycle such that: (1, x) is the unit
vector represented by the outgoing arrowhead of x((0,0)) and
~v(—1, x) the vector represented by the incoming arrow.

if x(0,0) = El ~v(1,x) = (0,1)
’7(_17X) = (_170)
£ y(0,0) = L} H(Ly) = (1,0)

7(=1,y) = (0,-1)

(X,~) is a Z%-chart of Z. It is not free.

13
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Consider X C X be the subshift of X such that no cycles appear.
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Consider X C X be the subshift of X such that no cycles appear.
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Embedding H-actions

Consider
@ A G-subshift X.
e A G-chart (X,7) of H.
@ An H-subshift Y.
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Embedding H-actions

Consider
@ A G-subshift X.
e A G-chart (X,7) of H.
@ An H-subshift Y.

Embedding of H ~ Y into (X, ~)

Let Y, [X] be the set of all (x,y) € X x A® such that every copy
of H induced by the cocycle «y carries a configuration from Y.

14



Embedding H-actions: example

o The Z2-subshift X from the example before.
o The free G-chart (X,~) of H.

@ The Z-subshift consisting of the orbit of the periodic
configuration:
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Embedding H-actions: example
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Embedding H-actions: example
L | T L,

[T
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Addition formula

Let G, H be countable amenable groups.

Theorem (B., 19.)

If (X,~) is a free G-chart of H, then for every H-subshift Y,

htop(G ~ YA [X]) = hiop(H ~ Y) + hop(G ~ X)
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Addition formula

Let G, H be countable amenable groups.

Theorem (B., 19.)

If (X,~) is a free G-chart of H, then for every H-subshift Y,

htop(G ~ YA [X]) = hiop(H ~ Y) + hop(G ~ X)

Remark: If both X and Y are SFTs, then Y, [X] is an SFT.

heop(G ~ X) + EspT(H) C Espr(G).

16



Two issues

Goal: Let G be a finitely generated amenable group such that
@ G has decidable word problem.
e G admits a translation-like action by Z?.

Then gSFT(G) = gSFT(Zz).

Tool: If (X,v) is a G-chart of H and X is an SFT then,

htop(G n X) + ESFT(H) C 55|:T(G).
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Two issues

Goal: Let G be a finitely generated amenable group such that
@ G has decidable word problem.
e G admits a translation-like action by Z?.

Then Esp1(G) = Espr(Z2).

Tool: If (X,v) is a G-chart of H and X is an SFT then,

htop(G n X) + ESFT(H) C €SFT(G)‘

@ For which groups H, G are there free G-charts (X, ) of H
such that X is an SFT.

@ How to reduce the entropy of such a chart.

17



First issue

Question: For which groups H, G are there free G-charts (X,~) of
H such that X is an SFT.
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First issue

Question: For which groups H, G are there free G-charts (X,~) of
H such that X is an SFT.

Let H, G be finitely generated groups. There exists a free G-chart
of H if and only if H admits a translation-like action on G.

18



First issue

Question: For which groups H, G are there free G-charts (X,~) of
H such that X is an SFT.

Let H, G be finitely generated groups. There exists a free G-chart
of H if and only if H admits a translation-like action on G.

Free SFT charts

With the extra hypotheses:
@ H is finitely presented.
@ There exists a strongly aperiodic H-SFT.
Then the free G-chart of H can be chosen as an SFT.

Note: This is essentially due to Jeandel.

18



Second issue

Question: How to reduce the entropy of an SFT preserving the
cocycle?
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Question: How to reduce the entropy of an SFT preserving the
cocycle?

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.
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Second issue

Question: How to reduce the entropy of an SFT preserving the
cocycle?

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.

“Every SFT contains sofic subsystems which admit an SFT
extension with arbitrarily low entropy”
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Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.
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Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.

Corollary: Instead of choosing (X,~) take (Y,~') where
7' HxY — G is given by 7/(h,y) = ~v(h, ¢(y)).
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Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,
@ There exists a continuous G-equivariant map ¢: Y — X.

Corollary: Instead of choosing (X,~) take (Y,~') where
7' HxY — G is given by 7/(h,y) = ~v(h, ¢(y)).

“If there exists one SFT chart, then one can find another SFT
chart with arbitrarily low entropy "

20



Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.
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Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.

Corollary: Every G-SFT contains a subshift with zero entropy. In
particular, every minimal G-SFT has zero topological entropy.
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Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every € > 0 there exists a G-SFT Y such that

@ hiop(G N Y) <,

@ There exists a continuous G-equivariant map ¢: Y — X.

Corollary: Every G-SFT contains a subshift with zero entropy. In
particular, every minimal G-SFT has zero topological entropy.

Question: Is there a G-SFT which does not contain a zero
entropy sub-G-SFT? (I don't know the answer for G = Z2)

21



Theorem (B,. 19.)

Let G be a finitely generated amenable group such that
@ G has decidable word problem.
o G admits a translation-like action by Z2.

Then the set of entropies attainable by G-subshifts of finite type is
the set of non-negative upper semi-computable numbers.

Eser(G) = Eser(Z3).
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Theorem (B,. 19.)
Let G be a finitely generated amenable group such that

@ G has decidable word problem.
o G admits a translation-like action by Z2.

Then the set of entropies attainable by G-subshifts of finite type is
the set of non-negative upper semi-computable numbers.

Eser(G) = Eser(Z3).

proof:

e Z? is finitely presented and admits strongly aperiodic SFTs.
Thus there exists an SFT free G-chart (X, ) of Z2.

e For arbitrarily ¢ > 0 we can choose hiop(G N X) < €.
0 hiop(G ~ X) + EseT(Z2) C Eskr(G) C Eser(Z2).
@ Done. O

22
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Proving the entropy reduction theorem

Remark: This idea fails in a countable amenable group.

(No sequence of subgroups of finite index isomorphic to the
original group such that a choice of coset representatives forms a
Fglner sequence)
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Idea: Replace the square by a finite set of sufficiently invariant
finite sets which tile the group.
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Proving the entropy reduction theorem

Remark: This idea fails in a countable amenable group.

(No sequence of subgroups of finite index isomorphic to the
original group such that a choice of coset representatives forms a
Fglner sequence)

Idea: Replace the square by a finite set of sufficiently invariant
finite sets which tile the group.

Tilings of a group (Introduced by Ornstein and Weiss, 87.)
Let 7 ={Ti,..., Tp} be a set of finite subsets of G. A tiling of
the group is a function 7: G — 7 U {@} such that:
Q (7 is pairwise-disjoint) For every g, h € G, if g # h then
T(g)gN7(h)h=o.
@ (7 covers G) For every g € G there exists h € G such that
g € 7(h)h.
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Proving the entropy reduction theorem

Remark: Given 7 = {Ty,..., T,}. The set of all tilings of G by
T is a G-SFT.
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Proving the entropy reduction theorem

Remark: Given 7 = {Ty,..., T,}. The set of all tilings of G by
T is a G-SFT.

Theorem (Downarowicz, Huczek and Zhang, 19.)

Let G be a countable amenable group. For any F € G and € > 0
there exists a tile set T such that:

e Every T € T is (F,e)-invariant,

@ There exists a tiling T by T such that the topological entropy
of its orbit closure is zero.

v
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Proving the entropy reduction theorem

Remark: Given 7 = {Ty,..., T,}. The set of all tilings of G by
T is a G-SFT.

Theorem (Downarowicz, Huczek and Zhang, 19.)

Let G be a countable amenable group. For any F € G and € > 0
there exists a tile set T such that:

e Every T € T is (F,e)-invariant,
@ There exists a tiling T by T such that the topological entropy
of its orbit closure is zero.

v

To prove the entropy reduction Theorem, use the set of tiles from
the Theorem above instead of the squares.
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Closing remarks

Goal: Study the possible sets Esp1(G) for an amenable group.
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Closing remarks

Goal: Study the possible sets Esp1(G) for an amenable group.

In this talk:
e Full classification for Polycyclic groups.
@ Tools for embedding entropies of one group into another.

@ A class of groups with a full classification

To keep in mind:
@ This is far from a full characterization.

@ Does not cover many solvable groups with decidable word
problem. Baumslag-Solitar groups, Lamplighter, etc.
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Thank you for your attention!

Entropies of subshifts of finite type on countable
amenable groups
Draft available on request.
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