Topological entropies of subshifts of finite type in amenable groups.

Sebastián Barbieri Lemp
University of British Columbia

Symbolic Dynamical Systems
May, 2019

At the dawn of time

At the dawn of time

There was ergodic theory.

At the dawn of time

There was ergodic theory.

Everybody was happy, and many theorems were proven.

At the dawn of time

There was ergodic theory.

Everybody was happy, and many theorems were proven.
... However, they kept a shameful secret!

Consider

- $\mathbb{Z} \curvearrowright X=\{0,1\}^{\mathbb{Z}}$ with the Bernoulli measure $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- $\mathbb{Z} \curvearrowright Y=\{0,1,3\}^{\mathbb{Z}}$ with the Bernoulli measure $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

The secret: ergodic theory cannot tell them appart.

Consider

- $\mathbb{Z} \curvearrowright X=\{0,1\}^{\mathbb{Z}}$ with the Bernoulli measure $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- $\mathbb{Z} \curvearrowright Y=\{0,1,3\}^{\mathbb{Z}}$ with the Bernoulli measure $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

The secret: ergodic theory cannot tell them appart.
Why: the Koopman operator of a system $(G \curvearrowright X, \mu)$ is

$$
\kappa_{X}: G \rightarrow \mathcal{B}\left(L^{2}(X)\right)
$$

given by

$$
\kappa_{X}(s)(f)=f \circ s^{-1}
$$

And it happens that

$$
\kappa_{X}, \kappa_{Y} \text { are equivalent to } 1_{\mathbb{Z}} \oplus \lambda_{\mathbb{Z}}^{\oplus \mathbb{N}} .
$$

The age of heroes

The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave it to humanity.

The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave it to humanity.
(Fire $=$ Measure theoretical entropy theory)
And they showed that it was an invariant under isomorphism.

The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave it to humanity.
$($ Fire $=$ Measure theoretical entropy theory)
And they showed that it was an invariant under isomorphism.

This was great:

Theorem (Ornstein, 70.)

Two Bernoulli shifts are isomorphic if and only if they have the same entropy.

The age of heroes

A topological version of entropy was introduced in 65' by Adler, Konheim and McAndrew.

The age of heroes

A topological version of entropy was introduced in 65' by Adler, Konheim and McAndrew.

Let G be amenable, $\left(F_{n}\right)_{n \in \mathbb{N}}$ a FøIner sequence, \mathcal{U} an open cover of X and $N(\mathcal{U})$.

$$
h_{\text {top }}(G \curvearrowright X)=\sup _{\mathcal{U}} \lim _{n \rightarrow \infty} \frac{1}{\left|F_{n}\right|} \log N\left(\mathcal{U}^{F_{n}}\right)
$$

An annoying question

Annoying question
Given a countable class of dynamical systems. What values can their topological entropies take?

An annoying question

Annoying question

Given a countable class of dynamical systems. What values can their topological entropies take?

Some answers

- \mathbb{Z}-SFTs [Lind, 84] Non-negative rational multiples of logarithms of Perron numbers.

An annoying question

Annoying question

Given a countable class of dynamical systems. What values can their topological entropies take?

Some answers

- \mathbb{Z}-SFTs [Lind, 84] Non-negative rational multiples of logarithms of Perron numbers.
- \mathbb{Z}^{d}-SFTs, $d \geq 2$ [Hochman and Meyerovitch, 10] The set of non-negative upper semi-computable numbers.

An annoying question

Annoying question

Given a countable class of dynamical systems. What values can their topological entropies take?

Some answers

- \mathbb{Z}-SFTs [Lind, 84] Non-negative rational multiples of logarithms of Perron numbers.
- \mathbb{Z}^{d}-SFTs, $d \geq 2$ [Hochman and Meyerovitch, 10] The set of non-negative upper semi-computable numbers.
- Effectively closed \mathbb{Z}-subshifts. The set of non-negative upper semi-computable numbers.

Goal of this talk

Even more annoying question

Let G be a countable amenable group. Characterize the set $\mathcal{E}_{\mathrm{SFT}}(G)$ of entropies attainable by G-SFTs

Two simple remarks

Trivial realization result

If G is a countable amenable group and $H \leq G$, then

$$
\mathcal{E}_{\mathrm{SFT}}(H) \subseteq \mathcal{E}_{\mathrm{SFT}}(G)
$$

Two simple remarks

Trivial realization result

If G is a countable amenable group and $H \leq G$, then

$$
\mathcal{E}_{\mathrm{SFT}}(H) \subseteq \mathcal{E}_{\mathrm{SFT}}(G)
$$

Computability bound

If G is a finitely generated amenable group with decidable word problem, then

$$
\mathcal{E}_{\mathrm{SFT}}(G) \subseteq \mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)
$$

A simple consequence:

G is polycyclic if there exists a sequence of N_{i}

$$
G=N_{0} \triangleright N_{1} \triangleright \cdots \triangleright N_{n} \triangleright N_{n+1}=\left\{1_{G}\right\} .
$$

such that every quotient N_{i} / N_{i+1} is cyclic. The Hirsch index of G is the number of infinite quotients in such a series.

A simple consequence:

G is polycyclic if there exists a sequence of N_{i}

$$
G=N_{0} \triangleright N_{1} \triangleright \cdots \triangleright N_{n} \triangleright N_{n+1}=\left\{1_{G}\right\} .
$$

such that every quotient N_{i} / N_{i+1} is cyclic. The Hirsch index of G is the number of infinite quotients in such a series.

Theorem (B., 19.)

Let G be a polycyclic-by-finite group and denote by $h(G)$ its Hirsch index.
(1) If $h(G)=0$ then $\mathcal{E}_{S F T}(G)=\left\{\left.\frac{1}{|G|} \log (n) \right\rvert\, n \in \mathbb{Z}_{+}\right\}$.
(2) If $h(G)=1$ then $\mathcal{E}_{S F T}(G)=\mathcal{E}_{S F T}(\mathbb{Z})$, the set of non-negative rational multiples of logarithms of Perron eigenvalues.
(3) If $h(G) \geq 2$ then $\mathcal{E}_{S F T}(G)=\mathcal{E}_{S F T}\left(\mathbb{Z}^{2}\right)$, the set of non-negative upper semi-computable numbers.

Something a little bit more interesting

Theorem (B,. 19.)

Let G be a finitely generated amenable group such that

- G has decidable word problem.
- G admits a translation-like action by \mathbb{Z}^{2}.

Then the set of entropies attainable by G-subshifts of finite type is the set of non-negative upper semi-computable numbers.

$$
\mathcal{E}_{S F T}(G)=\mathcal{E}_{S F T}\left(\mathbb{Z}^{2}\right)
$$

Translation-like action

$H \curvearrowright G$ is translation-like if
(1) $H \curvearrowright G$ is free. $h \cdot g=g \Longrightarrow h=1_{H}$.
(2) $H \curvearrowright G$ is bounded.

$$
\left\{(h \cdot g) g^{-1} \mid g \in G\right\} \text { is finite for every } h \in H
$$

Corollaries

Products of f.g. groups

If G_{1}, G_{2} are f.g, amenable, and have decidable word problem, then

$$
\mathcal{E}_{\mathrm{SFT}}\left(G_{1} \times G_{2}\right)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)
$$

Corollaries

Products of f.g. groups

If G_{1}, G_{2} are f.g, amenable, and have decidable word problem, then

$$
\mathcal{E}_{\mathrm{SFT}}\left(G_{1} \times G_{2}\right)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)
$$

Products of countable, non-locally finite groups
If G_{1}, G_{2} are countable, amenable, non-locally finite and admit a presentation with decidable word problem, then

$$
\mathcal{E}_{\mathrm{SFT}}\left(G_{1} \times G_{2}\right)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right) .
$$

Corollaries

Products of f.g. groups

If G_{1}, G_{2} are f.g, amenable, and have decidable word problem, then

$$
\mathcal{E}_{\mathrm{SFT}}\left(G_{1} \times G_{2}\right)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)
$$

Products of countable, non-locally finite groups
If G_{1}, G_{2} are countable, amenable, non-locally finite and admit a presentation with decidable word problem, then

$$
\mathcal{E}_{\mathrm{SFT}}\left(G_{1} \times G_{2}\right)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)
$$

Branch groups

If G is an infinite, f.g, amenable branch group with decidable word problem (ex: Grigorchuk group), then

$$
\mathcal{E}_{\mathrm{SFT}}(G)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)
$$

Group charts

To prove the main theorem, we need to introduce group charts.

Group charts

To prove the main theorem, we need to introduce group charts.

H-cocycle

Consider $G \curvearrowright X$. A continuous function $\gamma: H \times X \rightarrow G$ is an H-cocycle if it satisfies

$$
\gamma\left(h_{1} h_{2}, x\right)=\gamma\left(h_{1}, \gamma\left(h_{2}, x\right) x\right) \cdot \gamma\left(h_{2}, x\right) \text { for every } h_{1}, h_{2} \text { in } H .
$$

Group charts

To prove the main theorem, we need to introduce group charts.

H-cocycle

Consider $G \curvearrowright X$. A continuous function $\gamma: H \times X \rightarrow G$ is an H-cocycle if it satisfies

$$
\gamma\left(h_{1} h_{2}, x\right)=\gamma\left(h_{1}, \gamma\left(h_{2}, x\right) x\right) \cdot \gamma\left(h_{2}, x\right) \text { for every } h_{1}, h_{2} \text { in } H .
$$

Remark: every H-cocycle induces a family of left actions $H \stackrel{\times}{\curvearrowright} G$

$$
h \cdot x g=\gamma(h, g x) g
$$

Group charts

To prove the main theorem, we need to introduce group charts.

H-cocycle

Consider $G \curvearrowright X$. A continuous function $\gamma: H \times X \rightarrow G$ is an H-cocycle if it satisfies

$$
\gamma\left(h_{1} h_{2}, x\right)=\gamma\left(h_{1}, \gamma\left(h_{2}, x\right) x\right) \cdot \gamma\left(h_{2}, x\right) \text { for every } h_{1}, h_{2} \text { in } H .
$$

Remark: every H-cocycle induces a family of left actions $H \stackrel{x}{\curvearrowright} G$

$$
h \cdot x g=\gamma(h, g x) g
$$

G-charts

A pair (X, γ) is called a G-chart of H. If every induced action $H \stackrel{X}{\curvearrowright} G$ is free, it is called a free G-chart of H.

Group charts

Example

Let $H \leq G$, then for any $G \curvearrowright X$ if we define:

$$
\gamma(h, x)=h \text { for } x \in X, h \in H
$$

Then γ is an H-cocycle and (X, γ) is a free G-chart of H.

Group charts

Let $G=\mathbb{Z}^{2}$ and consider the set of tiles Σ :

Let $X \subset \Sigma^{\mathbb{Z}^{2}}$ the set of all configurations such that every outgoing arrow matches with an incoming arrow.

Group charts

Group charts

Let $\gamma: \mathbb{Z} \times X \rightarrow \mathbb{Z}^{2}$ be the cocycle such that: $\gamma(1, x)$ is the unit vector represented by the outgoing arrowhead of $x((0,0))$ and $\gamma(-1, x)$ the vector represented by the incoming arrow.

$$
\text { if } x(0,0)=\square \quad \begin{aligned}
\gamma(1, x) & =(0,1) \\
\gamma(-1, x) & =(-1,0)
\end{aligned}
$$

Group charts

Let $\gamma: \mathbb{Z} \times X \rightarrow \mathbb{Z}^{2}$ be the cocycle such that: $\gamma(1, x)$ is the unit vector represented by the outgoing arrowhead of $x((0,0))$ and $\gamma(-1, x)$ the vector represented by the incoming arrow.

$$
\text { if } x(0,0)=\square \quad \begin{aligned}
\gamma(1, x) & =(0,1) \\
\gamma(-1, x) & =(-1,0)
\end{aligned}
$$

Example

(X, γ) is a \mathbb{Z}^{2}-chart of \mathbb{Z}. It is not free.

Group charts

Group charts

Group charts

Consider $\widehat{X} \subset X$ be the subshift of X such that no cycles appear.

Group charts

Consider $\hat{X} \subset X$ be the subshift of X such that no cycles appear.

Example

$\left(\widehat{X},\left.\gamma\right|_{\mathbb{Z} \times} \hat{X}\right)$ is a free \mathbb{Z}^{2}-chart of \mathbb{Z}.

Embedding H -actions

Consider

- A G-subshift X.
- A G-chart (X, γ) of H.
- An H-subshift Y.

Embedding H -actions

Consider

- A G-subshift X.
- A G-chart (X, γ) of H.
- An H-subshift Y.

Embedding of $H \curvearrowright Y$ into (X, γ)

Let $Y_{\gamma}[X]$ be the set of all $(x, y) \in X \times \mathcal{A}^{G}$ such that every copy of H induced by the cocycle γ carries a configuration from Y.

Embedding H-actions: example

Example

- The \mathbb{Z}^{2}-subshift \widehat{X} from the example before.
- The free G-chart (\hat{X}, γ) of H.
- The \mathbb{Z}-subshift consisting of the orbit of the periodic configuration:

Embedding H-actions: example

Embedding H-actions: example

Embedding H -actions: example

Addition formula

Let G, H be countable amenable groups.

Theorem (B., 19.)

If (X, γ) is a free G-chart of H, then for every H-subshift Y,

$$
h_{t o p}\left(G \curvearrowright Y_{\gamma}[X]\right)=h_{\text {top }}(H \curvearrowright Y)+h_{\text {top }}(G \curvearrowright X)
$$

Addition formula

Let G, H be countable amenable groups.

Theorem (B., 19.)

If (X, γ) is a free G-chart of H, then for every H-subshift Y,

$$
h_{\text {top }}\left(G \curvearrowright Y_{\gamma}[X]\right)=h_{\text {top }}(H \curvearrowright Y)+h_{\text {top }}(G \curvearrowright X)
$$

Remark: If both X and Y are SFTs, then $Y_{\gamma}[X]$ is an SFT.

$$
h_{\mathrm{top}}(G \curvearrowright X)+\mathcal{E}_{\mathrm{SFT}}(H) \subset \mathcal{E}_{\mathrm{SFT}}(G)
$$

Goal: Let G be a finitely generated amenable group such that

- G has decidable word problem.
- G admits a translation-like action by \mathbb{Z}^{2}.

Then $\mathcal{E}_{\mathrm{SFT}}(G)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)$.

Tool: If (X, γ) is a G-chart of H and X is an SFT then,

$$
h_{\mathrm{top}}(G \curvearrowright X)+\mathcal{E}_{\mathrm{SFT}}(H) \subset \mathcal{E}_{\mathrm{SFT}}(G)
$$

Goal: Let G be a finitely generated amenable group such that

- G has decidable word problem.
- G admits a translation-like action by \mathbb{Z}^{2}.

Then $\mathcal{E}_{\mathrm{SFT}}(G)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)$.

Tool: If (X, γ) is a G-chart of H and X is an SFT then,

$$
h_{\mathrm{top}}(G \curvearrowright X)+\mathcal{E}_{\mathrm{SFT}}(H) \subset \mathcal{E}_{\mathrm{SFT}}(G)
$$

(1) For which groups H, G are there free G-charts (X, γ) of H such that X is an SFT.

Goal: Let G be a finitely generated amenable group such that

- G has decidable word problem.
- G admits a translation-like action by \mathbb{Z}^{2}.

Then $\mathcal{E}_{\mathrm{SFT}}(G)=\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)$.

Tool: If (X, γ) is a G-chart of H and X is an SFT then,

$$
h_{\mathrm{top}}(G \curvearrowright X)+\mathcal{E}_{\mathrm{SFT}}(H) \subset \mathcal{E}_{\mathrm{SFT}}(G)
$$

(1) For which groups H, G are there free G-charts (X, γ) of H such that X is an SFT.
(2) How to reduce the entropy of such a chart.

Question: For which groups H, G are there free G-charts (X, γ) of H such that X is an SFT.

Question: For which groups H, G are there free G-charts (X, γ) of H such that X is an SFT.

Free charts

Let H, G be finitely generated groups. There exists a free G-chart of H if and only if H admits a translation-like action on G.

Question: For which groups H, G are there free G-charts (X, γ) of H such that X is an SFT.

Free charts

Let H, G be finitely generated groups. There exists a free G-chart of H if and only if H admits a translation-like action on G.

Free SFT charts

With the extra hypotheses:

- H is finitely presented.
- There exists a strongly aperiodic H-SFT.

Then the free G-chart of H can be chosen as an SFT.
Note: This is essentially due to Jeandel.

Second issue

Question: How to reduce the entropy of an SFT preserving the cocycle?

Second issue

Question: How to reduce the entropy of an SFT preserving the cocycle?

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT. For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Second issue

Question: How to reduce the entropy of an SFT preserving the cocycle?

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT. For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.
"Every SFT contains sofic subsystems which admit an SFT extension with arbitrarily low entropy"

Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Corollary: Instead of choosing (X, γ) take $\left(Y, \gamma^{\prime}\right)$ where $\gamma^{\prime}: H \times Y \rightarrow G$ is given by $\gamma^{\prime}(h, y)=\gamma(h, \phi(y))$.

Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Corollary: Instead of choosing (X, γ) take $\left(Y, \gamma^{\prime}\right)$ where $\gamma^{\prime}: H \times Y \rightarrow G$ is given by $\gamma^{\prime}(h, y)=\gamma(h, \phi(y))$.
"If there exists one SFT chart, then one can find another SFT chart with arbitrarily low entropy "

Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Second issue: corollaries

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Corollary: Every G-SFT contains a subshift with zero entropy. In particular, every minimal G-SFT has zero topological entropy.

Theorem (B., 19.)

Let G be a countable amenable group and X a G-SFT.
For every $\varepsilon>0$ there exists a G-SFT Y such that

- $h_{\text {top }}(G \curvearrowright Y) \leq \epsilon$,
- There exists a continuous G-equivariant map $\phi: Y \rightarrow X$.

Corollary: Every G-SFT contains a subshift with zero entropy. In particular, every minimal G-SFT has zero topological entropy.

Question: Is there a G-SFT which does not contain a zero entropy sub-G-SFT? (I don't know the answer for $G=\mathbb{Z}^{2}$)

Theorem (B,. 19.)

Let G be a finitely generated amenable group such that

- G has decidable word problem.
- G admits a translation-like action by \mathbb{Z}^{2}.

Then the set of entropies attainable by G-subshifts of finite type is the set of non-negative upper semi-computable numbers.

$$
\mathcal{E}_{S F T}(G)=\mathcal{E}_{S F T}\left(\mathbb{Z}^{2}\right)
$$

Theorem (B,. 19.)

Let G be a finitely generated amenable group such that

- G has decidable word problem.
- G admits a translation-like action by \mathbb{Z}^{2}.

Then the set of entropies attainable by G-subshifts of finite type is the set of non-negative upper semi-computable numbers.

$$
\mathcal{E}_{S F T}(G)=\mathcal{E}_{S F T}\left(\mathbb{Z}^{2}\right)
$$

proof:

- \mathbb{Z}^{2} is finitely presented and admits strongly aperiodic SFTs. Thus there exists an SFT free G-chart (X, γ) of \mathbb{Z}^{2}.
- For arbitrarily $\varepsilon>0$ we can choose $h_{\text {top }}(G \curvearrowright X) \leq \varepsilon$.
- $h_{\text {top }}(G \curvearrowright X)+\mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right) \subseteq \mathcal{E}_{\mathrm{SFT}}(G) \subseteq \mathcal{E}_{\mathrm{SFT}}\left(\mathbb{Z}^{2}\right)$.
- Done.

Proving the entropy reduction theorem

0	0		0	0	0	0	1	0	1	0	1	0		0	0	0	0			0	I	0	0	0	0	0		0	0	0	0			0		0
0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0
1	0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0
1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0
, 1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1
0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0
0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	0
1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
0	0	1	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0
1	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1
0	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1
1	0	0	1	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0
0	1	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
<1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	1	0	1
0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0
1	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1
0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0

0	0	1	0	0	0	0	1	0		0				0	0			0	0	0		0	0			0	1	0	0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	1	0	0	0
1	0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0
1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	1	0	1	0	0	0	1	0	0	1	0	0	0	0
1	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1
0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0
） 0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0
0	0	1	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1	0	1	0	1	0	1	0	1	0	1	0	0
1	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	1	0
0	0	1	0	0	0	1	0	1	0	1	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	0	0
1	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1
0	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	1	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	0	1	0	0	0	1
1	0	0	1	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	1	0	1	0	0	0	0	1	0	0
0	1	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	1	0	1
0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0
\％ 1	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
0	1	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	0	0	0	1	0	1
0	0	0	0	1	0	0		0	0	0	0	1	0	1	0	0	0		0	0	0	0	1	0	0		0	0	1	0	1	0	0	0	1	0

Proving the entropy reduction theorem (in \mathbb{Z}^{2})

0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	0
<1	0	1	0	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0
1	0	0	0	0	1	0	1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	1	0	0	0	1	0	1	0
$\}_{0}$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0
0	1	0	0	1	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0
1	0	0	0	0	1	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0	1	0	0	1	0	1	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	1	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0

Proving the entropy reduction theorem

Remark: This idea fails in a countable amenable group.
(No sequence of subgroups of finite index isomorphic to the original group such that a choice of coset representatives forms a FøIner sequence)

Proving the entropy reduction theorem

Remark: This idea fails in a countable amenable group.
(No sequence of subgroups of finite index isomorphic to the original group such that a choice of coset representatives forms a FøIner sequence)

Idea: Replace the square by a finite set of sufficiently invariant finite sets which tile the group.

Remark: This idea fails in a countable amenable group.
(No sequence of subgroups of finite index isomorphic to the original group such that a choice of coset representatives forms a FøIner sequence)

Idea: Replace the square by a finite set of sufficiently invariant finite sets which tile the group.

Tilings of a group (Introduced by Ornstein and Weiss, 87.)

Let $\mathcal{T}=\left\{T_{1}, \ldots, T_{n}\right\}$ be a set of finite subsets of G. A tiling of the group is a function $\tau: G \rightarrow \mathcal{T} \cup\{\varnothing\}$ such that:
(1) (τ is pairwise-disjoint) For every $g, h \in G$, if $g \neq h$ then $\tau(g) g \cap \tau(h) h=\varnothing$.
(2) $(\tau$ covers $G)$ For every $g \in G$ there exists $h \in G$ such that $g \in \tau(h) h$.

Proving the entropy reduction theorem

Remark: Given $\mathcal{T}=\left\{T_{1}, \ldots, T_{n}\right\}$. The set of all tilings of G by \mathcal{T} is a G-SFT.

Remark: Given $\mathcal{T}=\left\{T_{1}, \ldots, T_{n}\right\}$. The set of all tilings of G by \mathcal{T} is a G-SFT.

Theorem (Downarowicz, Huczek and Zhang, 19.)

Let G be a countable amenable group. For any $F \Subset G$ and $\varepsilon>0$ there exists a tile set \mathcal{T} such that:

- Every $T \in \mathcal{T}$ is (F, ε)-invariant,
- There exists a tiling τ by \mathcal{T} such that the topological entropy of its orbit closure is zero.

Remark: Given $\mathcal{T}=\left\{T_{1}, \ldots, T_{n}\right\}$. The set of all tilings of G by \mathcal{T} is a G-SFT.

Theorem (Downarowicz, Huczek and Zhang, 19.)
Let G be a countable amenable group. For any $F \Subset G$ and $\varepsilon>0$ there exists a tile set \mathcal{T} such that:

- Every $T \in \mathcal{T}$ is (F, ε)-invariant,
- There exists a tiling τ by \mathcal{T} such that the topological entropy of its orbit closure is zero.

To prove the entropy reduction Theorem, use the set of tiles from the Theorem above instead of the squares.

Closing remarks

Goal: Study the possible sets $\mathcal{E}_{\text {SFT }}(G)$ for an amenable group.

Closing remarks

Goal: Study the possible sets $\mathcal{E}_{\mathrm{SFT}}(G)$ for an amenable group.

In this talk:

- Full classification for Polycyclic groups.
- Tools for embedding entropies of one group into another.
- A class of groups with a full classification

Closing remarks

Goal: Study the possible sets $\mathcal{E}_{\mathrm{SFT}}(G)$ for an amenable group.

In this talk:

- Full classification for Polycyclic groups.
- Tools for embedding entropies of one group into another.
- A class of groups with a full classification

To keep in mind:

- This is far from a full characterization.

Closing remarks

Goal: Study the possible sets $\mathcal{E}_{\mathrm{SFT}}(G)$ for an amenable group.

In this talk:

- Full classification for Polycyclic groups.
- Tools for embedding entropies of one group into another.
- A class of groups with a full classification

To keep in mind:

- This is far from a full characterization.
- Does not cover many solvable groups with decidable word problem. Baumslag-Solitar groups, Lamplighter, etc.

Thank you for your attention!

Entropies of subshifts of finite type on countable amenable groups
Draft available on request.

