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At the dawn of time

There was ergodic theory.

Everybody was happy, and many theorems were proven.

... However, they kept a shameful secret!

1



At the dawn of time

There was ergodic theory.

Everybody was happy, and many theorems were proven.

... However, they kept a shameful secret!

1



At the dawn of time

There was ergodic theory.

Everybody was happy, and many theorems were proven.

... However, they kept a shameful secret!

1



At the dawn of time

There was ergodic theory.

Everybody was happy, and many theorems were proven.

... However, they kept a shameful secret!

1



The shameful secret

Consider

Z y X = {0, 1}Z with the Bernoulli measure (1
2 ,

1
2).

Z y Y = {0, 1, 3}Z with the Bernoulli measure (1
3 ,

1
3 ,

1
3).

The secret: ergodic theory cannot tell them appart.

Why: the Koopman operator of a system (G y X , µ) is

κX : G → B(L2(X ))

given by
κX (s)(f ) = f ◦ s−1

And it happens that

κX , κY are equivalent to 1Z ⊕ λ⊕N
Z .
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The age of heroes

But then, Kolmogorov and Sinai stole fire from the gods and gave
it to humanity.

(Fire = Measure theoretical entropy theory)

And they showed that it was an invariant under isomorphism.

This was great:

Theorem (Ornstein, 70.)
Two Bernoulli shifts are isomorphic if and only if they have the
same entropy.
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The age of heroes

A topological version of entropy was introduced in 65’ by Adler,
Konheim and McAndrew.

Let G be amenable, (Fn)n∈N a Følner sequence, U an open cover
of X and N(U).

htop(G y X ) = sup
U

lim
n→∞

1
|Fn|

logN(UFn ).
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An annoying question

Annoying question
Given a countable class of dynamical systems. What values can
their topological entropies take?

Some answers
Z-SFTs [Lind, 84] Non-negative rational multiples of
logarithms of Perron numbers.
Zd -SFTs, d ≥ 2 [Hochman and Meyerovitch, 10] The set of
non-negative upper semi-computable numbers.
Effectively closed Z-subshifts. The set of non-negative upper
semi-computable numbers.
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Goal of this talk

Even more annoying question
Let G be a countable amenable group. Characterize the set
ESFT(G) of entropies attainable by G-SFTs
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Two simple remarks

Trivial realization result
If G is a countable amenable group and H ≤ G , then

ESFT(H) ⊆ ESFT(G)

Computability bound
If G is a finitely generated amenable group with decidable word
problem, then

ESFT(G) ⊆ ESFT(Z2)
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A simple consequence:

G is polycyclic if there exists a sequence of Ni

G = N0 . N1 . · · · . Nn . Nn+1 = {1G}.

such that every quotient Ni/Ni+1 is cyclic. The Hirsch index of G
is the number of infinite quotients in such a series.

Theorem (B., 19.)
Let G be a polycyclic-by-finite group and denote by h(G) its
Hirsch index.

1 If h(G) = 0 then ESFT(G) = { 1
|G| log(n) | n ∈ Z+}.

2 If h(G) = 1 then ESFT(G) = ESFT(Z), the set of non-negative
rational multiples of logarithms of Perron eigenvalues.

3 If h(G) ≥ 2 then ESFT(G) = ESFT(Z2), the set of
non-negative upper semi-computable numbers.
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Something a little bit more interesting

Theorem (B,. 19.)
Let G be a finitely generated amenable group such that

G has decidable word problem.
G admits a translation-like action by Z2.

Then the set of entropies attainable by G-subshifts of finite type is
the set of non-negative upper semi-computable numbers.

ESFT(G) = ESFT(Z2).

Translation-like action
H y G is translation-like if

1 H y G is free. h · g = g =⇒ h = 1H .

2 H y G is bounded.
{(h · g)g−1 | g ∈ G} is finite for every h ∈ H.

9



Corollaries

Products of f.g. groups
If G1,G2 are f.g, amenable, and have decidable word problem, then

ESFT(G1 × G2) = ESFT(Z2).

Products of countable, non-locally finite groups
If G1,G2 are countable, amenable, non-locally finite and admit a
presentation with decidable word problem, then

ESFT(G1 × G2) = ESFT(Z2).

Branch groups
If G is an infinite, f.g, amenable branch group with decidable word
problem (ex: Grigorchuk group), then

ESFT(G) = ESFT(Z2).
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Group charts

To prove the main theorem, we need to introduce group charts.

H-cocycle
Consider G y X . A continuous function γ : H × X → G is an
H-cocycle if it satisfies

γ(h1h2, x) = γ(h1, γ(h2, x)x) · γ(h2, x) for every h1, h2 in H.

Remark: every H-cocycle induces a family of left actions H xy G

h ·x g = γ(h, gx)g

G-charts
A pair (X , γ) is called a G-chart of H. If every induced action
H xy G is free, it is called a free G-chart of H.
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Group charts

Example
Let H ≤ G , then for any G y X if we define:

γ(h, x) = h for x ∈ X , h ∈ H

Then γ is an H-cocycle and (X , γ) is a free G-chart of H.
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Group charts

Let G = Z2 and consider the set of tiles Σ:

Let X ⊂ ΣZ2 the set of all configurations such that every outgoing
arrow matches with an incoming arrow.
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Group charts
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Group charts

Let γ : Z× X → Z2 be the cocycle such that: γ(1, x) is the unit
vector represented by the outgoing arrowhead of x((0, 0)) and
γ(−1, x) the vector represented by the incoming arrow.

if x(0, 0) = γ(1, x) = (0, 1)
γ(−1, x) = (−1, 0)

if y(0, 0) = γ(1, y) = (1, 0)
γ(−1, y) = (0,−1)

Example
(X , γ) is a Z2-chart of Z. It is not free.
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Group charts

Consider X̂ ⊂ X be the subshift of X such that no cycles appear.

Example

(X̂ , γ|
Z×X̂ ) is a free Z2-chart of Z.
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Embedding H-actions

Consider
A G-subshift X .
A G-chart (X , γ) of H.
An H-subshift Y .

Embedding of H y Y into (X , γ)
Let Yγ [X ] be the set of all (x , y) ∈ X ×AG such that every copy
of H induced by the cocycle γ carries a configuration from Y .

14



Embedding H-actions

Consider
A G-subshift X .
A G-chart (X , γ) of H.
An H-subshift Y .

Embedding of H y Y into (X , γ)
Let Yγ [X ] be the set of all (x , y) ∈ X ×AG such that every copy
of H induced by the cocycle γ carries a configuration from Y .

14



Embedding H-actions: example

Example

The Z2-subshift X̂ from the example before.
The free G-chart (X̂ , γ) of H.
The Z-subshift consisting of the orbit of the periodic
configuration:
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Embedding H-actions: example
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Addition formula

Let G ,H be countable amenable groups.

Theorem (B., 19.)
If (X , γ) is a free G-chart of H, then for every H-subshift Y ,

htop(G y Yγ [X ]) = htop(H y Y ) + htop(G y X )

Remark: If both X and Y are SFTs, then Yγ [X ] is an SFT.

htop(G y X ) + ESFT(H) ⊂ ESFT(G).
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Two issues

Goal: Let G be a finitely generated amenable group such that
G has decidable word problem.
G admits a translation-like action by Z2.

Then ESFT(G) = ESFT(Z2).

Tool: If (X , γ) is a G-chart of H and X is an SFT then,

htop(G y X ) + ESFT(H) ⊂ ESFT(G).

1 For which groups H,G are there free G-charts (X , γ) of H
such that X is an SFT.

2 How to reduce the entropy of such a chart.
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First issue

Question: For which groups H,G are there free G-charts (X , γ) of
H such that X is an SFT.

Free charts
Let H,G be finitely generated groups. There exists a free G-chart
of H if and only if H admits a translation-like action on G .

Free SFT charts
With the extra hypotheses:

H is finitely presented.
There exists a strongly aperiodic H-SFT.

Then the free G-chart of H can be chosen as an SFT.

Note: This is essentially due to Jeandel.
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Second issue

Question: How to reduce the entropy of an SFT preserving the
cocycle?

Theorem (B., 19.)
Let G be a countable amenable group and X a G-SFT.
For every ε > 0 there exists a G-SFT Y such that

htop(G y Y ) ≤ ε,
There exists a continuous G-equivariant map φ : Y → X.

“Every SFT contains sofic subsystems which admit an SFT
extension with arbitrarily low entropy”
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Second issue: corollaries

Theorem (B., 19.)
Let G be a countable amenable group and X a G-SFT.
For every ε > 0 there exists a G-SFT Y such that

htop(G y Y ) ≤ ε,
There exists a continuous G-equivariant map φ : Y → X.

Corollary: Instead of choosing (X , γ) take (Y , γ′) where
γ′ : H × Y → G is given by γ′(h, y) = γ(h, φ(y)).

“If there exists one SFT chart, then one can find another SFT
chart with arbitrarily low entropy ”

20
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htop(G y Y ) ≤ ε,
There exists a continuous G-equivariant map φ : Y → X.

Corollary: Every G-SFT contains a subshift with zero entropy. In
particular, every minimal G-SFT has zero topological entropy.

Question: Is there a G-SFT which does not contain a zero
entropy sub-G-SFT? (I don’t know the answer for G = Z2)
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Theorem (B,. 19.)
Let G be a finitely generated amenable group such that

G has decidable word problem.
G admits a translation-like action by Z2.

Then the set of entropies attainable by G-subshifts of finite type is
the set of non-negative upper semi-computable numbers.

ESFT(G) = ESFT(Z2).

proof:
Z2 is finitely presented and admits strongly aperiodic SFTs.
Thus there exists an SFT free G-chart (X , γ) of Z2.
For arbitrarily ε > 0 we can choose htop(G y X ) ≤ ε.
htop(G y X ) + ESFT(Z2) ⊆ ESFT(G) ⊆ ESFT(Z2).
Done.
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Proving the entropy reduction theorem (in Z2)
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Proving the entropy reduction theorem

Remark: This idea fails in a countable amenable group.

(No sequence of subgroups of finite index isomorphic to the
original group such that a choice of coset representatives forms a

Følner sequence)

Idea: Replace the square by a finite set of sufficiently invariant
finite sets which tile the group.

Tilings of a group (Introduced by Ornstein and Weiss, 87.)
Let T = {T1, . . . ,Tn} be a set of finite subsets of G . A tiling of
the group is a function τ : G → T ∪ {∅} such that:

1 (τ is pairwise-disjoint) For every g , h ∈ G , if g 6= h then
τ(g)g ∩ τ(h)h = ∅.

2 (τ covers G) For every g ∈ G there exists h ∈ G such that
g ∈ τ(h)h.
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Proving the entropy reduction theorem

Remark: Given T = {T1, . . . ,Tn}. The set of all tilings of G by
T is a G-SFT.

Theorem (Downarowicz, Huczek and Zhang, 19.)
Let G be a countable amenable group. For any F b G and ε > 0
there exists a tile set T such that:

Every T ∈ T is (F , ε)-invariant,
There exists a tiling τ by T such that the topological entropy
of its orbit closure is zero.

To prove the entropy reduction Theorem, use the set of tiles from
the Theorem above instead of the squares.
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Closing remarks

Goal: Study the possible sets ESFT(G) for an amenable group.

In this talk:
Full classification for Polycyclic groups.
Tools for embedding entropies of one group into another.
A class of groups with a full classification

To keep in mind:
This is far from a full characterization.
Does not cover many solvable groups with decidable word
problem. Baumslag-Solitar groups, Lamplighter, etc.
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Thank you for your attention!

Entropies of subshifts of finite type on countable
amenable groups

Draft available on request.

26


