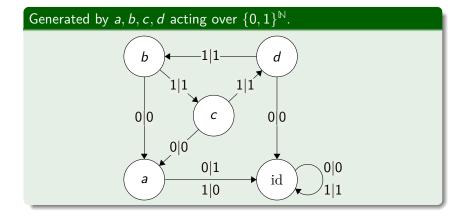
A strongly aperiodic SFT in the Grigorchuk group.

Sebastián Barbieri Lemp

University of British Columbia

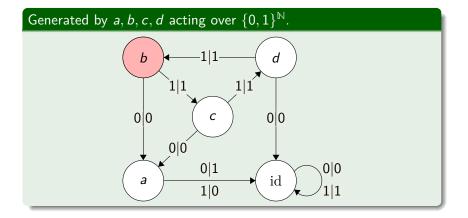
Algorithmic questions in dynamical systems Toulouse April, 2018

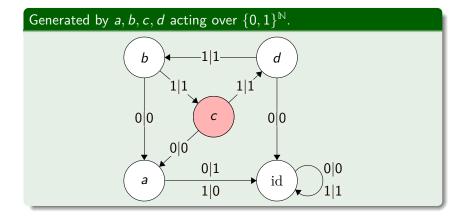
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



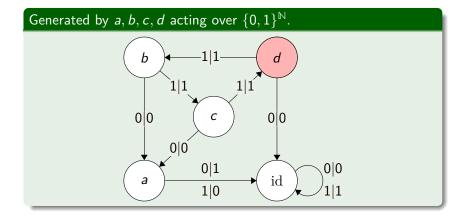
・ロト・西ト・モー・モー シック

2

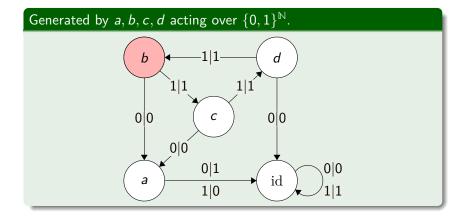




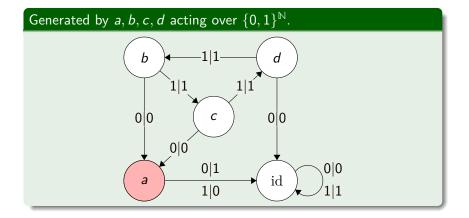
2



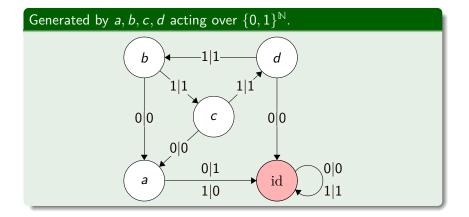
2



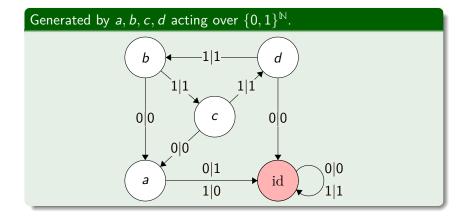
2



2



2



2

What about the Grigorchuk group?

- *a*, *b*, *c*, *d* are involutions.
- Infinite and finitely generated.
- It contains no copy of $\mathbb Z$ as a subgroup. For every $g \in G$, there is $n \in \mathbb N$ such that $g^n = 1_G$.
- Decidable word (and conjugacy) problem.
- It has intermediate growth.
- Amenable but not elementary amenable.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

(日) (部) (注) (注) (三)

What about the Grigorchuk group?

- *a*, *b*, *c*, *d* are involutions.
- Infinite and finitely generated.
- It contains no copy of $\mathbb Z$ as a subgroup. For every $g \in G$, there is $n \in \mathbb N$ such that $g^n = 1_G$.
- Decidable word (and conjugacy) problem.
- It has intermediate growth.
- Amenable but not elementary amenable.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.

イロト イヨト イヨト イヨト 三日

Definitions

- ► *G* is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$
- $G \curvearrowright \mathcal{A}^G$ is the left shift action given by:

$$(gx)(h) := x(g^{-1}h).$$

Definitions

- ► *G* is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$
- $G \curvearrowright \mathcal{A}^G$ is the left shift action given by:

$$(gx)(h) := x(g^{-1}h).$$

Definition: subshift

A closed and shift-invariant set $X \subset \mathcal{A}^{\mathcal{G}}$ is called a *subshift*.

Definitions

- ► *G* is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$
- $G \curvearrowright \mathcal{A}^G$ is the left shift action given by:

$$(gx)(h) := x(g^{-1}h).$$

Definition: subshift

A closed and shift-invariant set $X \subset \mathcal{A}^{G}$ is called a *subshift*.

A subshift is a set of configurations avoiding patterns from a list \mathcal{F} .

$$p \in \mathcal{A}^{S}, \quad [p] = \{x \in \mathcal{A}^{G} \mid x|_{S} = p\}$$

 $X = X_{\mathcal{F}} = \mathcal{A}^{G} \setminus \bigcup_{g \in G, p \in \mathcal{F}} g([p])$

- A subshift $X \subset \mathcal{A}^G$ is called:
 - a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .

A subshift $X \subset \mathcal{A}^G$ is called:

- a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).

(日) (部) (注) (注) (三)

A subshift $X \subset \mathcal{A}^G$ is called:

- a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

A subshift $X \subset \mathcal{A}^G$ is called:

- a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic

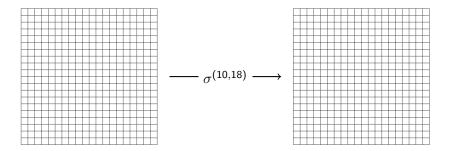
A subshift $X \subset \mathcal{A}^{G}$ is *strongly aperiodic* if the shift action is free.

$$\forall x \in X, gx = x \implies g = 1_G.$$

Which groups admit strongly aperiodic SFTs?

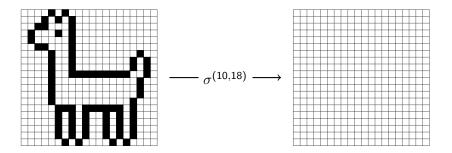
Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$



Which groups admit strongly aperiodic SFTs?

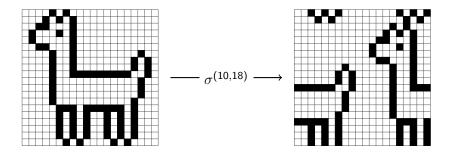
Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$



6

Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$



Proposition

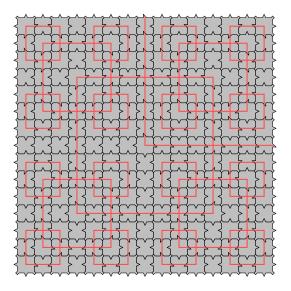
Every non-empty \mathbb{Z} -SFT contains a periodic configuration.

Proposition

Every non-empty \mathbb{Z} -SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao 2015)

There exist strongly aperiodic SFTs on \mathbb{Z}^2 .



result: nay!

• (Jeandel '15) If G is recursively presented and has undecidable word problem.

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

result: nay!

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

```
• (Folklore) \mathbb{Z}^d for d > 1.
```

result: nay!

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

- (Folklore) \mathbb{Z}^d for d > 1.
- (Şahin, Schraudner, Ugarcovici, '+ ∞ ['14]) The discrete Heisenberg group.

result: nay!

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

- (Folklore) \mathbb{Z}^d for d > 1.
- (Şahin, Schraudner, Ugarcovici, '+ ∞ ['14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, '15) Surface groups.

result: nay!

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

- (Folklore) \mathbb{Z}^d for d > 1.
- (Şahin, Schraudner, Ugarcovici, '+ ∞ ['14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, '15) Surface groups.
- (Cohen, Goodman-Strauss, Rieck, '17) One-ended Gromov-hyperbolic groups.

result: nay!

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

- (Folklore) \mathbb{Z}^d for d > 1.
- (Şahin, Schraudner, Ugarcovici, '+ ∞ ['14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, '15) Surface groups.
- (Cohen, Goodman-Strauss, Rieck, '17) One-ended Gromov-hyperbolic groups.
- (B, Sablik, '18+ ['16]) Groups of the form Z^d ⋊_φ G with d > 1, G f.g. and decidable word problem.

result: nay!

- (Jeandel '15) If G is recursively presented and has undecidable word problem.
- (Cohen '15) If G has two or more ends.

- (Folklore) \mathbb{Z}^d for d > 1.
- (Şahin, Schraudner, Ugarcovici, '+ ∞ ['14]) The discrete Heisenberg group.
- (Cohen, Goodman-Strauss, '15) Surface groups.
- (Cohen, Goodman-Strauss, Rieck, '17) One-ended Gromov-hyperbolic groups.
- (B, Sablik, '18+ ['16]) Groups of the form Z^d ⋊_φ G with d > 1, G f.g. and decidable word problem.
- (Jeandel, '16) f.g. policyclic groups which are not virtually \mathbb{Z} .

What about the Grigorchuk group?

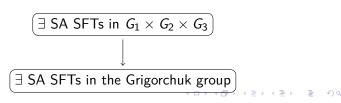
All groups here are infinite, finitely generated and have decidable word problem.

∃ SA SFTs in the Grigorchuk group

글에 비금에 드릴

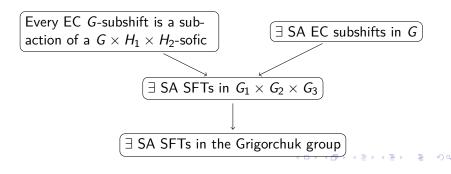
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.



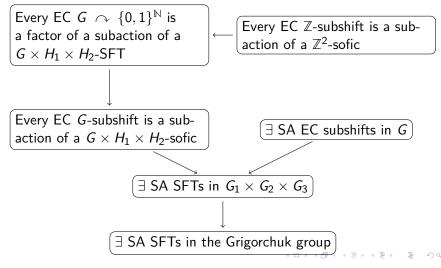
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.



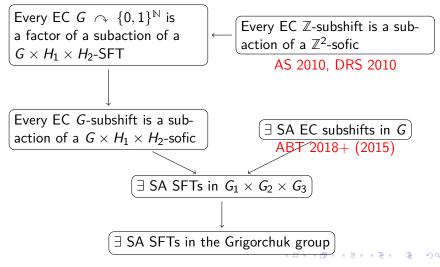
What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.



What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.



We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \leftrightarrow H_1 \cong H_2 \hookrightarrow G_2$$

We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \leftrightarrow H_1 \cong H_2 \hookrightarrow G_2$$

 \triangleright Recall that the Grigorchuk group G is commensurable to its square $G \times G$

イロト イヨト イヨト イヨト 三日

We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \hookleftarrow H_1 \cong H_2 \hookrightarrow G_2$$

 \triangleright Recall that the Grigorchuk group *G* is commensurable to its square $G \times G$ \triangleright if *G* is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G \times G$.

イロト イヨト イヨト イヨト 三日

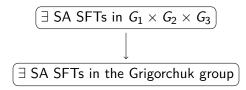
We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

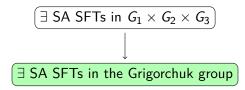
$$G_1 \hookleftarrow H_1 \cong H_2 \hookrightarrow G_2$$

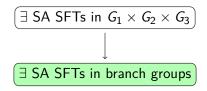
 \triangleright Recall that the Grigorchuk group *G* is commensurable to its square $G \times G$ \triangleright if *G* is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G \times G$.

Theorem (Carroll-Penland, 2015)

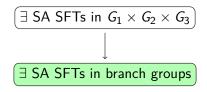
Admitting a strongly aperiodic SFT is a commensurability invariant.







In fact, the same result can be extended to branch groups.



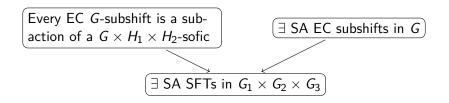
In fact, the same result can be extended to branch groups.

Theorem

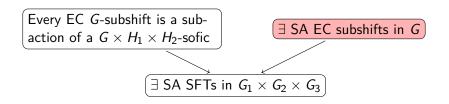
Let G be a finitely generated and recursively presented branch group. Then G has decidable word problem if and only if there exists a non-empty strongly aperiodic G-SFT.

(日) (部) (注) (注) (三)

We want to show next:



We want to show next:



Square-free vertex coloring

Let G = (V, E) be a graph. A vertex coloring is a function $x : V \to A$. We say it is square-free if for every odd-length path $p = v_1 \dots v_{2n}$ then there exists $1 \le j \le n$ such that $x(v_j) \ne x(v_{j+n})$.

(日) (部) (注) (注) (三)

Square-free vertex coloring

Let G = (V, E) be a graph. A vertex coloring is a function $x : V \to A$. We say it is square-free if for every odd-length path $p = v_1 \dots v_{2n}$ then there exists $1 \le j \le n$ such that $x(v_j) \ne x(v_{j+n})$.

 C_5 has a square-free vertex coloring with 4 colors, but not with 3.

Some infinite graphs do not admit square-free vertex colorings: $K_{\mathbb{N}}$.

Some infinite graphs do not admit square-free vertex colorings: $K_{\mathbb{N}}$.

Theorem: Alon, Grytczuk, Haluszczak and Riordan

Every finite graph with maximum degree Δ can be square-free vertex colored with $2^{17}\Delta^2$ colors.

Some infinite graphs do not admit square-free vertex colorings: $K_{\mathbb{N}}$.

Theorem: Alon, Grytczuk, Haluszczak and Riordan

Every finite graph with maximum degree Δ can be square-free vertex colored with $2^{17}\Delta^2$ colors.

Let

$$\Gamma(G,S) = (G, \{\{g,gs\}, g \in G, s \in S\})$$

be the undirected right Cayley graph of G with respect to $S \subseteq G$. A compactness argument shows:

Theorem

 $\Gamma(G, S)$ can be square-free vertex colored with $2^{19}|S|^2$ colors.

イロト イヨト イヨト イヨト 三日

Let $|\mathcal{A}| \ge 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

Let $|\mathcal{A}| \ge 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

•
$$X \neq \emptyset$$
.

Let $|\mathcal{A}| \ge 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that gx = x for some $x \in X$.

Let $|\mathcal{A}| \ge 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that gx = x for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.

Let $|\mathcal{A}| \geq 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that gx = x for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0\\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\}\\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

Let $|\mathcal{A}| \geq 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that gx = x for some $x \in X$.
- Factorize g as uwv with u = v⁻¹ and |w| minimal (as a word on (S ∪ S⁻¹)*). If |w| = 0, then g = 1_G.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0\\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\}\\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

• π is a path and $x_{v_i} = x_{v_{i+n}}$. $\rightarrow \leftarrow$

Let $|\mathcal{A}| \geq 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

- $X \neq \emptyset$.
- Let $g \in G$ such that gx = x for some $x \in X$.
- Factorize g as uwv with u = v⁻¹ and |w| minimal (as a word on (S ∪ S⁻¹)*). If |w| = 0, then g = 1_G.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0\\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\}\\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

- π is a path and $x_{v_i} = x_{v_{i+n}}$. $\rightarrow \leftarrow$
- Therefore, $g = 1_G$.

Let $|\mathcal{A}| \ge 2^{19}|S|^2$ and $X \subset \mathcal{A}^G$ be the subshift such that every square in $\Gamma(G, S)$ is forbidden.

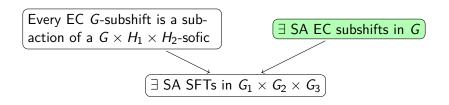
- $X \neq \emptyset$.
- Let $g \in G$ such that gx = x for some $x \in X$.
- Factorize g as uwv with $u = v^{-1}$ and |w| minimal (as a word on $(S \cup S^{-1})^*$). If |w| = 0, then $g = 1_G$.
- If not, let $w = w_1 \dots w_n$ and consider the odd length walk $\pi = v_0 v_1 \dots v_{2n-1}$ on $\Gamma(G, S)$ defined by:

$$v_{i} = \begin{cases} 1_{G} & \text{if } i = 0\\ w_{1} \dots w_{i} & \text{if } i \in \{1, \dots, n\}\\ ww_{1} \dots w_{i-n} & \text{if } i \in \{n+1, \dots, 2n-1\} \end{cases}$$

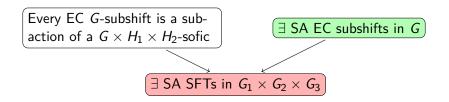
- π is a path and $x_{v_i} = x_{v_{i+n}}$. $\rightarrow \leftarrow$
- Therefore, $g = 1_G$.

If G has decidable word problem, then X is effectively closed.

We want to show next:



We want to show next:



Finitely presented group

A group G is finitely presented if $G \cong \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

イロト イヨト イヨト イヨト 三日

Finitely presented group

A group G is finitely presented if $G \cong \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

Recursively presented group

A group G is recursively presented if $G \cong \langle S|R \rangle$ where $S \subset \mathbb{N}$ and $R \subset (S \cup S^{-1})^*$ are recursively enumerable sets.

$$L = \langle a, t \mid (at^n a t^{-n})^2, n \in \mathbb{N} \rangle$$

(日) (部) (注) (注) (三)

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely presented group G such that H embeds into G.

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely presented group G such that H embeds into G.

"A complicated object is realized inside another object which admits a much simpler presentation."

イロン イヨン イヨン イヨン 三日

Theorem (Higman, 1961)

For every recursively presented group H there exists a finitely presented group G such that H embeds into G.

"A complicated object is realized inside another object which admits a much simpler presentation."

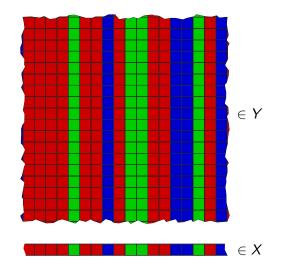
Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem

Just apply Higman's theorem to $G = \langle a, b, c, d \mid b^{-n}ab^n = c^{-n}dc^n, n \in HALT \rangle...$ done!

イロト イヨト イヨト イヨト 三日

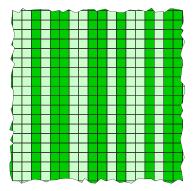
The case of subshifts

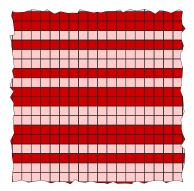


イロト イヨト イヨト イヨト 三日

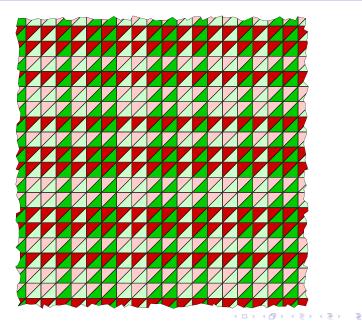
Every EC \mathbb{Z} -subshift X is a subaction of a \mathbb{Z}^2 -sofic Y

The case of subshifts





The case of subshifts



In our case

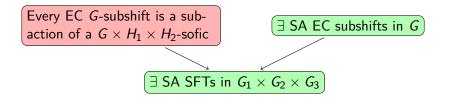
proof

- Take G_1 EC SA subshift. Use simulation to obtain a $G_1 \times G_2 \times G_3$ -sofic subshift Y_1 such that $G_2 \times G_3$ act trivially and G_1 acts freely.
- Do the same for G_2 , G_3 to get Y_2 , Y_3 .
- $Y_1 \times Y_2 \times Y_3$ is a SA sofic subshift.
- Any SFT extension $X \twoheadrightarrow Y_1 \times Y_2 \times Y_3$ works.

In our case

proof

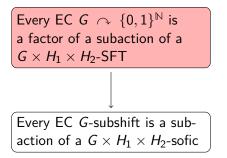
- Take G_1 EC SA subshift. Use simulation to obtain a $G_1 \times G_2 \times G_3$ -sofic subshift Y_1 such that $G_2 \times G_3$ act trivially and G_1 acts freely.
- Do the same for G_2 , G_3 to get Y_2 , Y_3 .
- $Y_1 \times Y_2 \times Y_3$ is a SA sofic subshift.
- Any SFT extension $X \twoheadrightarrow Y_1 \times Y_2 \times Y_3$ works.



イロト イヨト イヨト イヨト 三日

Every EC $G \curvearrowright \{0,1\}^{\mathbb{N}}$ is a factor of a subaction of a $G \times H_1 \times H_2$ -SFT Every EC *G*-subshift is a subaction of a $G \times H_1 \times H_2$ -sofic

(日) (部) (注) (注) (三)



Two ingredients:

- A Toeplitz coding of EC actions from a work of me and M. Sablik.
- A coding of E. Jeandel of a theorem of Seward on translation-like actions.

イロト イヨト イヨト イヨト 三日

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider an action

 $G \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider an action $G \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$ Let $\Psi : \{0,1\}^{\mathbb{N}} \to \{0,1,\$\}^{\mathbb{Z}}$ be given by: $\Psi(x)_j = \begin{cases} x_n & \text{if } j = 3^n \mod 3^{n+1} \\ \$ & \text{in the contrary case.} \end{cases}$

・ロ・・白・・川・・山・・日・

Let's keep it simple, let's do
$$G \times \mathbb{Z}^2$$
. Consider an action
 $G \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$
Let $\Psi : \{0,1\}^{\mathbb{N}} \to \{0,1,\$\}^{\mathbb{Z}}$ be given by:
 $\Psi(x)_j = \begin{cases} x_n & \text{if } j = 3^n \mod 3^{n+1} \\ \$ & \text{in the contrary case.} \end{cases}$

Example

If we write $x = x_0 x_1 x_2 x_3 \dots$ we obtain,

$$\Psi(x) = \dots \$x_0\$x_1x_0\$\$x_0\$x_2x_0\$x_1x_0\$\$x_0\$\$x_0\$x_1x_0\$\$x_0\$x_3x_0\dots$$

 $\dots x_0x_1x_0x_2x_0x_1x_0x_0x_1x_0x_1x_0x_1x_0x_3x_0\dots$

 $\dots \$x_0\$x_1x_0\$x_2x_0\$x_1x_0\$x_0\$x_0\$x_1x_0\$x_0\$x_1x_0\$x_3x_0\$\dots$

 $\dots x_0x_1x_0$$x_0x_2x_0x_1x_0$$x_0x_1x_0x_3x_0\dots

 $\dots x_0x_1x_0x_0x_2x_0x_1x_0x_0x_1x_0x_1x_0x_1x_0x_3x_0\dots

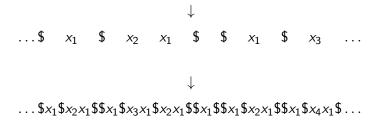
 $\dots x_0x_1x_0$$x_0x_2x_0x_1x_0$$x_0x_1x_0x_3x_0\dots

 \downarrow $\dots \$ x_1 \$ x_2 x_1 \$ \$ x_1 \$ x_3 \dots$

<ロ> (四) (四) (三) (三) (三) (三)

 $\dots x_0x_1x_0x_0x_2x_0x_1x_0x_0x_1x_0

 $\dots x_0x_1x_0$$x_0x_2x_0x_1x_0$$x_0x_1x_0x_3x_0\dots



 \triangleright pick a finite set of generators S of G.

 \triangleright construct a subshift Π where every configuration is (up to small details) an *S*-tuple of configurations of the previous form.

$$S = \{1_G, s_1, \dots s_n\}$$
$$\begin{pmatrix} \Psi(x) \\ \Psi(s_1(x)) \\ \vdots \\ \Psi(s_n(x)) \end{pmatrix} \in \Pi$$

 \triangleright pick a finite set of generators S of G.

 \triangleright construct a subshift Π where every configuration is (up to small details) an *S*-tuple of configurations of the previous form.

$$egin{aligned} \mathcal{S} &= \{\mathbf{1}_G, s_1, \dots s_n\} \ & \begin{pmatrix} \Psi(x) \ \Psi(s_1(x)) \ dots \ \Psi(s_n(x)) \end{pmatrix} \in \Pi \end{aligned}$$

Claim

If $G \curvearrowright X$ is an effectively closed action, Π is an effectively closed subshift.

Every EC $G \curvearrowright \{0,1\}^{\mathbb{N}}$ is a factor of a subaction of a $G \times H_1 \times H_2$ -SFT

 $- \left[\begin{array}{c} \text{Every EC } \mathbb{Z}\text{-subshift is a sub-} \\ \text{action of a } \mathbb{Z}^2\text{-sofic} \end{array} \right]$

イロト イヨト イヨト イヨト

 \rhd There exists a sofic $\mathbb{Z}^2\text{-subshift}\ \widetilde{\Pi}$ having Π in every horizontal row.

Every EC $G \curvearrowright \{0,1\}^{\mathbb{N}}$ is a factor of a subaction of a $G \times H_1 \times H_2$ -SFT

 $- \left[\begin{array}{c} \text{Every EC } \mathbb{Z}\text{-subshift is a sub-} \\ \text{action of a } \mathbb{Z}^2\text{-sofic} \end{array} \right]$

イロト イヨト イヨト イヨト

 \rhd There exists a sofic $\mathbb{Z}^2\text{-subshift}\ \widetilde{\Pi}$ having Π in every horizontal row.

 \triangleright Using the decoding argument, construct a map from $\widetilde{\Pi}$ to X.

Every EC $G \curvearrowright \{0,1\}^{\mathbb{N}}$ is a factor of a subaction of a $G \times H_1 \times H_2$ -SFT

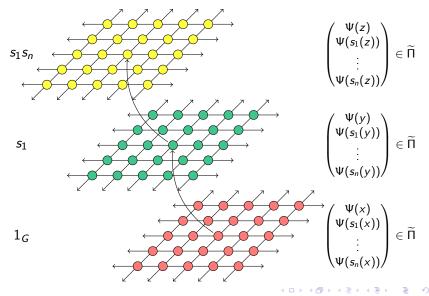
 $- \left(\begin{array}{c} \text{Every EC } \mathbb{Z} \text{-subshift is a sub-} \\ \text{action of a } \mathbb{Z}^2 \text{-sofic} \end{array} \right)$

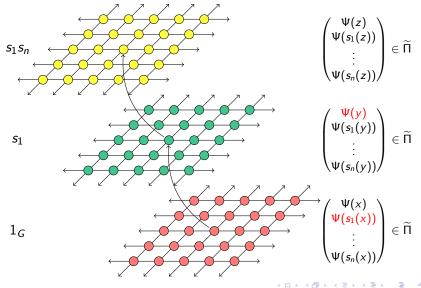
・ロト ・四ト ・ヨト ・ヨト

 \rhd There exists a sofic $\mathbb{Z}^2\text{-subshift}\ \widetilde{\Pi}$ having Π in every horizontal row.

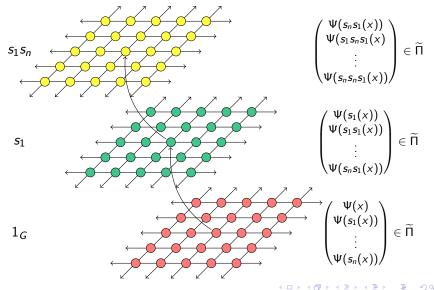
 \triangleright Using the decoding argument, construct a map from $\widetilde{\Pi}$ to X.

 \rhd Put in every G-coset of $G\times \mathbb{Z}^2$ a configuration of $\widetilde{\Pi}.$ Tie them using local rules.









From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

From \mathbb{Z}^2 to $H_1 imes H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is *translation-like* if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} d(x, gx) < \infty$.

イロト イヨト イヨト イヨト 三日

From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is *translation-like* if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} d(x, gx) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z} .

イロト イヨト イヨト イヨト 三日

From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is *translation-like* if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} d(x, gx) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z} .

This means that each infinite and f.g. group admits a Cayley graph that can be partitioned into disjoint bi-infinite paths.

[Jeandel] Use the set of generators of the Cayley graph to define an SFT which codes the translation-like action.

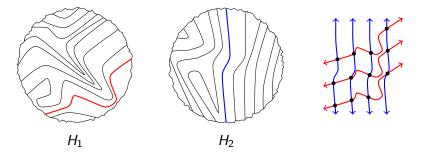
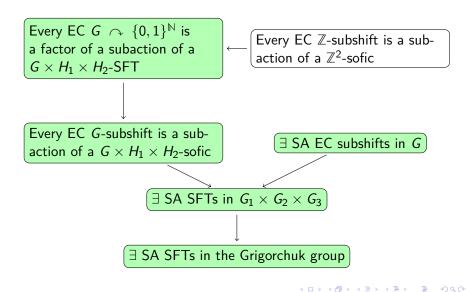
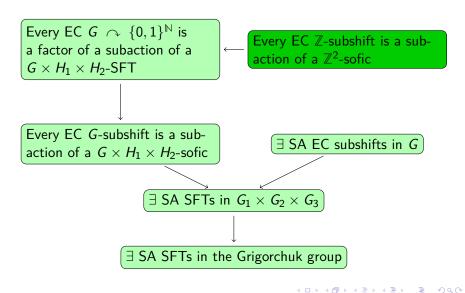


Figure: Finding a grid in $H_1 \times H_2$

イロト イヨト イヨト イヨト 三日





Thank you for your attention!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ