The Dobrushin Lanford Ruelle theorem on steroids

Sebastián Barbieri Lemp

Joint with Ricardo Gómez Aíza, Brian Marcus and Siamak Taati

University of British Columbia

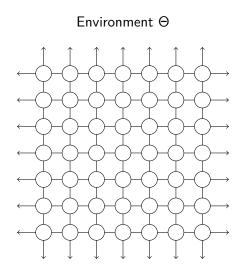
Probability Seminar Vancouver October, 2018

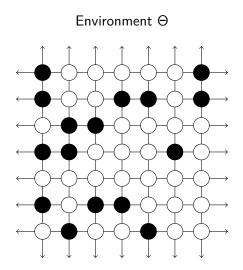
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

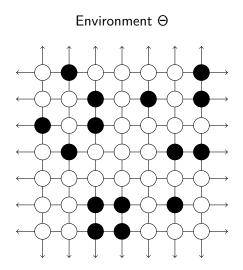
Let Σ be a finite set of symbols. Let $X \subseteq \Sigma^{\mathbb{Z}^d}$ be a d-dimensional subshift, Φ an absolutely summable interaction on X, and f_{Φ} an associated energy observable.

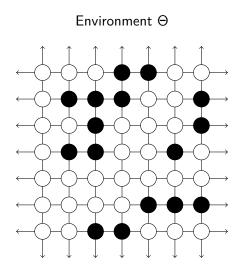
- (Dobrushin theorem) Assume that X is D-mixing. Then, every shift-invariant Gibbs measure for Φ is an equilibrium measure for Φ.
- (Lanford-Ruelle theorem)
 Assume that X is a subshift of finite type (SFT). Then, every equilibrium measure for Φ is a Gibbs measure for Φ.

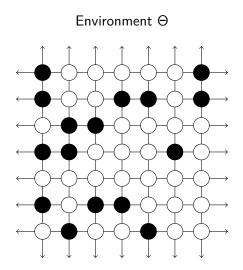
イロト イヨト イヨト イヨト



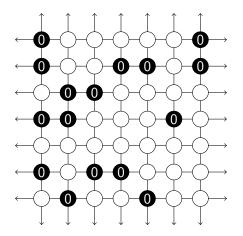






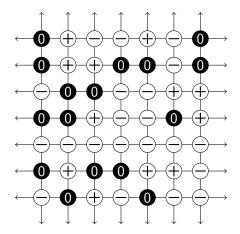


Fix $\theta \in \Theta$, fill open sites with $\{-,+\}$.



Hard constraints: $\bullet \iff 0, \bigcirc \iff - \text{ or } +.$

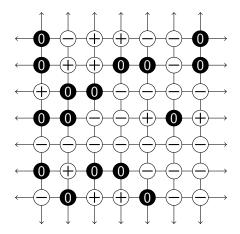
Fix $\theta \in \Theta$, fill open sites with $\{-,+\}$.



Hard constraints: $\bullet \iff 0, \bigcirc \iff - \text{ or } +.$

 X_{θ}

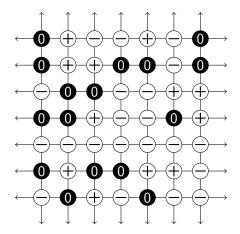
Fix $\theta \in \Theta$, fill open sites with $\{-,+\}$.



Hard constraints: $\bullet \iff 0, \bigcirc \iff - \text{ or } +.$

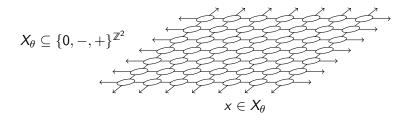
 $X_{ heta}$

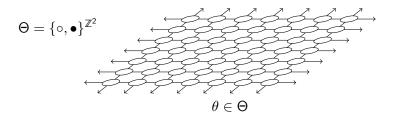
Fix $\theta \in \Theta$, fill open sites with $\{-,+\}$.



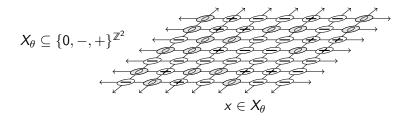
Hard constraints: $\bullet \iff 0, \bigcirc \iff - \text{ or } +.$

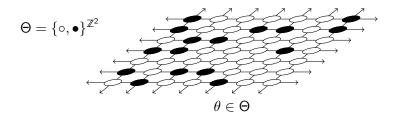
 X_{θ}

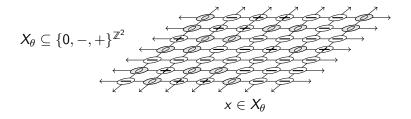


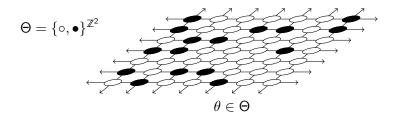


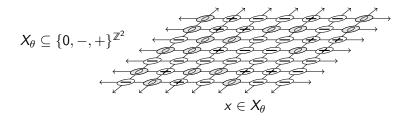
◆ロ → ◆回 → ◆ 三 → ◆ 回 → ◆ 回 → ◆ ④ ◆ ◆

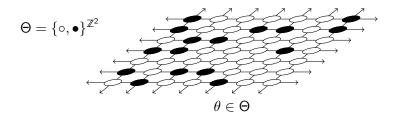


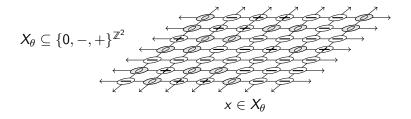


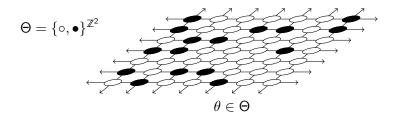


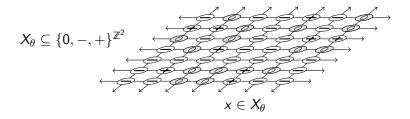


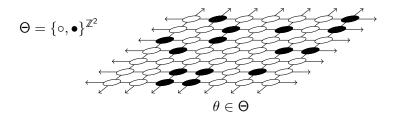


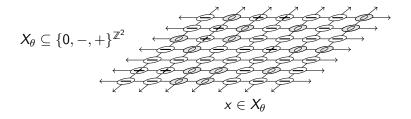


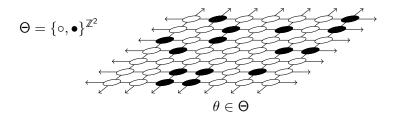


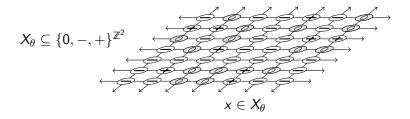


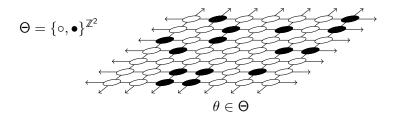












For $(\theta, x) \in \Omega$, finite $A \subset G, u \in \Sigma^A$,

For
$$(\theta, x) \in \Omega$$
, finite $A \subset G$, $u \in \Sigma^A$,
$$\pi_{(\theta, x)}(u) := \left\{ \begin{array}{c} \frac{1}{Z_A(\theta, x)} e^{-E_{A|A} \mathbb{C}(\theta, x_A \mathbb{C} \lor u)} & \text{if } x_{A} \mathbb{C} \lor u \in X_{\theta}, \\ 0 & \text{otherwise} \end{array} \right\}$$

For
$$(\theta, x) \in \Omega$$
, finite $A \subset G$, $u \in \Sigma^{A}$,

$$\pi_{(\theta, x)}(u) := \left\{ \begin{array}{c} \frac{1}{Z_{A}(\theta, x)} e^{-E_{A|A} \mathfrak{c}(\theta, x_{A} \mathfrak{c}^{\vee} u)} & \text{if } x_{A} \mathfrak{c} \vee u \in X_{\theta}, \\ 0 & \text{otherwise} \end{array} \right\}$$

- 1

For
$$(\theta, x) \in \Omega$$
, finite $A \subset G$, $u \in \Sigma^{\wedge}$,

$$\pi_{(\theta, x)}(u) := \left\{ \begin{array}{c} \frac{1}{Z_{A}(\theta, x)} e^{-E_{A|A} \mathbb{C}(\theta, x_{A} \mathbb{C}^{\vee u})} & \text{if } x_{A} \mathbb{C} \vee u \in X_{\theta}, \\ 0 & \text{otherwise} \end{array} \right\}$$

- 1

For
$$(\theta, x) \in \Omega$$
, finite $A \subset G$, $u \in \Sigma^{A}$,

$$\pi_{(\theta, x)}(u) := \left\{ \begin{array}{c} \frac{1}{Z_{A}(\theta, x)} e^{-E_{A|A} \mathfrak{c}(\theta, x_{A} \mathfrak{c}^{\vee} u)} & \text{if } x_{A} \mathfrak{c} \vee u \in X_{\theta}, \\ 0 & \text{otherwise} \end{array} \right\}$$

- 1

For
$$(\theta, x) \in \Omega$$
, finite $A \subset G, u \in \Sigma^A$,

$$\pi_{(\theta, x)}(u) := \left\{ \begin{array}{c} \frac{1}{Z_A(\theta, x)} e^{-E_{A|A} \mathbb{C}(\theta, x_A \mathbb{C} \lor u)} & \text{if } x_{A^{\mathbb{C}}} \lor u \in X_{\theta}, \\ 0 & \text{otherwise} \end{array} \right\}$$

DLR Theorem on steroids

Theorem

Let G be a countable amenable group, Ω a relative system

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

• (relative Dobrushin theorem)

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

(relative Dobrushin theorem)
 Assume that Ω is D-mixing relative to ν.

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

(relative Dobrushin theorem)
 Assume that Ω is D-mixing relative to ν. Then, every translation-invariant Gibbs measure for Φ relative to ν is an equilibrium measure for Φ relative to ν.

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

- (relative Dobrushin theorem)
 Assume that Ω is D-mixing relative to ν. Then, every translation-invariant Gibbs measure for Φ relative to ν is an equilibrium measure for Φ relative to ν.
- (relative Lanford–Ruelle theorem)

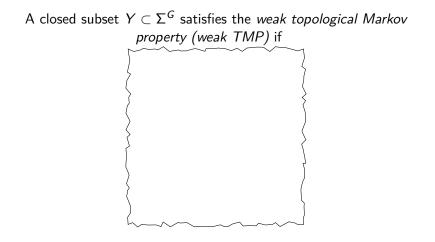
Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

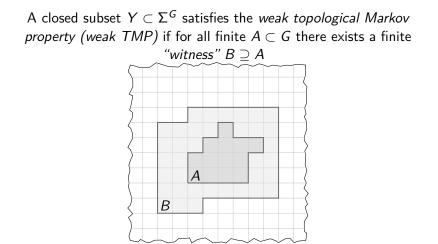
- (relative Dobrushin theorem) Assume that Ω is D-mixing relative to ν. Then, every translation-invariant Gibbs measure for Φ relative to ν is an equilibrium measure for Φ relative to ν.
- (relative Lanford–Ruelle theorem)
 Assume that Ω has the weak topological Markov property relative to ν.

Let G be a countable amenable group, Ω a relative system with an absolutely summable relative interaction Φ on Ω and ν a G-invariant measure on environment Θ .

- (relative Dobrushin theorem) Assume that Ω is D-mixing relative to ν. Then, every translation-invariant Gibbs measure for Φ relative to ν is an equilibrium measure for Φ relative to ν.
- (relative Lanford–Ruelle theorem)
 Assume that Ω has the weak topological Markov property relative to ν.

Then, every equilibrium measure for Φ relative to ν is a (translation-invariant) Gibbs measure for Φ relative to ν .





A closed subset $Y \subset \Sigma^G$ satisfies the *weak topological Markov* property (weak TMP) if for all finite $A \subset G$ there exists a finite "witness" $B \supseteq A$ such that whenever $y, y' \in Y$ satisfy $y_{B\setminus A} = y'_{B\setminus A}$, then \square \square Α \square BZZ

A closed subset $Y \subset \Sigma^G$ satisfies the *weak topological Markov* property (weak TMP) if for all finite $A \subset G$ there exists a finite "witness" $B \supseteq A$ such that whenever $y, y' \in Y$ satisfy $y_{B\setminus A} = y'_{B\setminus A}$, then $y_A \vee y'_{B^c} \in Y$. \square \square \square \square \square Α \checkmark $\overline{}$ BZZ

•

A closed subset $Y \subset \Sigma^G$ satisfies the *weak topological Markov* property (weak TMP) if for all finite $A \subset G$ there exists a finite "witness" $B \supseteq A$ such that whenever $y, y' \in Y$ satisfy $y_{B\setminus A} = y'_{B\setminus A}$, then $y_A \vee y'_{B^c} \in Y$. $\overline{}$ $\overline{}$ $A \square$ $\overline{}$ B 🛛 🖊

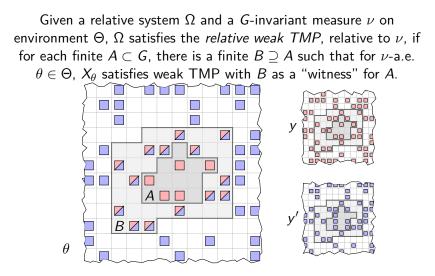
・ロト・白・・川・・川・・ 一川・ うくの

A closed subset $Y \subset \Sigma^G$ satisfies the *weak topological Markov* property (weak TMP) if for all finite $A \subset G$ there exists a finite "witness" $B \supseteq A$ such that whenever $y, y' \in Y$ satisfy $y_{B\setminus A} = y'_{B\setminus A}$, then $y_A \vee y'_{B^c} \in Y$. \square \square $A \square$ $\overline{}$ B 🛛 🖊

A closed subset $Y \subset \Sigma^G$ satisfies the *weak topological Markov* property (weak TMP) if for all finite $A \subset G$ there exists a finite "witness" $B \supseteq A$ such that whenever $y, y' \in Y$ satisfy $y_{B\setminus A} = y'_{B\setminus A}$, then $y_A \vee y'_{B^c} \in Y$. \checkmark \square $B \boxtimes \boxtimes$

Remark: for subshifts, weak TMP is much weaker than SFT =

relative weak topological Markov property (relative weak TMP)



・ロ・・(型・・モ・・モ・・モ・ のへぐ

• μ : relative equilibrium measure on Ω

- μ : relative equilibrium measure on Ω
- Suppose μ is not relative Gibbs. Goal: construct another measure with larger relative entropy.

- μ : relative equilibrium measure on Ω
- Suppose μ is not relative Gibbs. Goal: construct another measure with larger relative entropy.
- For some finite $A \subset G$,

$$H_{\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{G\setminus \mathcal{A}}}) < H_{\mathcal{K}_{\mathcal{A}}\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{G\setminus \mathcal{A}}}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- μ : relative equilibrium measure on Ω
- Suppose μ is not relative Gibbs. Goal: construct another measure with larger relative entropy.
- For some finite $A \subset G$,

$$H_{\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{G\setminus\mathcal{A}}}) < H_{\mathcal{K}_{\mathcal{A}}\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{G\setminus\mathcal{A}}}).$$

• By continuity of K_A , there is a finite $B \supset A$ such that,

$$H_{\mu}(\xi^{A}|\mathcal{F}_{\Theta},\xi^{B\setminus A}) < H_{\mathcal{K}_{A}\mu}(\xi^{A}|\mathcal{F}_{\Theta},\xi^{A^{B\setminus A}}).$$

・ロ・・日・・日・・日・・日・

- μ : relative equilibrium measure on Ω
- Suppose μ is not relative Gibbs. Goal: construct another measure with larger relative entropy.
- For some finite $A \subset G$,

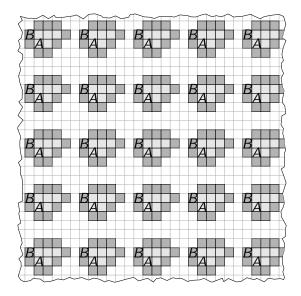
$$H_{\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{G\setminus\mathcal{A}}}) < H_{\mathcal{K}_{\mathcal{A}}\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{G\setminus\mathcal{A}}}).$$

• By continuity of K_A , there is a finite $B \supset A$ such that,

$$H_{\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{B\setminus \mathcal{A}}) < H_{\mathcal{K}_{\mathcal{A}}\mu}(\xi^{\mathcal{A}}|\mathcal{F}_{\Theta},\xi^{\mathcal{A}^{B\setminus \mathcal{A}}}).$$

• Find a set *D* of positive density, *d*(*D*), such that copies of *B* centered at elements of *D* are disjoint.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへの



• Let
$$\mu_0 = \mu$$
, $\mu_i = K_{A_i} \mu_{i-1}$, $\mu_+ = \lim_i \mu_i$

• Let
$$\mu_0 = \mu$$
, $\mu_i = K_{A_i}\mu_{i-1}$, $\mu_+ = \lim_i \mu_i$
• Let $\varepsilon = H_{K_A\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{A^{B \setminus A}}) - H_{\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{B \setminus A})$. then

• Let
$$\mu_0 = \mu$$
, $\mu_i = K_{A_i}\mu_{i-1}$, $\mu_+ = \lim_i \mu_i$
• Let $\varepsilon = H_{K_A\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{A^{B \setminus A}}) - H_{\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{B \setminus A})$. then
 $H_{\mu_+}(\xi^{F_n} | \mathcal{F}_{\Theta}) - H_{\mu}(\xi^{F_n} | \mathcal{F}_{\Theta}) \ge \varepsilon d(D) |F_n| + o(|F_n|).$

• Let
$$\mu_0 = \mu$$
, $\mu_i = K_{A_i}\mu_{i-1}$, $\mu_+ = \lim_i \mu_i$
• Let $\varepsilon = H_{K_A\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{A^{B \setminus A}}) - H_{\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{B \setminus A})$. then
 $H_{\mu_+}(\xi^{F_n} | \mathcal{F}_{\Theta}) - H_{\mu}(\xi^{F_n} | \mathcal{F}_{\Theta}) \ge \varepsilon d(D)|F_n| + o(|F_n|).$

• Thus, $h_{\mu_+}(\Omega) - h_{\mu}(\Omega) > \varepsilon d(D)$; a contradiction.

・ロト・日本・ヨト・ヨー シック

• Let
$$\mu_0 = \mu$$
, $\mu_i = K_{A_i}\mu_{i-1}$, $\mu_+ = \lim_i \mu_i$
• Let $\varepsilon = H_{K_A\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{A^{B \setminus A}}) - H_{\mu}(\xi^A | \mathcal{F}_{\Theta}, \xi^{B \setminus A})$. then
 $H_{\mu_+}(\xi^{F_n} | \mathcal{F}_{\Theta}) - H_{\mu}(\xi^{F_n} | \mathcal{F}_{\Theta}) \ge \varepsilon d(D) |F_n| + o(|F_n|).$

- Thus, $h_{\mu_+}(\Omega) h_{\mu}(\Omega) > \varepsilon d(D)$; a contradiction.
- But μ⁺ need not be G-invariant. Replace μ₊ by any limit point of

$$\frac{1}{|F_m|}\sum_{g\in F_m}g^{-1}\mu_+.$$

• X, Y: G-subshifts

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : G-invariant measure on Y

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : *G*-invariant measure on *Y*
- (Ledrappier-Walters, 1978) Measure of maximal relative entropy is a *G*-invariant measure μ on *X* that has maximal entropy, $h(\mu)$ among all measures that project to ν .

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : *G*-invariant measure on *Y*
- (Ledrappier-Walters, 1978) Measure of maximal relative entropy is a *G*-invariant measure μ on *X* that has maximal entropy, $h(\mu)$ among all measures that project to ν .
- (Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any measure of maximal relative entropy, in LW sense, is Gibbs relative to ν.

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : G-invariant measure on Y
- (Ledrappier-Walters, 1978) Measure of maximal relative entropy is a *G*-invariant measure μ on *X* that has maximal entropy, $h(\mu)$ among all measures that project to ν .
- (Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any measure of maximal relative entropy, in LW sense, is Gibbs relative to ν.
- View as a relative system:

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : G-invariant measure on Y
- (Ledrappier-Walters, 1978) Measure of maximal relative entropy is a *G*-invariant measure μ on *X* that has maximal entropy, $h(\mu)$ among all measures that project to ν .
- (Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any measure of maximal relative entropy, in LW sense, is Gibbs relative to ν.
- View as a relative system:
 - $\Theta := Y$ environment; $X_y := \eta^{-1}(y)$

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : G-invariant measure on Y
- (Ledrappier-Walters, 1978) Measure of maximal relative entropy is a *G*-invariant measure μ on *X* that has maximal entropy, $h(\mu)$ among all measures that project to ν .
- (Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any measure of maximal relative entropy, in LW sense, is Gibbs relative to ν.
- View as a relative system:
 - $\Theta := Y$ environment; $X_y := \eta^{-1}(y)$
 - $\Omega = \{(y, x) : x \in X_y\}$ relative system;

- X, Y: G-subshifts
- η : X → Y: a topological factor map, i.e., a G-equivariant continuous surjection from X onto Y.
- ν : G-invariant measure on Y
- (Ledrappier-Walters, 1978) Measure of maximal relative entropy is a *G*-invariant measure μ on *X* that has maximal entropy, $h(\mu)$ among all measures that project to ν .
- (Alahbakhshi-Quas, 2013) For G = Z and X an SFT, any measure of maximal relative entropy, in LW sense, is Gibbs relative to ν.
- View as a relative system:
 - $\Theta := Y$ environment; $X_y := \eta^{-1}(y)$
 - $\Omega = \{(y,x): x \in X_y\}$ relative system; $\Omega \leftrightarrow X$

Theorem

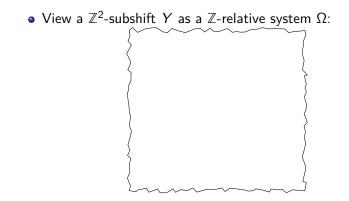
Assume that X is a G-subshift that satisfies weak TMP. Then any measure of maximal pressure relative to ν , in LW sense, is Gibbs relative to ν .

Theorem

Assume that X is a G-subshift that satisfies weak TMP. Then any measure of maximal pressure relative to ν , in LW sense, is Gibbs relative to ν .

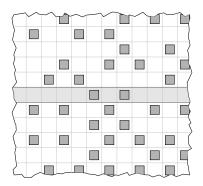
Proof: Show that if X satisfies weak TMP, then Ω satisfies relative weak TMP. Apply relative LR Theorem. \Box

(日) (部) (注) (注) (三)

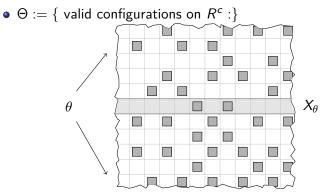


◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

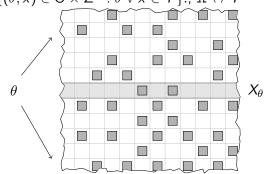
- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0



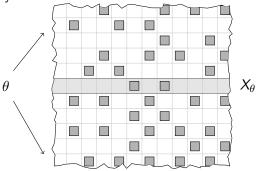
- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0



- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0
- $\Theta := \{ \text{ valid configurations on } R^c : \}$
- $\Omega := \{(\theta, x) \in \Theta \times \Sigma^R : \theta \lor x \in Y\}.; \ \Omega \leftrightarrow Y$

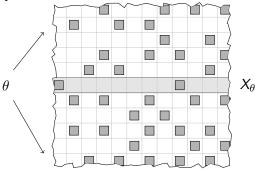


- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0
- $\Theta := \{ \text{ valid configurations on } R^c : \}$
- $\Omega := \{(\theta, x) \in \Theta \times \Sigma^R : \theta \lor x \in Y\}.; \Omega \leftrightarrow Y$
- $\mathbb Z$ acts by the horizontal shift on $\Omega.$



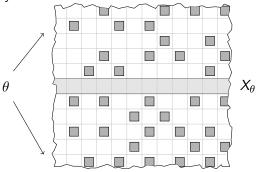
イロン イヨン イヨン イヨン 三日

- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0
- $\Theta := \{ \text{ valid configurations on } R^c : \}$
- $\Omega := \{(\theta, x) \in \Theta \times \Sigma^R : \theta \lor x \in Y\}.; \Omega \leftrightarrow Y$
- $\mathbb Z$ acts by the horizontal shift on Ω .

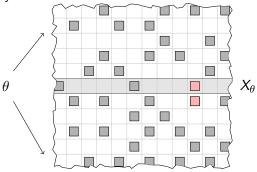


イロト イヨト イヨト イヨト

- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0
- $\Theta := \{ \text{ valid configurations on } R^c : \}$
- $\Omega := \{(\theta, x) \in \Theta \times \Sigma^R : \theta \lor x \in Y\}.; \Omega \leftrightarrow Y$
- $\mathbb Z$ acts by the horizontal shift on Ω .



- View a \mathbb{Z}^2 -subshift Y as a \mathbb{Z} -relative system Ω :
- *R* := row 0
- $\Theta := \{ \text{ valid configurations on } R^c : \}$
- $\Omega := \{(\theta, x) \in \Theta \times \Sigma^R : \theta \lor x \in Y\}.; \Omega \leftrightarrow Y$
- $\mathbb Z$ acts by the horizontal shift on Ω .



• Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .

- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a \mathbb{Z} -invariant measure on Ω that projects to ν .

- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a \mathbb{Z} -invariant measure on Ω that projects to ν .
- If μ is a \mathbb{Z}^2 -equilibrium measure, is it also a \mathbb{Z} -relative equilibrium measure?

- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a \mathbb{Z} -invariant measure on Ω that projects to ν .
- If μ is a \mathbb{Z}^2 -equilibrium measure, is it also a $\mathbb{Z}\text{-relative equilibrium measure?}$
- \bullet Yes, if Ω satisfies relative weak TMP and relative D-mixing

イロト イヨト イヨト イヨト 三日

- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a \mathbb{Z} -invariant measure on Ω that projects to ν .
- If μ is a \mathbb{Z}^2 -equilibrium measure, is it also a \mathbb{Z} -relative equilibrium measure?
- Yes, if Ω satisfies relative weak TMP and relative D-mixing because:

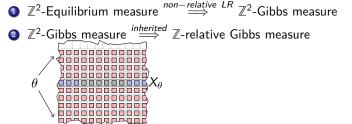
イロト イヨト イヨト イヨト 三日

- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a $\mathbb Z\text{-invariant}$ measure on Ω that projects to $\nu.$
- If μ is a \mathbb{Z}^2 -equilibrium measure, is it also a $\mathbb{Z}\text{-relative equilibrium measure?}$
- Yes, if Ω satisfies relative weak TMP and relative D-mixing because:

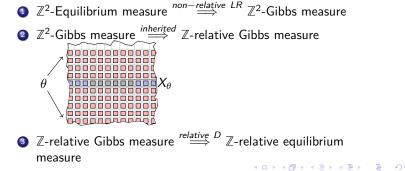
$$\ \, \textcircled{2}^2-Equilibrium measure} \overset{non-relative \ LR}{\Longrightarrow} \ \, \mathbb{Z}^2-Gibbs measure}$$

イロン イロン イヨン イヨン 一日

- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a \mathbb{Z} -invariant measure on Ω that projects to ν .
- If μ is a \mathbb{Z}^2 -equilibrium measure, is it also a \mathbb{Z} -relative equilibrium measure?
- Yes, if Ω satisfies relative weak TMP and relative D-mixing because:



- Given a \mathbb{Z}^2 -invariant measure μ on Y, let ν be projection of μ on Θ .
- Regard μ as a $\mathbb Z\text{-invariant}$ measure on Ω that projects to $\nu.$
- If μ is a \mathbb{Z}^2 -equilibrium measure, is it also a \mathbb{Z} -relative equilibrium measure?
- Yes, if Ω satisfies relative weak TMP and relative D-mixing because:



 Weakened hypothesis: any subshift, instead of SFT; Weakened conclusion: Gibbs condition only on pairs of interchangeable patterns.

- Weakened hypothesis: any subshift, instead of SFT; Weakened conclusion: Gibbs condition only on pairs of interchangeable patterns.
- Given a subshift X ⊆ Σ^G and finite A ⊂ G, patterns
 u, v ∈ Σ^A are *interchangeable* in X if for every w ∈ Σ^{G\A}, we have u ∨ w ∈ X if and only if v ∨ w ∈ X.

- Weakened hypothesis: any subshift, instead of SFT; Weakened conclusion: Gibbs condition only on pairs of interchangeable patterns.
- Given a subshift X ⊆ Σ^G and finite A ⊂ G, patterns
 u, v ∈ Σ^A are *interchangeable* in X if for every w ∈ Σ^{G\A}, we have u ∨ w ∈ X if and only if v ∨ w ∈ X.
- Tom's Generalized LR Theorem: For an *arbitrary* \mathbb{Z}^d -subshift X, equilibrium measure μ and interchangeable patterns $u, v \in \Sigma^A$ in X and μ -almost every $x \in [u] \cup [v]$,

$$\mu([u] \,|\, \xi^{\mathcal{A}^{\complement}})(x) = \mu([v] \,|\, \xi^{\mathcal{A}^{\complement}})(x)$$

- Weakened hypothesis: any subshift, instead of SFT; Weakened conclusion: Gibbs condition only on pairs of interchangeable patterns.
- Given a subshift X ⊆ Σ^G and finite A ⊂ G, patterns
 u, v ∈ Σ^A are *interchangeable* in X if for every w ∈ Σ^{G\A}, we have u ∨ w ∈ X if and only if v ∨ w ∈ X.
- Tom's Generalized LR Theorem: For an *arbitrary* \mathbb{Z}^d -subshift X, equilibrium measure μ and interchangeable patterns $u, v \in \Sigma^A$ in X and μ -almost every $x \in [u] \cup [v]$,

$$\frac{\mu(u \mid \xi^{A^{\complement}})(x)}{e^{-E_{A \mid A^{\complement}}(u \lor x_{A^{\complement}})}} = \frac{\mu(v \mid \xi^{A^{\complement}})(x)}{e^{-E_{A \mid A^{\complement}}(v \lor x_{A^{\complement}})}}$$

- Weakened hypothesis: any subshift, instead of SFT; Weakened conclusion: Gibbs condition only on pairs of interchangeable patterns.
- Given a subshift X ⊆ Σ^G and finite A ⊂ G, patterns
 u, v ∈ Σ^A are *interchangeable* in X if for every w ∈ Σ^{G\A}, we have u ∨ w ∈ X if and only if v ∨ w ∈ X.
- Tom's Generalized LR Theorem: For an *arbitrary* \mathbb{Z}^d -subshift X, equilibrium measure μ and interchangeable patterns $u, v \in \Sigma^A$ in X and μ -almost every $x \in [u] \cup [v]$,

$$\frac{\mu(u \mid \xi^{A^{\complement}})(x)}{e^{-E_{A \mid A^{\complement}}(u \lor x_{A^{\complement}})}} = \frac{\mu(v \mid \xi^{A^{\complement}})(x)}{e^{-E_{A \mid A^{\complement}}(v \lor x_{A^{\complement}})}}$$

• Tom's LR Theorem \Rightarrow LR Theorem, i.e., it is a generalization.

< ロ ト < 団 ト < 臣 ト < 臣 ト 三 の Q(</p>

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ}

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

Theorem (Relative version of Meyerovitch's theorem)

Let Ω be a relative system, with Θ a standard Borel space.

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

Theorem (Relative version of Meyerovitch's theorem)

Let Ω be a relative system, with Θ a standard Borel space. Let ν be an invariant probability measure on Θ

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

Theorem (Relative version of Meyerovitch's theorem)

Let Ω be a relative system, with Θ a standard Borel space. Let ν be an invariant probability measure on Θ and Φ a relative absolutely summable interaction on Ω .

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

Theorem (Relative version of Meyerovitch's theorem)

Let Ω be a relative system, with Θ a standard Borel space. Let ν be an invariant probability measure on Θ and Φ a relative absolutely summable interaction on Ω . Let μ be an equilibrium measure for Φ relative to ν .

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \lor w \in X_{\theta}$ if and only if $v \lor w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

Theorem (Relative version of Meyerovitch's theorem)

Let Ω be a relative system, with Θ a standard Borel space. Let ν be an invariant probability measure on Θ and Φ a relative absolutely summable interaction on Ω . Let μ be an equilibrium measure for Φ relative to ν . Then, for $u, v \in \Sigma^A$, and μ -almost every $(\theta, x) \in [u] \cup [v]$ s.t. $\theta \in \Theta_{u,v}$,

For a relative system, two finite patterns $u, v \in \Sigma^A$ are interchangeable in X_{θ} if for every $w \in \Sigma^{G \setminus A}$, we have $u \vee w \in X_{\theta}$ if and only if $v \vee w \in X_{\theta}$.

 $\Theta_{u,v} := \{ \theta \in \Theta : u, v \text{ are interchangeable in } X_{\theta} \}$

Theorem (Relative version of Meyerovitch's theorem)

Let Ω be a relative system, with Θ a standard Borel space. Let ν be an invariant probability measure on Θ and Φ a relative absolutely summable interaction on Ω . Let μ be an equilibrium measure for Φ relative to ν . Then, for $u, v \in \Sigma^A$, and μ -almost every $(\theta, x) \in [u] \cup [v]$ s.t. $\theta \in \Theta_{u,v}$,

$$\frac{\mu(u \mid \xi^{A^{\complement}} \lor \mathcal{F}_{\Theta})(\theta, x)}{e^{-\mathcal{E}_{A \mid A^{\complement}}(\theta, u \lor x_{A^{\complement}})}} = \frac{\mu(v \mid \xi^{A^{\complement}} \lor \mathcal{F}_{\Theta})(\theta, x)}{e^{-\mathcal{E}_{A \mid A^{\complement}}(\theta, v \lor x_{A^{\complement}})}}$$

• Relative Tom's Theorem implies relative LR: in the same way that Tom's Theorem implies LR Theorem.

◆□> ◆□> ◆ヨ> ◆ヨ> □ ヨー

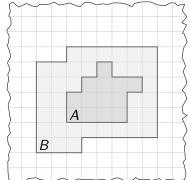
- Relative Tom's Theorem implies relative LR: in the same way that Tom's Theorem implies LR Theorem.
- Relative LR implies relative Tom!

イロト イヨト イヨト イヨト 三日

• Given a closed subset $Y \subseteq \Sigma^G$ and a finite set $A \subset G$.

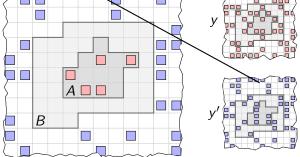
・ロト・日本・モート ヨー うへの

- Given a closed subset $Y \subseteq \Sigma^G$ and a finite set $A \subset G$.
- A *Mixing set* for A in Y is a finite set $B \supseteq A$ such that:



- Given a closed subset $Y \subseteq \Sigma^G$ and a finite set $A \subset G$.
- A *Mixing set* for A in Y is a finite set $B \supseteq A$ such that:
- for every $y, y' \in Y$, there exists $z \in Y$ satisfying $z_A = y_A$, $z_{G\setminus B} = y'_{G\setminus B}$. A 🗆 🗖 В

- Given a closed subset $Y \subseteq \Sigma^G$ and a finite set $A \subset G$.
- A *Mixing set* for A in Y is a finite set $B \supseteq A$ such that:
- for every $y, y' \in Y$, there exists $z \in Y$ satisfying $z_A = y_A$, $z_{G \setminus B} = y'_{G \setminus B}$.



イロト イヨト イヨト イヨト 三日

- Given a closed subset $Y \subseteq \Sigma^G$ and a finite set $A \subset G$.
- A *Mixing set* for A in Y is a finite set $B \supseteq A$ such that:
- for every $y, y' \in Y$, there exists $z \in Y$ satisfying $z_A = y_A$, $z_{G\setminus B} = y'_{G\setminus B}$. $A \square \square$ B

イロト イヨト イヨト イヨト 三日