The torsion problem for the automorphism group of a full \mathbb{Z}^{d}-shift and its topological fullgroup.

Sebastián Barbieri

From a joint work with Jarkko Kari and Ville Salo
LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon
Wandering Seminar, Wrocław
March, 2016

Motivation

Given a fullshift $\left(\mathcal{A}^{\mathbb{Z}}, \sigma\right)$ recall that its automorphism group is given by

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right)=\left\{\phi: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}} \text { homeomorpism, }[\sigma, \phi]=\operatorname{id}\right\}
$$

Motivation

Given a fullshift $\left(\mathcal{A}^{\mathbb{Z}}, \sigma\right)$ recall that its automorphism group is given by

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right)=\left\{\phi: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}} \text { homeomorpism, }[\sigma, \phi]=\operatorname{id}\right\}
$$

It is still unknown whether $\operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right) \cong \operatorname{Aut}\left(\{0,1,2\}^{\mathbb{Z}}\right)$, but we know that for any pair of alphabets \mathcal{A}, \mathcal{B} with at least two elements

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right) \hookrightarrow \operatorname{Aut}\left(\mathcal{B}^{\mathbb{Z}}\right)
$$

Motivation

Given a fullshift $\left(\mathcal{A}^{\mathbb{Z}}, \sigma\right)$ recall that its automorphism group is given by

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right)=\left\{\phi: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}} \text { homeomorpism, }[\sigma, \phi]=\operatorname{id}\right\}
$$

It is still unknown whether $\operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right) \cong \operatorname{Aut}\left(\{0,1,2\}^{\mathbb{Z}}\right)$, but we know that for any pair of alphabets \mathcal{A}, \mathcal{B} with at least two elements

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right) \hookrightarrow \operatorname{Aut}\left(\mathcal{B}^{\mathbb{Z}}\right)
$$

Nevertheless, we know that $\operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right) \not \neq \operatorname{Aut}\left(\{0,1,2,3\}^{\mathbb{Z}}\right)$. The proof comes from studying the roots of elements in the center.

Motivation

It might be a good idea to understand torsion in these groups.

Definition (Torsion problem)

Let $G=\langle S \mid R\rangle$ be a finitely generated group. The torsion problem of G is the language $\operatorname{TP}(G)$ where

$$
\operatorname{TP}(G)=\left\{w \in\left(S \cup S^{-1}\right)^{*} \mid \exists n \in \mathbb{N} \text { such that } w^{n}={ }_{G} 1\right\}
$$

Motivation

It might be a good idea to understand torsion in these groups.

Definition (Torsion problem)

Let $G=\langle S \mid R\rangle$ be a finitely generated group. The torsion problem of G is the language $\operatorname{TP}(G)$ where

$$
\operatorname{TP}(G)=\left\{w \in\left(S \cup S^{-1}\right)^{*} \mid \exists n \in \mathbb{N} \text { such that } w^{n}=G 1\right\}
$$

Example

Let $\mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \cong\left\langle a, b \mid[a, b], b^{3}\right\rangle$. Then

$$
\operatorname{TP}(\mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z})=\left\{\left.w \in\left\{a, b, a^{-1}, b^{-1}\right\}^{*}| | w\right|_{a}=|w|_{a^{-1}}\right\}
$$

Talk highlights

Theorem (B, Kari, Salo)
For any finite alphabet $|A| \geq 2, \operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ contains a finitely generated subgroup with undecidable torsion problem. The same result also holds for any sofic subshift of positive entropy.

Talk highlights

Theorem (B, Kari, Salo)

For any finite alphabet $|A| \geq 2, \operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ contains a finitely generated subgroup with undecidable torsion problem. The same result also holds for any sofic subshift of positive entropy.

The topological fullgroup of a dynamical system (X, T) where $T: G \curvearrowright X$ is the group
$[[T]]=\left\{\phi \in \operatorname{Homeo}(X) \mid \exists s: X \rightarrow G\right.$ continuous, $\left.\phi(x)=T^{s(x)}(x)\right\}$.

Theorem (B, Kari, Salo)

Let $\left(A^{\mathbb{Z}^{d}}, \sigma\right)$ be a full shift and $|A| \geq 2$. The topological fullgroup $[[\sigma]]$ contains a finitely generated subgroup with undecidable torsion problem if and only if $d \geq 2$.

Background

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

Background

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Background

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Background

This defines a natural action

$$
T: \Sigma^{\mathbb{Z}} \times Q \rightarrow \Sigma^{\mathbb{Z}} \times Q
$$

Background

- The composition of two actions $T \circ T^{\prime}$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.
- The composition of two actions $T \circ T^{\prime}$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by some $k \in \mathbb{N}$ is not closed under composition or inverses.

Definition

Let's get rid of these constrains. Given F, F^{\prime} finite subsets of a group G, consider instead of δ_{T} a function :

$$
f_{T}: \Sigma^{F} \times Q \rightarrow \Sigma^{F^{\prime}} \times Q \times G
$$

Definition

Let's get rid of these constrains. Given F, F^{\prime} finite subsets of a group G, consider instead of δ_{T} a function :

$$
f_{T}: \Sigma^{F} \times Q \rightarrow \Sigma^{F^{\prime}} \times Q \times G,
$$

Let $F=F^{\prime}=\{0,1,2\}^{2}$, then $f_{T}(p, q)=\left(p^{\prime}, q^{\prime}, \vec{d}\right)$ means :
-

- Turn state q into state q^{\prime}
- Move head by \vec{d}.

Moving head model

f_{T} defines naturally an action

Moving head model

f_{T} defines naturally an action

$$
T: \Sigma^{G} \times Q \times \mathbb{Z}^{d} \rightarrow \Sigma^{G} \times Q \times \mathbb{Z}^{d}
$$

$$
f\left(\bullet \circ, q_{1}\right)=\left(\circ \circ, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}
$$

Let $|\Sigma|=n$ and $|Q|=k .(\operatorname{RTM}(G, n, k), \circ)$ is the group of all such T which are bijective.
\triangleright It can be seen as a group of CA over a sofic shift.

Moving tape model

f_{T} defines naturally an action

Moving tape model

f_{T} defines naturally an action

$$
T: \Sigma^{G} \times Q \rightarrow \Sigma^{G} \times Q
$$

$$
f\left(\bullet \circ, q_{1}\right)=\left(\circ \bullet, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}
$$

Let $|\Sigma|=n$ and $|Q|=k .\left(\operatorname{RTM}_{\mathrm{fix}}(G, n, k), \circ\right)$ is the group of all such T which are bijective.
\triangleright It's like the topological fullgroup but admits local changes.

Equivalence of the models

$\operatorname{RTM}_{\text {fix }}(G, 1, k) \cong S_{k}$ and $G \hookrightarrow \operatorname{RTM}(G, 1, k)$.
Proposition
If $n \geq 2$ then : $\operatorname{RTM}_{\mathrm{fix}}(G, n, k) \cong \operatorname{RTM}(G, n, k)$.

Properties of RTM

Proposition

If $n \geq 2 \operatorname{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.

Properties of RTM

Proposition

If $n \geq 2 \operatorname{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.
Proof: We find an epimorphism from RTM to a non-finitely generated group.
Let $T \in \mathrm{RTM}_{\text {fix }}(\mathbb{Z}, n, k)$, therefore, it has a cocycle $s: \Sigma^{\mathbb{Z}} \times Q \rightarrow \mathbb{Z}$. Define

$$
\alpha(T):=\mathrm{E}_{\mu}(s)=\int_{\Sigma^{\mathbb{Z}} \times Q} s(x, q) d \mu
$$

One can check that $\alpha\left(T_{1} \circ T_{2}\right)=\alpha\left(T_{1}\right)+\alpha\left(T_{2}\right)$.
Therefore $\alpha: \operatorname{RTM}(\mathbb{Z}, n, k) \rightarrow \mathbb{Q}$ is an homomorphism

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

$T_{\text {SURF }, m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha\left(T_{\text {SURF }, m}\right)=1 / n^{m}$

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

$T_{\text {SURF }, m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha\left(T_{\text {SURF }, m}\right)=1 / n^{m}$
$\left\langle\left(1 / n^{m}\right)_{m \in \mathbb{N}}\right\rangle \subset \alpha(\operatorname{RTM}(\mathbb{Z}, n, k))$ which is thus a non-finitely generated subgroup of \mathbb{Q}.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.
$\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is a recursively presented group with decidable word problem. (Unlike $\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right)$)

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}(G, n, k) \longrightarrow$ Reversible finite-state automata.

Note that for $\left(\{0, \ldots, n-1\}^{G}, \sigma\right)$ then $[[\sigma]]=\operatorname{RFA}(G, n, 1)$.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}(G, n, k) \longrightarrow$ Reversible finite-state automata.
$\triangleright \operatorname{OB}(G, n, k) \longrightarrow$ Oblivous machines $\langle\mathrm{LP}, \sigma\rangle$.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}(G, n, k) \longrightarrow$ Reversible finite-state automata.
$\triangleright \mathrm{OB}(G, n, k) \longrightarrow$ Oblivous machines $\langle\mathrm{LP}, \sigma\rangle$.
$\triangleright \mathrm{EL}(G, n, k) \longrightarrow$ Elementary machines $\langle\mathrm{LP}, \mathrm{RFA}\rangle$.

The torsion problem for [[$\sigma]$]

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof idea : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof idea : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ has a finitely generated subgroup with undecidable torsion problem for $d, n \geq 2$.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof idea : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ has a finitely generated subgroup with undecidable torsion problem for $d, n \geq 2$.

The snake problem

Can we tile the plane in a way which produces a bi-infinite path?

The snake problem

Theorem (Kari)
The snake tiling problem is undecidable.
The proof uses a plane filling curve generated by a substitution.

Theorem (Kari)
The snake tiling problem is undecidable.
The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct $T \in$ RFA which walks the path of the snake, and turns back if it encounters a problem.

The torsion problem for RFA : Cheating version

We'll first do it by cheating : Arbitrary alphabet τ as an instance of the snake tiling problem and at least two states L, R.

- Let t be the tile at $(0,0)$. If $t=\epsilon$, do nothing.
- Otherwise :
- If the state is L. Check the tile in the direction $\operatorname{left}(t)$. If it matches correctly with t move the head to that position, otherwise switch the state to R.
- If the state is R. Check the tile in the direction $\operatorname{right}(t)$. If it matches correctly with t move the head to that position, otherwise switch the state to L

The torsion problem for RFA : The real thing

We are going to code everything in a binary alphabet and use no states.

1	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	b_{1}	b_{2}	b_{3}	0	1
1	0	r_{1}	r_{2}	b_{4}	0	1
1	0	I_{1}	l_{2}	b_{5}	0	1
1	0	0	0	0	0	1
1	1	1	1	1	1	1

Let C be the set of all patterns of this form.

The torsion problem for RFA : The real deal

Consider the group spanned by the following machines :
(1) $\left\{T_{\vec{v}}\right\}_{v \in D}$ that shifts by v
(2) $T_{\text {walk }}$ that walks along the direction codified by I_{1}, I_{2} or r_{1}, r_{2} depending on the direction bit.
(3) $\left\{g_{c}\right\}_{c \in C}$ that flips the direction bit if the current pattern is $c \in C$,
(1) $\left\{h_{c}\right\}_{c \in C}$ that flips the auxiliary bit if the current pattern is $c \in C$,
(3) $\left\{g_{+, c}\right\}_{c \in C}$ that adds the auxiliary bit to the direction bit if the current pattern is $c \in C$, and
(0) $\left\{h_{+, c}\right\}_{c \in C}$ that adds the direction bit to the auxiliary bit if the current pattern is $c \in C$,

The previous group spans the machines g_{p} and h_{p} for patterns p composed of fragments of c in compatible positions.

The previous group spans the machines g_{p} and h_{p} for patterns p composed of fragments of c in compatible positions.

$$
\begin{aligned}
& g_{p^{*}}=\left(T_{-7 \vec{v}} \circ g_{+, c} \circ T_{7 \vec{v}} \circ h_{p_{F \backslash\{\vec{v}\}}^{*}}\right)^{2} . \\
& h_{p^{*}}=\left(T_{-7 \vec{v}} \circ h_{+, c} \circ T_{7 \vec{v}} \circ g_{p_{F \backslash\{\vec{v}\}}^{*}}\right)^{2} .
\end{aligned}
$$

Finally, we use these machines to code the first ones.

$$
T^{*}=\left(T_{\text {walk }}\right)^{M} \circ \prod_{p^{*} \in \mathcal{M}} g_{p^{*}} \circ \prod_{c \in C} g_{c}
$$

Acts as the first machine, but using these coded macrotiles.

The torsion problem for RFA : The real deal

$$
T^{*}=\left(T_{\text {walk }}\right)^{M} \circ \prod_{p^{*} \in \mathcal{M}} g_{p^{*}} \circ \prod_{c \in C} g_{c}
$$

Acts as the first machine, but using these coded macrotiles.

Corollary

Let $d \geq 2$ and σ be the shift action of \mathbb{Z}^{d} over a full shift $\mathcal{A}^{\mathbb{Z}^{d}}$ where $|\mathcal{A}| \geq 2$. Then the full group $[[\sigma]]$ contains a finitely generated subgroup with undecidable torsion problem.

The torsion problem for $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows:
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows :
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
(2) Classical Turing machines embed into $\mathrm{EL}(\mathbb{Z}, n, k)$.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows :
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
(2) Classical Turing machines embed into $\mathrm{EL}(\mathbb{Z}, n, k)$.
(3) $\mathrm{EL}(\mathbb{Z}, n, k)$ is finitely generated.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows :
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
(2) Classical Turing machines embed into $\mathrm{EL}(\mathbb{Z}, n, k)$.
(3) $\mathrm{EL}(\mathbb{Z}, n, k)$ is finitely generated.
(9) There exists a "torsion preserving function" from $\mathrm{EL}(\mathbb{Z}, n, k)$ to $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$

$$
\text { Classical } \hookrightarrow \text { EL" } \hookrightarrow " \operatorname{Aut}\left(A^{\mathbb{Z}}\right)
$$

This proof is inspired both on the existence of strongly universal reversible gates for permutations of Σ^{m} and the Juschenko Monod proof for the fullgroup of minimal actions.

This proof is inspired both on the existence of strongly universal reversible gates for permutations of Σ^{m} and the Juschenko Monod proof for the fullgroup of minimal actions.

The set $A_{1} \cup A_{2} \cup A_{3}$ generate $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \sigma\right\rangle$.

- $A_{1}=$ Shifts $T_{e_{i}}$ for $\left\{e_{i}\right\}_{i \leq d}$ a base of \mathbb{Z}^{d}.
- $A_{2}=$ All $T_{\pi} \in \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$ of fixed support $E \subset \mathbb{Z}^{d}$ of size 4.
- $A_{3}=$ The swaps of symbols in positions $\left(\overrightarrow{0}, e_{i}\right)$.

$E L(\mathbb{Z}, n, k)$ is finitely generated.

$\mathrm{EL}(\mathbb{Z}, n, k)=\langle\mathrm{OB}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle$

$E L(\mathbb{Z}, n, k)$ is finitely generated.

$$
\mathrm{EL}(\mathbb{Z}, n, k)=\langle\mathrm{OB}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle
$$

We can show that $\operatorname{RFA}(\mathbb{Z}, n, k)$ is generated by shifts and controlled position swaps.

- f is controlled position swap if for some $u, v \in \Sigma^{*}$, $f(x u . a v y)=x u a . v y$ and $f(x u a . v y)=x u . a v y$.

$$
\mathrm{EL}(\mathbb{Z}, n, k)=\langle\mathrm{OB}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle
$$

We can show that $\operatorname{RFA}(\mathbb{Z}, n, k)$ is generated by shifts and controlled position swaps.

- f is controlled position swap if for some $u, v \in \Sigma^{*}$, $f(x u . a v y)=x u a . v y$ and $f(x u a . v y)=x u . a v y$.
We only need to implement controlled position swaps [technical].

Definition

Let G and H be groups. We say a function $\phi: G \rightarrow H$ is finiteness preserving (FP) if the following holds : If $F \subset G^{*}$ is finite, then the group $\langle w \mid w \in F\rangle \leq G$ is infinite if and only if the group $\left\langle\phi\left(w_{1}\right) \phi\left(w_{2}\right) \cdots \phi\left(w_{|w|}\right) \mid w \in F\right\rangle$ is infinite.

Definition

Let G and H be groups. We say a function $\phi: G \rightarrow H$ is finiteness preserving (FP) if the following holds : If $F \subset G^{*}$ is finite, then the group $\langle w \mid w \in F\rangle \leq G$ is infinite if and only if the group $\left\langle\phi\left(w_{1}\right) \phi\left(w_{2}\right) \cdots \phi\left(w_{|w|}\right) \mid w \in F\right\rangle$ is infinite.

Lemma

An FP function from a f.g. H to G forces the torsion problem of G to be harder than the one of H.

Construction of the FP function

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.

Construction of the FP function

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\rightarrow^{*}(q, a) \leftarrow^{*} \mid \rightarrow^{*} \leftarrow^{*}\right)^{*}$.

Construction of the FP function

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\rightarrow^{*}(q, a) \leftarrow^{*} \mid \rightarrow^{*} \leftarrow^{*}\right)^{*}$.
- Define ϕ to act as a conveyor belt over each zone

$f_{T}\left(u_{2} u_{3} \cdot u_{4} u_{5} u_{6} v_{6}, q\right)=\left(w_{0} w_{1} \cdot w_{2} w_{3} w_{4} w_{5}, r, 4\right)$

Construction of the FP function

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\rightarrow^{*}(q, a) \leftarrow^{*} \mid \rightarrow^{*} \leftarrow^{*}\right)^{*}$.
- Define ϕ to act as a conveyor belt over each zone
- ϕ is a computable FP function.

Construction of the FP function

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\rightarrow^{*}(q, a) \leftarrow^{*} \mid \rightarrow^{*} \leftarrow^{*}\right)^{*}$.
- Define ϕ to act as a conveyor belt over each zone
- ϕ is a computable FP function.
\triangleright There is a finitely generated subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ with undecidable torsion problem.
$\triangleright \operatorname{As} \operatorname{Aut}\left(A^{\mathbb{Z}}\right) \hookrightarrow \operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right)$ the same is valid for any full shift, mixing SFTs, sofic shift of positive entropy, etc.

Thank you for your attention!

