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Motivation

Given a fullshift (AZ, σ) recall that its automorphism group is
given by

Aut(AZ) = {φ : AZ → AZ homeomorpism, [σ, φ] = id}

It is still unknown whether Aut({0, 1}Z) ∼= Aut({0, 1, 2}Z), but we
know that for any pair of alphabets A,B with at least two elements

Aut(AZ) ↪→ Aut(BZ)

Nevertheless, we know that Aut({0, 1}Z) � Aut({0, 1, 2, 3}Z). The
proof comes from studying the roots of elements in the center.
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Motivation

It might be a good idea to understand torsion in these groups.

Definition (Torsion problem)
Let G = 〈S | R〉 be a finitely generated group. The torsion problem
of G is the language TP(G) where

TP(G) = {w ∈ (S ∪ S−1)∗ | ∃n ∈ N such that wn =G 1}

Example
Let Z× Z/3Z ∼= 〈a, b | [a, b], b3〉. Then

TP(Z× Z/3Z) = {w ∈ {a, b, a−1, b−1}∗ | |w |a = |w |a−1}
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Talk highlights

Theorem (B, Kari, Salo)
For any finite alphabet |A| ≥ 2, Aut(AZ) contains a finitely
generated subgroup with undecidable torsion problem. The same
result also holds for any sofic subshift of positive entropy.

The topological fullgroup of a dynamical system (X ,T ) where
T : G y X is the group

[[T ]] = {φ ∈ Homeo(X ) | ∃s : X → G continuous, φ(x) = T s(x)(x)}.

Theorem (B, Kari, Salo)

Let (AZd
, σ) be a full shift and |A| ≥ 2. The topological fullgroup

[[σ]] contains a finitely generated subgroup with undecidable
torsion problem if and only if d ≥ 2.
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Recall that a Turing machine is defined by a rule :

δT : Σ× Q → Σ× Q × {−1, 0, 1}
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T : ΣZ × Q → ΣZ × Q
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Background

The composition of two actions T ◦ T ′ is not necessarily an
action generated by a Turing machine.
if the action T is a bijection then the inverse it not necessarily
an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by
some k ∈ N is not closed under composition or inverses.
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Definition

Let’s get rid of these constrains. Given F ,F ′ finite subsets of a
group G , consider instead of δT a function :

fT : ΣF × Q → ΣF ′ × Q × G ,

Let F = F ′ = {0, 1, 2}2, then fT (p, q) = (p′, q′, ~d) means :

p p′

Turn state q into state q′

Move head by ~d .
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Moving head model

fT defines naturally an action

T : ΣG × Q × Zd → ΣG × Q × Zd

q1
q2

f ( , q1) = ( , q2, (1, 1)) F = {(0, 0), (1, 0), (1, 1)}

T

Let |Σ| = n and |Q| = k. (RTM(G , n, k), ◦) is the group of all
such T which are bijective.
B It can be seen as a group of CA over a sofic shift.
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fT defines naturally an action
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Let |Σ| = n and |Q| = k. (RTMfix(G , n, k), ◦) is the group of all
such T which are bijective.
B It’s like the topological fullgroup but admits local changes.
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Equivalence of the models

RTMfix(G , 1, k) ∼= Sk and G ↪→ RTM(G , 1, k).

Proposition
If n ≥ 2 then : RTMfix(G , n, k) ∼= RTM(G , n, k).



Properties of RTM

Proposition
If n ≥ 2 RTM(Z, n, k) is not finitely generated.

Proof : We find an epimorphism from RTM to a non-finitely
generated group.
Let T ∈ RTMfix(Z, n, k), therefore, it has a cocycle
s : ΣZ × Q → Z. Define

α(T ) := Eµ(s) =
∫

ΣZ×Q
s(x , q)dµ,

One can check that α(T1 ◦ T2) = α(T1) + α(T2).
Therefore α : RTM(Z, n, k)→ Q is an homomorphism
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Properties of RTM

Now consider the machine TSURF,m where for all a ∈ Σ and q ∈ Q :

0 0 0 00 0 0 a

q

TSURF,m

00 0 00 0 0a

q

f (0ma, q) = (a0m, q, 1). Otherwise f (u, q) = (u, q, 0).

TSURF,m ∈ RTM(Z, n, k) and α(TSURF,m) = 1/nm

〈(1/nm)m∈N〉 ⊂ α(RTM(Z, n, k)) which is thus a non-finitely
generated subgroup of Q.
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Computability properties

Given a finite rules : f , f ′ :

It is decidable (in any model) whether Tf = Tf ′ .
We can effectively calculate a rule for Tf ◦ Tf ′ .
It is decidable whether Tf is reversible.
If it is, we can effectively compute a rule for T−1f .

RTM(Zd , n, k) is a recursively presented group with decidable
word problem. (Unlike Aut(AZ))
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Interesting subgroups of RTM

B LP(G , n, k) −→ Local permutations.

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

q

Tπ
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r

B RFA(G , n, k) −→ Reversible finite-state automata.
B OB(G , n, k) −→ Oblivous machines 〈LP, σ〉.
B EL(G , n, k) −→ Elementary machines 〈LP,RFA〉.



Interesting subgroups of RTM

B LP(G , n, k) −→ Local permutations.
B RFA(G , n, k) −→ Reversible finite-state automata.

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

q

T

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

r

Note that for ({0, . . . , n − 1}G , σ) then [[σ]] = RFA(G , n, 1).

B OB(G , n, k) −→ Oblivous machines 〈LP, σ〉.
B EL(G , n, k) −→ Elementary machines 〈LP,RFA〉.



Interesting subgroups of RTM

B LP(G , n, k) −→ Local permutations.
B RFA(G , n, k) −→ Reversible finite-state automata.
B OB(G , n, k) −→ Oblivous machines 〈LP, σ〉.

B EL(G , n, k) −→ Elementary machines 〈LP,RFA〉.



Interesting subgroups of RTM

B LP(G , n, k) −→ Local permutations.
B RFA(G , n, k) −→ Reversible finite-state automata.
B OB(G , n, k) −→ Oblivous machines 〈LP, σ〉.
B EL(G , n, k) −→ Elementary machines 〈LP,RFA〉.



The torsion problem for [[σ]]



The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof idea : As Z is two-ended, any non-torsion machine must shift
to the left or right in at least a periodic configuration.

Theorem
RFA(Zd , n, k) has a finitely generated subgroup with undecidable
torsion problem for d , n ≥ 2.
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The snake problem

ε

Can we tile the plane in a way which produces a bi-infinite path ?



The snake problem

Theorem (Kari)
The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T ∈ RFA which walks the path of the snake, and turns back if it
encounters a problem.



The snake problem

Theorem (Kari)
The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T ∈ RFA which walks the path of the snake, and turns back if it
encounters a problem.



The torsion problem for RFA : Cheating version

We’ll first do it by cheating : Arbitrary alphabet τ as an instance
of the snake tiling problem and at least two states L,R.

Let t be the tile at (0, 0). If t = ε, do nothing.
Otherwise :

If the state is L. Check the tile in the direction left(t). If it
matches correctly with t move the head to that position,
otherwise switch the state to R.
If the state is R. Check the tile in the direction right(t). If it
matches correctly with t move the head to that position,
otherwise switch the state to L



The torsion problem for RFA : The real thing

We are going to code everything in a binary alphabet and use no
states.
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Let C be the set of all patterns of this form.



The torsion problem for RFA : The real deal

Consider the group spanned by the following machines :
1 {T~v}v∈D that shifts by v
2 Twalk that walks along the direction codified by l1, l2 or r1, r2

depending on the direction bit.
3 {gc}c∈C that flips the direction bit if the current pattern is

c ∈ C ,
4 {hc}c∈C that flips the auxiliary bit if the current pattern is

c ∈ C ,
5 {g+,c}c∈C that adds the auxiliary bit to the direction bit if the

current pattern is c ∈ C , and
6 {h+,c}c∈C that adds the direction bit to the auxiliary bit if the

current pattern is c ∈ C ,



The torsion problem for RFA : The real deal

The previous group spans the machines gp and hp for patterns p
composed of fragments of c in compatible positions.

gp∗ = (T−7~v ◦ g+,c ◦ T7~v ◦ hp∗F\{~v})
2.

hp∗ = (T−7~v ◦ h+,c ◦ T7~v ◦ gp∗F\{~v})
2.

Finally, we use these machines to code the first ones.
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T ∗ = (Twalk)M ◦
∏

p∗∈M
gp∗ ◦

∏
c∈C

gc

Acts as the first machine, but using these coded macrotiles.

Corollary

Let d ≥ 2 and σ be the shift action of Zd over a full shift AZd

where |A| ≥ 2. Then the full group [[σ]] contains a finitely
generated subgroup with undecidable torsion problem.



The torsion problem for RFA : The real deal

T ∗ = (Twalk)M ◦
∏

p∗∈M
gp∗ ◦

∏
c∈C

gc

Acts as the first machine, but using these coded macrotiles.

Corollary

Let d ≥ 2 and σ be the shift action of Zd over a full shift AZd

where |A| ≥ 2. Then the full group [[σ]] contains a finitely
generated subgroup with undecidable torsion problem.



The torsion problem for Aut(AZ)



TP(Aut(AZ)) is undecidable.

We want to prove that the torsion problem is undecidable for a f.g.
subgroup of Aut(AZ). The sketch is as follows :

1 The torsion problem for reversible classical Turing machines is
undecidable [Kari, Ollinger 2008].

2 Classical Turing machines embed into EL(Z, n, k).
3 EL(Z, n, k) is finitely generated.
4 There exists a "torsion preserving function" from EL(Z, n, k)

to Aut(AZ)

Classical ↪→ EL” ↪→ ”Aut(AZ)
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OB(Zd , n, k) is finitely generated.

This proof is inspired both on the existence of strongly universal
reversible gates for permutations of Σm and the Juschenko Monod
proof for the fullgroup of minimal actions.

The set A1 ∪ A2 ∪ A3 generate OB(Zd , n, k) = 〈LP(Zd , n, k), σ〉.
A1 = Shifts Tei for {ei}i≤d a base of Zd .
A2 =All Tπ ∈ LP(Zd , n, k) of fixed support E ⊂ Zd of size 4.
A3 = The swaps of symbols in positions (~0, ei ).
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EL(Z, n, k) is finitely generated.

EL(Z, n, k) = 〈OB(Z, n, k),RFA(Z, n, k)〉

We can show that RFA(Z, n, k) is generated by shifts and
controlled position swaps.

f is controlled position swap if for some u, v ∈ Σ∗,
f (xu.avy) = xua.vy and f (xua.vy) = xu.avy .

We only need to implement controlled position swaps [technical].
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From EL(Z, n, k) to Aut(AZ)

Definition
Let G and H be groups. We say a function φ : G → H is finiteness
preserving (FP) if the following holds : If F ⊂ G∗ is finite, then the
group 〈w | w ∈ F 〉 ≤ G is infinite if and only if the group
〈φ(w1)φ(w2) · · ·φ(w|w |) | w ∈ F 〉 is infinite.

Lemma
An FP function from a f.g. H to G forces the torsion problem of G
to be harder than the one of H.
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Construction of the FP function

Let A = {Σ2 × ({←,→} ∪ (Q × {↑, ↓}))}.

Parse the third layer into zones (→∗ (q, a)←∗ | →∗←∗)∗.
Define φ to act as a conveyor belt over each zone
φ is a computable FP function.

B There is a finitely generated subgroup of Aut(AZ) with
undecidable torsion problem.
B As Aut(AZ) ↪→ Aut({0, 1}Z) the same is valid for any full shift,
mixing SFTs, sofic shift of positive entropy, etc.
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B There is a finitely generated subgroup of Aut(AZ) with
undecidable torsion problem.
B As Aut(AZ) ↪→ Aut({0, 1}Z) the same is valid for any full shift,
mixing SFTs, sofic shift of positive entropy, etc.



Construction of the FP function

Let A = {Σ2 × ({←,→} ∪ (Q × {↑, ↓}))}.
Parse the third layer into zones (→∗ (q, a)←∗ | →∗←∗)∗.
Define φ to act as a conveyor belt over each zone
φ is a computable FP function.

B There is a finitely generated subgroup of Aut(AZ) with
undecidable torsion problem.
B As Aut(AZ) ↪→ Aut({0, 1}Z) the same is valid for any full shift,
mixing SFTs, sofic shift of positive entropy, etc.
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Thank you for your attention !
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