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What about the Grigorchuk group?

@ a, b, c,d are involutions.
@ The Grigorchuk group is infinite and finitely generated.

@ It contains no copy of Z as a subgroup. For every g € G,
there is n € N such that g" = 1¢.

@ Decidable word problem (and conjugacy problem).
@ It has intermediate growth.

@ It is commensurable to its square. ie: G and G x G have an
isomorphic finite index subgroup.
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The goal of this talk is to construct a strongly aperiodic SFT here.
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» AC is the set of configurations, x : G — A

> o0: G x A® — AC is the left shift action given by:

o(h,x)g = 0"(x)g = Xp-1g-

Definition: subshift

The pair (X, o) where X C A€ is a closed and shift-invariant set is
called a subshift.

A subshift is a set of configurations avoiding patterns from a list F.
peA®  [pl={xeA®|x|s=p}

X=Xr=A°\ | o&(Ip])
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Strongly aperiodic

A subshift X C A€ is strongly aperiodic if the shift action is free.

Vx € X,08(x) =x = g=1¢.
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An application: strongly aperiodic subshifts
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Proposition

Every non-empty Z-SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao

2015)
There exist strongly aperiodic SFTs on Z2.




Example of strongly aperiodic Z?-SFT: Robinson tileset
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What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable
word problem.

a factor of a subaction of a
G x H1 X H2—SFT

|
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Reverse chronology

Commensurability

We say that two groups Gz, G» are commensurable if they contain
finite index subgroups Hi, H> such that H; = H,.

Gl<—’H1gH2;>G2

> Recall that the Grigorchuk group G is commensurable to its
square G X G

> if G is commensurable to G X G, then it is also commensurable
to G x G x G.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability
invariant.
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We want to show next:
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[3 SA SFTs in G; x Gy x G3j

LEvery EC G-subshift is a sub- }

First a little bit of philosophy.
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presented group G such that H is isomorphic to a subgroup of G.
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The philosophy behind it

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely
presented group G such that H is isomorphic to a subgroup of G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem

Just apply Highman's theorem to
G =(a,b,c,d | b~"ab” = ¢ "dc", n € HALT)... done!
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The case of subshifts

Every EC Z-subshift
X is a subaction of a
Z2-sofic Y
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So... why is simulation important?

It is complicated to come up with Z?-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.
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So... why is simulation important?

It is complicated to come up with Z?-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Let x be a fixed point of the Thue-Morse substitution.

0 — 01 — 0110 — 01101001 — 0110100110010110 — ...

Then X = Orb,(x) is strongly aperiodic and effectively closed.

A Sturmian subshift given by a computable slope a. \
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So... why is simultation important?
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In our case

@ Take G; EC SA subshift. Use simulation to obtain a

G1 X Gy x Gz-sofic subshift Y7 such that o acts trivially under
Gy x Gz and freely under Gj.

@ Do the same for Gy, G3 to get Y2, Y.
@ Y1 X Yo x Y3 is a SA sofic subshift.
@ Any SFT extension X — Y7 X Y5 x Y3 works.




In our case

@ Take G; EC SA subshift. Use simulation to obtain a

G1 X Gy x Gz-sofic subshift Y7 such that o acts trivially under
Gy x Gz and freely under Gj.

@ Do the same for Gy, G3 to get Y2, Y.
@ Y1 X Yo x Y3 is a SA sofic subshift.
@ Any SFT extension X — Y7 X Y5 x Y3 works.

Every EC G-subshift is a sub- —
{action of a G x Hy x H»-sofic } [EI SA EC subshifts in G]

~.

[a SA SFTs in G; x Gy x 63]
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G ~ X C {0,1}N (not necessarily expansive).
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Let's keep it simple, let's do G x Z2. Consider an action
G ~ X C {0,1}N (not necessarily expansive). Let
V{0, 13N — {0,1,$}4 be given by:

W(x) x, ifj=23" mod 31
X)i =
! $  in the contrary case.

If we write x = xpx1X0x3 ... we obtain,

V(x) =...5x08x1x088x0$x2x0$x1 5088 x0$Sx0$x1 x0$$x0$x3x0 . . -
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How does one prove such a thing?

L Sx08x1 X088 X0 B X0 x0 5 x1 X0 3 X0 $ S X0 S x1 X0 5 x0 S x3 X0 B . . .

I

L Sx05x X058 x0 5 x0x0 S x1 X0 5B X0 B xS x1 X0 $ P X0 P x3 X0 P . . .

!

L 8x1$x0x1 $8x1 $x3x1 $x0x1 $8x1 $5x1 $xox1 $x1 $xax1 $ . ..
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How does one prove such a thing?

D> pick a finite set of generators S of G.
> construct a subshift I where every configuration is an S-tuple of
configurations of the previous form.

S={lg,s1,..-5n}

(W(x),W(T*)(x),...,¥(T*(x))) e
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D> pick a finite set of generators S of G.
> construct a subshift I where every configuration is an S-tuple of
configurations of the previous form.

S={lg,s1,..-5n}

(W(x),W(T*)(x),...,¥(T*(x))) e

If T is an effectively closed action, I is effectively closed. I
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How does one prove such a thing?

> Take M and construct a sofic Z2 subshift I having I in every
horizontal row using the expansive simulation theorem.

>> Using the decoding argument, construct a map from I to X.

> Put in every G-coset of G x Z? a configuration of .
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How does one prove such a thing?
T W(T5 (x)
518 MUY el
A A A A :
; W (T (x))
\
V(T (x))
(W(TSISI(X)))
: en
W(T=(x))

W(x)
(w(rﬂ(x)))
: en
W(T™(x))

24
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From Z? to H; x H,

How to go from Z2 to Hy x H»?
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From Z? to H; x H,

How to go from Z? to H; x H»?

[Whyte] translation-like action

an action G ~ (X, d) is translation-like if:
@ G acts freely
o For each g € G, sup,cx(d(x, gx)) < oc.

Theorem (Seward, 2013)
Each infinite and f.g. group admits a translation-like action of Z.

This means that each infinite and f.g. group admits a Cayley graph
that can be partitioned into disjoint bi-infinite paths.
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From Z? to H; x H,

Use the set of geperatars of the Cayley graph to define an SFT
which codes t ation-like action.

H1 H2

Figure: Finding a grid in H; x H,
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Fin

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.




Thank you for your attention!

28



