A strongly aperiodic SFT in the Grigorchuk group.

Sebastián Barbieri Lemp

(up to July 30th) LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de Lyon (From August 1st) University of British Columbia

> Pingree Park July, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト・西ト・モート モー シュウ

2

2

2

2

2

2

- *a*, *b*, *c*, *d* are involutions.
- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of $\mathbb Z$ as a subgroup. For every $g \in G$, there is $n \in \mathbb N$ such that $g^n = 1_G$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and G × G have an isomorphic finite index subgroup.

(日) (部) (注) (注) (三)

- *a*, *b*, *c*, *d* are involutions.
- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^n = 1_G$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.

イロト イヨト イヨト イヨト 三日

Definitions

- ► *G* is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- ▶ \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$
- $\sigma: G \times \mathcal{A}^G \to \mathcal{A}^G$ is the left shift action given by:

$$\sigma(h,x)_g := \sigma^h(x)_g = x_{h^{-1}g}$$

Definitions

- ► *G* is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- ▶ \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$
- $\sigma: G \times \mathcal{A}^G \to \mathcal{A}^G$ is the left shift action given by:

$$\sigma(h,x)_g := \sigma^h(x)_g = x_{h^{-1}g}.$$

Definition: subshift

The pair (X, σ) where $X \subset \mathcal{A}^{\mathcal{G}}$ is a closed and shift-invariant set is called a *subshift*.

イロト イヨト イヨト イヨト 三日

Definitions

- ► *G* is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A} = \{0, 1\}$.
- ▶ \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$
- $\sigma: G \times \mathcal{A}^G \to \mathcal{A}^G$ is the left shift action given by:

$$\sigma(h,x)_g := \sigma^h(x)_g = x_{h^{-1}g}.$$

Definition: subshift

The pair (X, σ) where $X \subset \mathcal{A}^{G}$ is a closed and shift-invariant set is called a *subshift*.

A subshift is a set of configurations avoiding patterns from a list \mathcal{F} .

$$p \in \mathcal{A}^{\mathcal{S}}, \qquad [p] = \{ x \in \mathcal{A}^{\mathcal{G}} \mid x|_{\mathcal{S}} = p \}$$
$$X = X_{\mathcal{F}} = \mathcal{A}^{\mathcal{G}} \setminus \bigcup_{g \in \mathcal{G}, p \in \mathcal{F}} \sigma^{g}([p])$$

- A subshift $X \subset \mathcal{A}^G$ is called:
 - a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .

A subshift $X \subset \mathcal{A}^G$ is called:

- a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).

(日) (部) (注) (注) (三)

A subshift $X \subset \mathcal{A}^{G}$ is called:

- a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

A subshift $X \subset \mathcal{A}^G$ is called:

- a subshift of finite type (SFT) if $X = X_{\mathcal{F}}$ for some finite \mathcal{F} .
- a *sofic subshift* if X is the image of an SFT by a topological factor (a local recoding).
- an *effectively closed subshift* if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic

A subshift $X \subset \mathcal{A}^{G}$ is *strongly aperiodic* if the shift action is free.

$$\forall x \in X, \sigma^g(x) = x \implies g = 1_G.$$

Which groups admit strongly aperiodic SFTs?

Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$

Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$

6

Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G = \mathbb{Z}^2/20\mathbb{Z}^2$

An application: strongly aperiodic subshifts

Proposition

Every non-empty \mathbb{Z} -SFT contains a periodic configuration.

Proposition

Every non-empty \mathbb{Z} -SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao 2015)

There exist strongly aperiodic SFTs on \mathbb{Z}^2 .

Example of strongly aperiodic \mathbb{Z}^2 -SFT: Robinson tileset

What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \leftrightarrow H_1 \cong H_2 \hookrightarrow G_2$$

イロト イヨト イヨト イヨト 三日

We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \leftrightarrow H_1 \cong H_2 \hookrightarrow G_2$$

 \triangleright Recall that the Grigorchuk group G is commensurable to its square $G \times G$

We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \leftrightarrow H_1 \cong H_2 \hookrightarrow G_2$$

 \triangleright Recall that the Grigorchuk group *G* is commensurable to its square $G \times G$ \triangleright if *G* is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G \times G$.

イロト イヨト イヨト イヨト 三日

We say that two groups G_1 , G_2 are *commensurable* if they contain finite index subgroups H_1 , H_2 such that $H_1 \cong H_2$.

$$G_1 \hookleftarrow H_1 \cong H_2 \hookrightarrow G_2$$

 \triangleright Recall that the Grigorchuk group *G* is commensurable to its square $G \times G$ \triangleright if *G* is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

◆□> ◆□> ◆ヨ> ◆ヨ> 三日

We want to show next:

We want to show next:

First a little bit of philosophy.

Finitely presented group

A group G is finitely presented if it can be described as $G = \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

Finitely presented group

A group G is finitely presented if it can be described as $G = \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

Recursively presented group

A group G is recursively presented if it can be described as $G = \langle S | R \rangle$ where $S \subset \mathbb{N}$ and $R \subset (S \cup S^{-1})^*$ are recursive sets.

$$\textit{L} = \langle \textit{a}, t \mid (\textit{at}^{n}\textit{at}^{-n})^{2}, n \in \mathbb{N}
angle$$

イロト イヨト イヨト イヨト 三日
Finitely presented group

A group G is finitely presented if it can be described as $G = \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

Recursively presented group

A group G is recursively presented if it can be described as $G = \langle S | R \rangle$ where $S \subset \mathbb{N}$ and $R \subset (S \cup S^{-1})^*$ are recursive sets.

$$L = \langle a, t \mid (at^n a t^{-n})^2, n \in \mathbb{N} \rangle$$

$$\bigoplus_{i\in\mathbb{N}}\mathbb{Z}/2\mathbb{Z}\cong\langle a_n,n\in\mathbb{N}\mid\{a_n^2\}_{n\in\mathbb{N}},[a_j,a_k]_{j,k\in\mathbb{N}}\rangle.$$

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

"A complicated object is realized inside another object which admits a much simpler presentation."

イロン イヨン イヨン イヨン 三日

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

"A complicated object is realized inside another object which admits a much simpler presentation."

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem

Just apply Highman's theorem to $G = \langle a, b, c, d \mid b^{-n}ab^n = c^{-n}dc^n, n \in HALT \rangle...$ done!

The case of subshifts

イロト イヨト イヨト イヨト 三日

Every EC \mathbb{Z} -subshift X is a subaction of a \mathbb{Z}^2 -sofic Y It is complicated to come up with $\mathbb{Z}^2\text{-}\mathsf{SFTs}$ which are strongly aperiodic, however, finding a $\mathbb{Z}\text{-}\mathsf{effectively}$ closed subshift which is aperiodic is easy.

It is complicated to come up with \mathbb{Z}^2 -SFTs which are strongly aperiodic, however, finding a \mathbb{Z} -effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

 $0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \dots$

Then $X = \overline{\text{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

イロト イヨト イヨト イヨト 三日

It is complicated to come up with \mathbb{Z}^2 -SFTs which are strongly aperiodic, however, finding a \mathbb{Z} -effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

 $0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \dots$

Then $X = \overline{Orb_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

Example

A Sturmian subshift given by a computable slope α .

So... why is simulation important?

So... why is simultation important?

In our case

proof

- Take G_1 EC SA subshift. Use simulation to obtain a $G_1 \times G_2 \times G_3$ -sofic subshift Y_1 such that σ acts trivially under $G_2 \times G_3$ and freely under G_1 .
- Do the same for G_2 , G_3 to get Y_2 , Y_3 .
- $Y_1 \times Y_2 \times Y_3$ is a SA sofic subshift.
- Any SFT extension $X \twoheadrightarrow Y_1 \times Y_2 \times Y_3$ works.

In our case

proof

- Take G_1 EC SA subshift. Use simulation to obtain a $G_1 \times G_2 \times G_3$ -sofic subshift Y_1 such that σ acts trivially under $G_2 \times G_3$ and freely under G_1 .
- Do the same for G_2 , G_3 to get Y_2 , Y_3 .
- $Y_1 \times Y_2 \times Y_3$ is a SA sofic subshift.
- Any SFT extension $X \twoheadrightarrow Y_1 \times Y_2 \times Y_3$ works.

イロト イヨト イヨト イヨト 三日

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider an action

 $G \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$ (not necessarily expansive).

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider an action

 $G \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$ (not necessarily expansive). Let

 $\Psi: \{0,1\}^{\mathbb{N}} \to \{0,1,\$\}^{\mathbb{Z}}$ be given by:

$$\Psi(x)_j = \begin{cases} x_n & \text{if } j = 3^n \mod 3^{n+1} \\ \$ & \text{in the contrary case.} \end{cases}$$

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider an action

 $G \curvearrowright X \subset \{0,1\}^{\mathbb{N}}$ (not necessarily expansive). Let

 $\Psi: \{0,1\}^{\mathbb{N}} \to \{0,1,\$\}^{\mathbb{Z}}$ be given by:

$$\Psi(x)_j = \begin{cases} x_n & \text{if } j = 3^n \mod 3^{n+1} \\ \$ & \text{in the contrary case.} \end{cases}$$

Example

If we write $x = x_0 x_1 x_2 x_3 \dots$ we obtain,

$$\Psi(x) = \dots \$x_0\$x_1x_0\$\$x_0\$x_2x_0\$x_1x_0\$\$x_0\$\$x_0\$x_1x_0\$\$x_0\$x_3x_0\dots$$

・ロト ・ 日 ト ・ 日 ト ・ 日

 $\dots x_0x_1x_0x_2x_0x_1x_0x_0x_1

 $\dots \$x_0\$x_1x_0\$x_2x_0\$x_1x_0\$x_0\$x_0\$x_1x_0\$x_0\$x_1x_0\$x_3x_0\$\dots$

 $\dots x_0x_1x_0$$x_0x_2x_0x_1x_0$$x_0x_1x_0x_3x_0\dots

 $\dots x_0x_1x_0x_0x_2x_0x_1x_0x_0x_1x_0x_1x_0x_3x_0\dots$

 $\dots x_0x_1x_0$$x_0x_2x_0x_1x_0$$x_0x_1x_0x_3x_0\dots

 \downarrow $\dots \$ \quad x_1 \quad \$ \quad x_2 \quad x_1 \quad \$ \quad \$ \quad x_1 \quad \$ \quad x_3 \quad \dots$

 $\dots x_0x_1x_0x_0x_2x_0x_1x_0x_0x_1x_0

 $\dots x_0x_1x_0$$x_0x_2x_0x_1x_0$$x_0x_1x_0x_3x_0\dots

 \triangleright pick a finite set of generators S of G.

 \triangleright construct a subshift Π where every configuration is an *S*-tuple of configurations of the previous form.

$$S = \{1_G, s_1, \ldots s_n\}$$

$$(\Psi(x),\Psi(\mathcal{T}^{s_1})(x),\ldots,\Psi(\mathcal{T}^{s_n}(x)))\in\Pi$$

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三> <三

 \triangleright pick a finite set of generators S of G.

 \triangleright construct a subshift Π where every configuration is an *S*-tuple of configurations of the previous form.

$$S = \{1_G, s_1, \dots s_n\}$$

$$(\Psi(x),\Psi(\mathcal{T}^{s_1})(x),\ldots,\Psi(\mathcal{T}^{s_n}(x)))\in\Pi$$

Claim

If T is an effectively closed action, Π is effectively closed.

イロト イヨト イヨト イヨト 三日

 \triangleright Take Π and construct a sofic \mathbb{Z}^2 subshift $\widetilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.

- \triangleright Take Π and construct a sofic \mathbb{Z}^2 subshift $\widetilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.
- \triangleright Using the decoding argument, construct a map from Π to X.

- \triangleright Take Π and construct a sofic \mathbb{Z}^2 subshift $\widetilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.
- \triangleright Using the decoding argument, construct a map from Π to X.

 \triangleright Put in every *G*-coset of $G \times \mathbb{Z}^2$ a configuration of $\widetilde{\Pi}$.

From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

From \mathbb{Z}^2 to $H_1 imes H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is *translation-like* if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} (d(x, gx)) < \infty$.

イロト イヨト イヨト イヨト 三日

From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is *translation-like* if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} (d(x, gx)) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z} .

イロト イヨト イヨト イヨト 三日

From \mathbb{Z}^2 to $H_1 \times H_2$

How to go from \mathbb{Z}^2 to $H_1 \times H_2$?

[Whyte] translation-like action

an action $G \curvearrowright (X, d)$ is *translation-like* if:

- G acts freely
- For each $g \in G$, $\sup_{x \in X} (d(x, gx)) < \infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z} .

This means that each infinite and f.g. group admits a Cayley graph that can be partitioned into disjoint bi-infinite paths.

Use the set of generators of the Cayley graph to define an SFT which codes the translation-like action.

Figure: Finding a grid in $H_1 \times H_2$

イロト イヨト イヨト イヨト 二日

Theorem (B, 2017)

The Grigorchuk group admits a strongly aperiodic SFT.

・ロト・日本・ キャー キー うくぐ

Thank you for your attention!

