A strongly aperiodic SFT in the Grigorchuk group.

Sebastián Barbieri Lemp

(up to July 30th) LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon
(From August 1st) University of British Columbia

Pingree Park July, 2017

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$$
\begin{array}{cllllllll}
x & = & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\downarrow & b & & & & & & & \\
b(x) & = & & & & & & & \\
\ldots
\end{array}
$$

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$$
\begin{array}{ccccccccc}
x= & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots \\
\downarrow & b & c & & & & & & \\
b(x)= & 1 & & & & & & & \ldots
\end{array}
$$

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$$
\begin{array}{rllllllll}
x & = & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\downarrow & b & c & d & & & & & \\
b(x) & = & 1 & 1 & & & & & \\
\ldots
\end{array}
$$

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$\begin{array}{ccccccccc}x= & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots \\ \downarrow & b & c & d & b & & & & \\ b(x) & = & 1 & 1 & 1 & & & & \\ \ldots\end{array}$

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$\begin{array}{ccccccccc}x= & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots \\ \downarrow & b & c & d & b & a & & & \\ b(x) & = & 1 & 1 & 1 & 0 & & & \\ \ldots\end{array}$

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$$
\begin{array}{ccccccccc}
x= & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots \\
\downarrow & b & c & d & b & a & \text { id } & & \\
b(x)= & 1 & 1 & 1 & 0 & 0 & & & \ldots
\end{array}
$$

The Grigorchuk group

Generated by a, b, c, d acting over $\{0,1\}^{\mathbb{N}}$.

$$
\begin{array}{ccccccccc}
x= & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots \\
\downarrow & b & c & d & b & a & \text { id } & \text { id } & \\
b(x)= & 1 & 1 & 1 & 0 & 0 & 0 & 0 & \ldots
\end{array}
$$

What about the Grigorchuk group?

- a, b, c, d are involutions.
- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^{n}=1_{G}$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

What about the Grigorchuk group?

- a, b, c, d are involutions.
- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^{n}=1_{G}$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.

Definitions

- G is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A}=\{0,1\}$.
- \mathcal{A}^{G} is the set of configurations, $x: G \rightarrow \mathcal{A}$
- $\sigma: G \times \mathcal{A}^{G} \rightarrow \mathcal{A}^{G}$ is the left shift action given by:

$$
\sigma(h, x)_{g}:=\sigma^{h}(x)_{g}=x_{h^{-1}} .
$$

Definitions

- G is a finitely generated group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A}=\{0,1\}$.
- \mathcal{A}^{G} is the set of configurations, $x: G \rightarrow \mathcal{A}$
- $\sigma: G \times \mathcal{A}^{G} \rightarrow \mathcal{A}^{G}$ is the left shift action given by:

$$
\sigma(h, x)_{g}:=\sigma^{h}(x)_{g}=x_{h^{-1}} g .
$$

Definition: subshift

The pair (X, σ) where $X \subset \mathcal{A}^{G}$ is a closed and shift-invariant set is called a subshift.

Definitions

- G is a finitely generated group.
$-\mathcal{A}$ is a finite alphabet. Ex: $\mathcal{A}=\{0,1\}$.
- \mathcal{A}^{G} is the set of configurations, $x: G \rightarrow \mathcal{A}$
- $\sigma: G \times \mathcal{A}^{G} \rightarrow \mathcal{A}^{G}$ is the left shift action given by:

$$
\sigma(h, x)_{g}:=\sigma^{h}(x)_{g}=x_{h^{-1} g} .
$$

Definition: subshift

The pair (X, σ) where $X \subset \mathcal{A}^{G}$ is a closed and shift-invariant set is called a subshift.

A subshift is a set of configurations avoiding patterns from a list \mathcal{F}.

$$
\begin{gathered}
p \in \mathcal{A}^{S}, \quad[p]=\left\{x \in \mathcal{A}^{G}|x|_{S}=p\right\} \\
X=X_{\mathcal{F}}=\mathcal{A}^{G} \backslash \bigcup_{g \in G, p \in \mathcal{F}} \sigma^{g}([p])
\end{gathered}
$$

Definitions

Classes of subshifts
A subshift $X \subset \mathcal{A}^{G}$ is called:

- a subshift of finite type (SFT) if $X=X_{\mathcal{F}}$ for some finite \mathcal{F}.

Definitions

Classes of subshifts

A subshift $X \subset \mathcal{A}^{G}$ is called:

- a subshift of finite type (SFT) if $X=X_{\mathcal{F}}$ for some finite \mathcal{F}.
- a sofic subshift if X is the image of an SFT by a topological factor (a local recoding).

Definitions

Classes of subshifts

A subshift $X \subset \mathcal{A}^{G}$ is called:

- a subshift of finite type (SFT) if $X=X_{\mathcal{F}}$ for some finite \mathcal{F}.
- a sofic subshift if X is the image of an SFT by a topological factor (a local recoding).
- an effectively closed subshift if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Definitions

Classes of subshifts

A subshift $X \subset \mathcal{A}^{G}$ is called:

- a subshift of finite type (SFT) if $X=X_{\mathcal{F}}$ for some finite \mathcal{F}.
- a sofic subshift if X is the image of an SFT by a topological factor (a local recoding).
- an effectively closed subshift if X can be defined by a recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic

A subshift $X \subset \mathcal{A}^{G}$ is strongly aperiodic if the shift action is free.

$$
\forall x \in X, \sigma^{g}(x)=x \Longrightarrow g=1_{G}
$$

Problem

Question

Which groups admit strongly aperiodic SFTs?

Problem

Question
Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G=\mathbb{Z}^{2} / 20 \mathbb{Z}^{2}$

Question
 Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G=\mathbb{Z}^{2} / 20 \mathbb{Z}^{2}$

Question
 Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let $G=\mathbb{Z}^{2} / 20 \mathbb{Z}^{2}$

$$
\longrightarrow \sigma^{(10,18)} \longrightarrow
$$

An application: strongly aperiodic subshifts

Proposition

Every non-empty \mathbb{Z}-SFT contains a periodic configuration.

An application: strongly aperiodic subshifts

Proposition

Every non-empty \mathbb{Z}-SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel \& Rao 2015)

There exist strongly aperiodic SFTs on \mathbb{Z}^{2}.

Example of strongly aperiodic \mathbb{Z}^{2}-SFT: Robinson tileset

What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

$$
\begin{aligned}
& \text { Every EC } G \curvearrowright\{0,1\}^{N} \text { is } \\
& \text { a factor of a subaction of a } \\
& G \times H_{1} \times H_{2} \text {-SFT }
\end{aligned}
$$

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^{2}-sofic

Every EC G-subshift is a subaction of a $G \times H_{1} \times H_{2}$-sofic
\exists SA EC subshifts in G
\exists SA SFTs in $G_{1} \times G_{2} \times G_{3}$

\exists SA SFTs in the Grigorchuk group

What about the Grigorchuk group?

All groups here are infinite, finitely generated and have decidable word problem.

$$
\begin{aligned}
& \text { Every EC } G \curvearrowright\{0,1\}^{N} \text { is } \\
& \text { a factor of a subaction of a } \\
& G \times H_{1} \times H_{2} \text {-SFT }
\end{aligned}
$$

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^{2}-sofic AS 2010, DRS 2010

Every EC G-subshift is a subaction of a $G \times H_{1} \times H_{2}$-sofic

\exists SA SFTs in $G_{1} \times G_{2} \times G_{3}$

\exists SA SFTs in the Grigorchuk group

Reverse chronology

Commensurability

We say that two groups G_{1}, G_{2} are commensurable if they contain finite index subgroups H_{1}, H_{2} such that $H_{1} \cong H_{2}$.

$$
G_{1} \hookleftarrow H_{1} \cong H_{2} \hookrightarrow G_{2}
$$

Reverse chronology

Commensurability

We say that two groups G_{1}, G_{2} are commensurable if they contain finite index subgroups H_{1}, H_{2} such that $H_{1} \cong H_{2}$.

$$
G_{1} \hookleftarrow H_{1} \cong H_{2} \hookrightarrow G_{2}
$$

\triangleright Recall that the Grigorchuk group G is commensurable to its square $G \times G$

Reverse chronology

Commensurability

We say that two groups G_{1}, G_{2} are commensurable if they contain finite index subgroups H_{1}, H_{2} such that $H_{1} \cong H_{2}$.

$$
G_{1} \hookleftarrow H_{1} \cong H_{2} \hookrightarrow G_{2}
$$

\triangleright Recall that the Grigorchuk group G is commensurable to its square $G \times G$
\triangleright if G is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G$.

Reverse chronology

Commensurability

We say that two groups G_{1}, G_{2} are commensurable if they contain finite index subgroups H_{1}, H_{2} such that $H_{1} \cong H_{2}$.

$$
G_{1} \hookleftarrow H_{1} \cong H_{2} \hookrightarrow G_{2}
$$

\triangleright Recall that the Grigorchuk group G is commensurable to its square $G \times G$
\triangleright if G is commensurable to $G \times G$, then it is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)
Admitting a strongly aperiodic SFT is a commensurability invariant.

We want to show next:

We want to show next:

First a little bit of philosophy.

The philosophy behind it

Finitely presented group
A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

The philosophy behind it

Finitely presented group

A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

Recursively presented group

A group G is recursively presented if it can be described as $G=\langle S \mid R\rangle$ where $S \subset \mathbb{N}$ and $R \subset\left(S \cup S^{-1}\right)^{*}$ are recursive sets.

$$
L=\left\langle a, t \mid\left(a t^{n} a t^{-n}\right)^{2}, n \in \mathbb{N}\right\rangle
$$

The philosophy behind it

Finitely presented group

A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

Recursively presented group

A group G is recursively presented if it can be described as $G=\langle S \mid R\rangle$ where $S \subset \mathbb{N}$ and $R \subset\left(S \cup S^{-1}\right)^{*}$ are recursive sets.

$$
L=\left\langle a, t \mid\left(a t^{n} a t^{-n}\right)^{2}, n \in \mathbb{N}\right\rangle
$$

$$
\bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 2 \mathbb{Z} \cong\left\langle a_{n}, n \in \mathbb{N} \mid\left\{a_{n}^{2}\right\}_{n \in \mathbb{N}},\left[a_{j}, a_{k}\right]_{j, k \in \mathbb{N}}\right\rangle
$$

The philosophy behind it

Theorem (Highman 1961)
For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

The philosophy behind it

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.
"A complicated object is realized inside another object which admits a much simpler presentation."

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.
"A complicated object is realized inside another object which admits a much simpler presentation."

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem
Just apply Highman's theorem to
$G=\left\langle a, b, c, d \mid b^{-n} a b^{n}=c^{-n} d c^{n}, n \in \operatorname{HALT}\right\rangle \ldots$ done!

The case of subshifts

Every EC \mathbb{Z}-subshift X is a subaction of a \mathbb{Z}^{2}-sofic Y

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

$$
0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \ldots
$$

Then $X=\overline{\operatorname{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

$$
0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \ldots
$$

Then $X=\overline{\operatorname{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

Example

A Sturmian subshift given by a computable slope α.

So... why is simulation important?

So... why is simultation important?

In our case

proof

- Take G_{1} EC SA subshift. Use simulation to obtain a $G_{1} \times G_{2} \times G_{3}$-sofic subshift Y_{1} such that σ acts trivially under $G_{2} \times G_{3}$ and freely under G_{1}.
- Do the same for G_{2}, G_{3} to get Y_{2}, Y_{3}.
- $Y_{1} \times Y_{2} \times Y_{3}$ is a SA sofic subshift.
- Any SFT extension $X \rightarrow Y_{1} \times Y_{2} \times Y_{3}$ works.

In our case

proof

- Take G_{1} EC SA subshift. Use simulation to obtain a $G_{1} \times G_{2} \times G_{3}$-sofic subshift Y_{1} such that σ acts trivially under $G_{2} \times G_{3}$ and freely under G_{1}.
- Do the same for G_{2}, G_{3} to get Y_{2}, Y_{3}.
- $Y_{1} \times Y_{2} \times Y_{3}$ is a SA sofic subshift.
- Any SFT extension $X \rightarrow Y_{1} \times Y_{2} \times Y_{3}$ works.

Every EC G-subshift is a subaction of a $G \times H_{1} \times H_{2}$-sofic
\exists SA EC subshifts in G
\exists SA SFTs in $G_{1} \times G_{2} \times G_{3}$

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider an action
$G \curvearrowright X \subset\{0,1\}^{\mathbb{N}}$ (not necessarily expansive).

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider an action
$G \curvearrowright X \subset\{0,1\}^{N}$ (not necessarily expansive). Let
$\Psi:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1, \$\}^{\mathbb{Z}}$ be given by:

$$
\Psi(x)_{j}= \begin{cases}x_{n} & \text { if } j=3^{n} \quad \bmod 3^{n+1} \\ \$ & \text { in the contrary case }\end{cases}
$$

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider an action
$G \curvearrowright X \subset\{0,1\}^{N}$ (not necessarily expansive). Let
$\Psi:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1, \$\}^{\mathbb{Z}}$ be given by:

$$
\Psi(x)_{j}= \begin{cases}x_{n} & \text { if } j=3^{n} \quad \bmod 3^{n+1} \\ \$ & \text { in the contrary case }\end{cases}
$$

Example

If we write $x=x_{0} x_{1} x_{2} x_{3} \ldots$ we obtain,

$$
\Psi(x)=\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \ldots
$$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
\downarrow
$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
\downarrow
$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots \begin{array}{lllllllll} & \$ & x_{1} & \$ & x_{2} & x_{1} & \$ & \$ & x_{1}\end{array} \$ x_{3} \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots . \begin{array}{lllllllll} & & x_{1} & \$ & x_{2} & x_{1} & \$ & \$ & x_{1}\end{array} \$ x_{3} \quad \ldots$
$\ldots \$ x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ x_{3} x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ \$ x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ x_{4} x_{1} \$ \ldots$

How does one prove such a thing?

\triangleright pick a finite set of generators S of G.
\triangleright construct a subshift Π where every configuration is an S-tuple of configurations of the previous form.

$$
\begin{gathered}
S=\left\{1_{G}, s_{1}, \ldots s_{n}\right\} \\
\left(\Psi(x), \Psi\left(T^{s_{1}}\right)(x), \ldots, \Psi\left(T^{s_{n}}(x)\right)\right) \in \Pi
\end{gathered}
$$

How does one prove such a thing?

\triangleright pick a finite set of generators S of G.
\triangleright construct a subshift Π where every configuration is an S-tuple of configurations of the previous form.

$$
\begin{gathered}
S=\left\{1_{G}, s_{1}, \ldots s_{n}\right\} \\
\left(\Psi(x), \Psi\left(T^{s_{1}}\right)(x), \ldots, \Psi\left(T^{s_{n}}(x)\right)\right) \in \Pi
\end{gathered}
$$

Claim

If T is an effectively closed action, Π is effectively closed.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\tilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\tilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.
\triangleright Using the decoding argument, construct a map from Π to X.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\tilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.
\triangleright Using the decoding argument, construct a map from Π to X.
\triangleright Put in every G-coset of $G \times \mathbb{Z}^{2}$ a configuration of $\tilde{\Pi}$.

How does one prove such a thing?

From \mathbb{Z}^{2} to $H_{1} \times H_{2}$

How to go from \mathbb{Z}^{2} to $H_{1} \times H_{2}$?

From \mathbb{Z}^{2} to $H_{1} \times H_{2}$

How to go from \mathbb{Z}^{2} to $H_{1} \times H_{2}$?

[Whyte] translation-like action

an action $G \curvearrowright(X, d)$ is translation-like if:

- G acts freely
- For each $g \in G$, $\sup _{x \in X}(d(x, g x))<\infty$.

From \mathbb{Z}^{2} to $H_{1} \times H_{2}$

How to go from \mathbb{Z}^{2} to $H_{1} \times H_{2}$?

[Whyte] translation-like action

an action $G \curvearrowright(X, d)$ is translation-like if:

- G acts freely
- For each $g \in G$, $\sup _{x \in X}(d(x, g x))<\infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z}.

How to go from \mathbb{Z}^{2} to $H_{1} \times H_{2}$?

[Whyte] translation-like action

 an action $G \curvearrowright(X, d)$ is translation-like if:- G acts freely
- For each $g \in G, \sup _{x \in X}(d(x, g x))<\infty$.

Theorem (Seward, 2013)

Each infinite and f.g. group admits a translation-like action of \mathbb{Z}.

This means that each infinite and f.g. group admits a Cayley graph that can be partitioned into disjoint bi-infinite paths.

From \mathbb{Z}^{2} to $H_{1} \times H_{2}$

Use the set of generators of the Cayley graph to define an SFT which codes the translation-like action.

H_{1}

H_{2}

Figure: Finding a grid in $\mathrm{H}_{1} \times \mathrm{H}_{2}$

> Every EC $G \curvearrowright\{0,1\}^{N}$ is a factor of a subaction of a $G \times H_{1} \times H_{2}$-SFT

Every EC \mathbb{Z}-subshift is a subaction of a \mathbb{Z}^{2}-sofic

Every EC G-subshift is a subaction of a $G \times H_{1} \times H_{2}$-sofic
\exists SA EC subshifts in G

\exists SA SFTs in $G_{1} \times G_{2} \times G_{3}$

\exists SA SFTs in the Grigorchuk group

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.

Thank you for your attention! $\stackrel{L}{4}$

