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What about the Grigorchuk group?

a, b, c, d are involutions.
The Grigorchuk group is infinite and finitely generated.
It contains no copy of Z as a subgroup. For every g ∈ G ,
there is n ∈ N such that gn = 1G .
Decidable word problem (and conjugacy problem).
It has intermediate growth.
It is commensurable to its square. ie: G and G × G have an
isomorphic finite index subgroup.

The goal of this talk is to construct a strongly aperiodic SFT here.
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Definitions

I G is a finitely generated group.
I A is a finite alphabet. Ex: A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by:

σ(h, x)g := σh(x)g = xh−1g .

Definition: subshift
The pair (X , σ) where X ⊂ AG is a closed and shift-invariant set is
called a subshift.

A subshift is a set of configurations avoiding patterns from a list F .

p ∈ AS , [p] = {x ∈ AG | x |S = p}

X = XF = AG \
⋃

g∈G,p∈F
σg ([p])

4



Definitions

I G is a finitely generated group.
I A is a finite alphabet. Ex: A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by:

σ(h, x)g := σh(x)g = xh−1g .

Definition: subshift
The pair (X , σ) where X ⊂ AG is a closed and shift-invariant set is
called a subshift.

A subshift is a set of configurations avoiding patterns from a list F .

p ∈ AS , [p] = {x ∈ AG | x |S = p}

X = XF = AG \
⋃

g∈G,p∈F
σg ([p])

4



Definitions

I G is a finitely generated group.
I A is a finite alphabet. Ex: A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by:

σ(h, x)g := σh(x)g = xh−1g .

Definition: subshift
The pair (X , σ) where X ⊂ AG is a closed and shift-invariant set is
called a subshift.

A subshift is a set of configurations avoiding patterns from a list F .

p ∈ AS , [p] = {x ∈ AG | x |S = p}

X = XF = AG \
⋃

g∈G,p∈F
σg ([p])

4



Definitions

Classes of subshifts
A subshift X ⊂ AG is called:

a subshift of finite type (SFT) if X = XF for some finite F .

a sofic subshift if X is the image of an SFT by a topological
factor (a local recoding).
an effectively closed subshift if X can be defined by a
recursively enumerable coding of a set of forbidden patterns.

Strongly aperiodic
A subshift X ⊂ AG is strongly aperiodic if the shift action is free.

∀x ∈ X , σg (x) = x =⇒ g = 1G .
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Problem

Question
Which groups admit strongly aperiodic SFTs?

Baby (alpaca) example: Let G = Z2/20Z2
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An application: strongly aperiodic subshifts

Proposition
Every non-empty Z-SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao
2015)
There exist strongly aperiodic SFTs on Z2.
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Example of strongly aperiodic Z2-SFT: Robinson tileset
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What about the Grigorchuk group?
All groups here are infinite, finitely generated and have decidable
word problem.

Every EC Z-subshift is a sub-
action of a Z2-sofic

Every EC G y {0, 1}N is
a factor of a subaction of a
G × H1 × H2-SFT

Every EC G-subshift is a sub-
action of a G × H1 × H2-sofic

∃ SA EC subshifts in G

∃ SA SFTs in G1 × G2 × G3

∃ SA SFTs in the Grigorchuk group
9
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Reverse chronology

Commensurability
We say that two groups G1,G2 are commensurable if they contain
finite index subgroups H1,H2 such that H1 ∼= H2.

G1 ←↩ H1 ∼= H2 ↪→ G2

B Recall that the Grigorchuk group G is commensurable to its
square G × G
B if G is commensurable to G × G , then it is also commensurable
to G × G × G .

Theorem (Carroll-Penland, 2015)
Admitting a strongly aperiodic SFT is a commensurability
invariant.
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∃ SA SFTs in G1 × G2 × G3

∃ SA SFTs in the Grigorchuk group
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We want to show next:

Every EC G-subshift is a sub-
action of a G × H1 × H2-sofic

∃ SA EC subshifts in G

∃ SA SFTs in G1 × G2 × G3

First a little bit of philosophy.
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The philosophy behind it

Finitely presented group
A group G is finitely presented if it can be described as G = 〈S|R〉
where both S and R ⊂ (S ∪ S−1)∗ are finite.

Z2 = 〈a, b | aba−1b−1〉

Recursively presented group
A group G is recursively presented if it can be described as
G = 〈S|R〉 where S ⊂ N and R ⊂ (S ∪ S−1)∗ are recursive sets.

L = 〈a, t | (atnat−n)2, n ∈ N〉

⊕
i∈N

Z/2Z ∼= 〈an, n ∈ N | {a2n}n∈N, [aj , ak ]j,k∈N〉.
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The philosophy behind it

Theorem (Highman 1961)
For every recursively presented group H there exists a finitely
presented group G such that H is isomorphic to a subgroup of G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]
There are finitely presented groups with undecidable word problem

Just apply Highman’s theorem to
G = 〈a, b, c, d | b−nabn = c−ndcn, n ∈ HALT〉... done!
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The case of subshifts

Every EC Z-subshift
X is a subaction of a
Z2-sofic Y

∈ X

∈ Y

15



So... why is simulation important?

It is complicated to come up with Z2-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Example
Let x be a fixed point of the Thue-Morse substitution.

0→ 01→ 0110→ 01101001→ 0110100110010110→ . . .

Then X = Orbσ(x) is strongly aperiodic and effectively closed.

Example
A Sturmian subshift given by a computable slope α.
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So... why is simulation important?
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So... why is simultation important?
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In our case

proof
Take G1 EC SA subshift. Use simulation to obtain a
G1 × G2 × G3-sofic subshift Y1 such that σ acts trivially under
G2 × G3 and freely under G1.
Do the same for G2,G3 to get Y2,Y3.
Y1 × Y2 × Y3 is a SA sofic subshift.
Any SFT extension X � Y1 × Y2 × Y3 works.

Every EC G-subshift is a sub-
action of a G × H1 × H2-sofic

∃ SA EC subshifts in G

∃ SA SFTs in G1 × G2 × G3

19



In our case

proof
Take G1 EC SA subshift. Use simulation to obtain a
G1 × G2 × G3-sofic subshift Y1 such that σ acts trivially under
G2 × G3 and freely under G1.
Do the same for G2,G3 to get Y2,Y3.
Y1 × Y2 × Y3 is a SA sofic subshift.
Any SFT extension X � Y1 × Y2 × Y3 works.

Every EC G-subshift is a sub-
action of a G × H1 × H2-sofic

∃ SA EC subshifts in G

∃ SA SFTs in G1 × G2 × G3

19



How does one prove such a thing?

Let’s keep it simple, let’s do G × Z2. Consider an action

G y X ⊂ {0, 1}N (not necessarily expansive).

Let

Ψ : {0, 1}N → {0, 1, $}Z be given by:

Ψ(x)j =
{
xn if j = 3n mod 3n+1

$ in the contrary case.

Example
If we write x = x0x1x2x3 . . . we obtain,

Ψ(x) = . . . $x0$x1x0$$x0$x2x0$x1x0$$x0$$x0$x1x0$$x0$x3x0 . . .
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How does one prove such a thing?

B pick a finite set of generators S of G .
B construct a subshift Π where every configuration is an S-tuple of
configurations of the previous form.

S = {1G , s1, . . . sn}

(Ψ(x),Ψ(T s1)(x), . . . ,Ψ(T sn (x))) ∈ Π

Claim
If T is an effectively closed action, Π is effectively closed.

22
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How does one prove such a thing?

B Take Π and construct a sofic Z2 subshift Π̃ having Π in every
horizontal row using the expansive simulation theorem.

B Using the decoding argument, construct a map from Π to X .

B Put in every G-coset of G × Z2 a configuration of Π̃.

23
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How does one prove such a thing?

1G

s1

s1sn


Ψ(x)

Ψ(T s1(x))
...

Ψ(T sn (x))

 ∈ Π


Ψ(y)

Ψ(T s1(y))
...

Ψ(T sn (y))

 ∈ Π


Ψ(z)

Ψ(T s1(z))
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Ψ(T sn (z))

 ∈ Π
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From Z2 to H1 × H2

How to go from Z2 to H1 × H2?

[Whyte] translation-like action
an action G y (X , d) is translation-like if:

G acts freely
For each g ∈ G , supx∈X (d(x , gx)) <∞.

Theorem (Seward, 2013)
Each infinite and f.g. group admits a translation-like action of Z.

This means that each infinite and f.g. group admits a Cayley graph
that can be partitioned into disjoint bi-infinite paths.
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From Z2 to H1 × H2

Use the set of generators of the Cayley graph to define an SFT
which codes the translation-like action.

H1 H2

Figure: Finding a grid in H1 × H2
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Fin

Every EC Z-subshift is a sub-
action of a Z2-sofic

Every EC G y {0, 1}N is
a factor of a subaction of a
G × H1 × H2-SFT

Every EC G-subshift is a sub-
action of a G × H1 × H2-sofic

∃ SA EC subshifts in G

∃ SA SFTs in G1 × G2 × G3

∃ SA SFTs in the Grigorchuk group
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Fin

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.
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Thank you for your attention!
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