Symbolic dynamics and simulation theorems

Sebastián Barbieri Lemp

LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon

Séminaire AUTOMATA, IRIF May, 2017

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z}-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z}-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.
$\mathrm{A} \mathbb{Z}$-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z}-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z}-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z}-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

$$
\longrightarrow T^{2} \longrightarrow
$$

Motivation

A dynamical system is a pair (X, T) where X is a topological space and $T: G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z}-action by homeomorphisms.
$T: \mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$ given by $T(x, y)=(2 x+y, x+y) \bmod 1$.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

Coding of an orbit

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A \mathbb{Z}-action by homeomorphisms.

$$
\varphi(x)=\cdots \square_{-10_{0}}
$$

Motivation

Why would coding be a good idea?

- Instead of a complicated homeomorphism we get a shift action.
- If the coding is "good", dynamical properties are preserved.
- Easier to describe, run algorithms, etc.

Motivation

Why would coding be a good idea?

- Instead of a complicated homeomorphism we get a shift action.
- If the coding is "good", dynamical properties are preserved.
- Easier to describe, run algorithms, etc.

Theorem

If X is a Cantor space and T is an expansive action then (X, T) is conjugate to a symbolic system (a subshift).

Definitions

- G is a countable group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A}=\{0,1\}$.
- \mathcal{A}^{G} is the set of configurations, $x: G \rightarrow \mathcal{A}$
- $\sigma: G \times \mathcal{A}^{G} \rightarrow \mathcal{A}^{G}$ is the left shift action given by:

$$
\sigma(h, x)_{g}:=\sigma^{h}(x)_{g}=x_{h^{-1}} g .
$$

Definitions

- G is a countable group.
- \mathcal{A} is a finite alphabet. Ex: $\mathcal{A}=\{0,1\}$.
- \mathcal{A}^{G} is the set of configurations, $x: G \rightarrow \mathcal{A}$
- $\sigma: G \times \mathcal{A}^{G} \rightarrow \mathcal{A}^{G}$ is the left shift action given by:

$$
\sigma(h, x)_{g}:=\sigma^{h}(x)_{g}=x_{h^{-1}} g .
$$

Definition: full G-shift

The pair $\left(\mathcal{A}^{G}, \sigma\right)$ is called the full G-shift.

Definitions

Figure: A random configuration $x \in\{\square, \square\}^{2} / 20 \mathbb{Z}^{2}$ and its image by $\sigma^{(10,18)}$.

Definitions

Figure: A random configuration $x \in\{\square, \square\}^{2} / 20 \mathbb{Z}^{2}$ and its image by $\sigma^{(10,18)}$.

Definitions

Figure: A random configuration $x \in\{\square, \square\}^{\mathbb{Z}^{2} / 20 \mathbb{Z}^{2}}$ and its image by $\sigma^{(10,18)}$.

Definitions

Definition: G-subshift

$X \subset \mathcal{A}^{G}$ is a subshift if and only if it is invariant under the action of σ and closed for the product topology on \mathcal{A}^{G}.

Definitions

Definition: G-subshift

$X \subset \mathcal{A}^{G}$ is a subshift if and only if it is invariant under the action of σ and closed for the product topology on \mathcal{A}^{G}.

Examples:

- $X=\left\{x \in\{0,1\}^{\mathbb{Z}} \mid\right.$ no two consecutive 1 's in $\left.x\right\}$
- $X=\left\{x \in\{0,1\}^{G} \mid\right.$ finite CC of 1 's are of even length $\}$

Definitions

Luckily, subshifts can also be described in a combinatorial way.

- A pattern is a finite configuration, i.e. $p \in \mathcal{A}^{F}$ where $F \subset G$ and $|F|<\infty$. We denote $\operatorname{supp}(p)=F$.
- A cylinder is the set $[a]_{g}:=\left\{x \in \mathcal{A}^{G} \mid x_{g}=a\right\}$.
-

$$
[p]:=\bigcap_{g \in \operatorname{supp}(p)}\left[p_{g}\right]_{g} .
$$

Definitions

Luckily, subshifts can also be described in a combinatorial way.

- A pattern is a finite configuration, i.e. $p \in \mathcal{A}^{F}$ where $F \subset G$ and $|F|<\infty$. We denote $\operatorname{supp}(p)=F$.
- A cylinder is the set $[a]_{g}:=\left\{x \in \mathcal{A}^{G} \mid x_{g}=a\right\}$.
-

$$
[p]:=\bigcap_{g \in \operatorname{supp}(p)}\left[p_{g}\right]_{g} .
$$

Proposition

A subshift is a set of configurations avoiding patterns from a set \mathcal{F}.

$$
X=X_{\mathcal{F}}:=\mathcal{A}^{G} \backslash \bigcup_{g \in G, p \in \mathcal{F}} \sigma^{g}([p])
$$

Example in \mathbb{Z}^{2} : Hard-square shift

Example: Hard-square shift. X is the set of assignments of \mathbb{Z}^{2} to $\{0,1\}$ such that there are no two adjacent ones.

Example: one-or-less subshift

Example: one-or-less subshift.

$$
X_{\leq 1}:=\left\{x \in\{0,1\}^{G} \mid 0 \notin\left\{x_{u}, x_{v}\right\} \Longrightarrow u=v\right\} .
$$

Example: Fibonacci in F_{2}.

Example: Wang tiling

A subshift defined by Wang tiles: two tiles can be put next to each other only their adjacent colors match.

Subshifts of finite type (SFT)

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

Subshifts of finite type (SFT)

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

- A simple class with respect to the combinatorial definition
- 2D-SFT \equiv Wang tilings.

Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset A^{G}$ is strongly aperiodic if all its configurations have trivial stabilizer

$$
\forall x \in X, \forall g \in G, \sigma^{g}(x)=x \Rightarrow g=1_{G}
$$

Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset A^{G}$ is strongly aperiodic if all its configurations have trivial stabilizer

$$
\forall x \in X, \forall g \in G, \sigma^{g}(x)=x \Rightarrow g=1_{G}
$$

Proposition

Every 1D non-empty SFT contains a periodic configuration.

Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset A^{G}$ is strongly aperiodic if all its configurations have trivial stabilizer

$$
\forall x \in X, \forall g \in G, \sigma^{g}(x)=x \Rightarrow g=1_{G}
$$

Proposition

Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel \& Rao 2015)

There exist strongly aperiodic SFTs on \mathbb{Z}^{2}.

Example of strongly aperiodic \mathbb{Z}^{2}-SFT: Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.

Example of strongly aperiodic \mathbb{Z}^{2}-SFT: Robinson tileset

Some recent results

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).

Some recent results

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)

Some recent results

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).

Some recent results

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- Discrete Heisenberg group (Sahin, Schraudner \& Ugarcovici, 2015).

Some recent results

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- Discrete Heisenberg group (Sahin, Schraudner \& Ugarcovici, 2015).
- Surface groups (Cohen \& Goodman-Strauss, 2015).

Some recent results

- If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- Discrete Heisenberg group (Sahin, Schraudner \& Ugarcovici, 2015).
- Surface groups (Cohen \& Goodman-Strauss, 2015).
- groups $\mathbb{Z}^{2} \rtimes H$ where H has decidable WP (B \& Sablik, 2016).

Simulation Theorems

What is a simulation theorem?

Finitely presented group

A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

What is a simulation theorem?

Finitely presented group

A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

Recursively presented group

A group G is recursively presented if it can be described as $G=\langle S \mid R\rangle$ where $S \subset \mathbb{N}$ and $R \subset\left(S \cup S^{-1}\right)^{*}$ are recursive sets.

$$
L=\left\langle a, t \mid\left(a t^{n} a t^{-n}\right)^{2}, n \in \mathbb{N}\right\rangle
$$

What is a simulation theorem?

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

What is a simulation theorem?

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.
"A complicated object is realized inside another object which admits a much simpler presentation."

What is a simulation theorem?

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.
"A complicated object is realized inside another object which admits a much simpler presentation."

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem
Apply Highman's theorem to

$$
G=\left\langle a, b, c, d \mid b^{-n} a b^{n}=c^{-n} d c^{n}, n \in \operatorname{HALT}\right\rangle .
$$

A dynamical simulation theorem

Effectively closed dynamical system

An action $T: \mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{N}}$ is effectively closed if there exists a Turing machine which on entry $w \in\{0,1\}^{*}$ enumerates a language L such that:

$$
T([w])=\{0,1\}^{\mathbb{N}} \backslash \bigcup_{u \in L}[u] .
$$

A dynamical simulation theorem

Effectively closed dynamical system

An action $T: \mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{N}}$ is effectively closed if there exists a Turing machine which on entry $w \in\{0,1\}^{*}$ enumerates a language L such that:

$$
T([w])=\{0,1\}^{\mathbb{N}} \backslash \bigcup_{u \in L}[u] .
$$

Theorem (Hochman, 2009)

Let $T: \mathbb{Z} \curvearrowright\{0,1\}^{N}$ be an effectively closed action. There exists a \mathbb{Z}^{3}-SFT such that its \mathbb{Z}-subaction is an almost 1-1 extension (very close) of T.

The case of subshifts

sofic subshift

A subshift is called sofic if it is the image of an SFT by a local recoding.

Effectively closed subshift

A \mathbb{Z}-subshift is effectively closed if it can be described by a recursively enumerable set of forbidden words.

sofic subshift

A subshift is called sofic if it is the image of an SFT by a local recoding.

Effectively closed subshift

A \mathbb{Z}-subshift is effectively closed if it can be described by a recursively enumerable set of forbidden words.

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen 2010)

For effectively closed \mathbb{Z}-subshift X there exists a \mathbb{Z}^{2}-sofic subshift Y such that every $y \in Y$ is a periodic vertical extension of a configuration $x \in X$.

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

$$
0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \ldots
$$

Then $X=\overline{\operatorname{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

So... why is simulation important?

So... why is simultation important?

So... why is simulation important?

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^{2}-SFTs

So... why is simulation important?

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^{2}-SFTs
- \mathbb{Z}^{2}-SFTs with no computable configurations (Original result by Hanf-Myers 1974)

So... why is simulation important?

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^{2}-SFTs
- \mathbb{Z}^{2}-SFTs with no computable configurations (Original result by Hanf-Myers 1974)
- Classifying the entropies of \mathbb{Z}^{2}-SFTs (Original result by Hochman-Meyerovitch 2010)

Two new results in general groups

Let $T: G \curvearrowright\{0,1\}^{\mathbb{N}}$ be an effectively closed action of a finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product $\mathbb{Z}^{2} \rtimes G$ there exists a $\mathbb{Z}^{2} \rtimes G$-SFT such that its G-subaction is an extension of T.

Two new results in general groups

Let $T: G \curvearrowright\{0,1\}^{N}$ be an effectively closed action of a finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product $\mathbb{Z}^{2} \rtimes G$ there exists a $\mathbb{Z}^{2} \rtimes G$-SFT such that its G-subaction is an extension of T.

Theorem (B, 2017)

For any pair of infinite and finitely generated groups $\mathrm{H}_{1}, \mathrm{H}_{2}$ there exists a $\left(G \times H_{1} \times H_{2}\right)$-SFT such that its G-subaction is an extension of T.

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$.

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider
$\Psi:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1, \$\}^{\mathbb{Z}}$ given by:

$$
\Psi(x)_{j}= \begin{cases}x_{n} & \text { if } j=3^{n} \quad \bmod 3^{n+1} \\ \$ & \text { in the contrary case }\end{cases}
$$

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider
$\Psi:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1, \$\}^{\mathbb{Z}}$ given by:

$$
\Psi(x)_{j}= \begin{cases}x_{n} & \text { if } j=3^{n} \quad \bmod 3^{n+1} \\ \$ & \text { in the contrary case }\end{cases}
$$

Example

If we write $x=x_{0} x_{1} x_{2} x_{3} \ldots$ we obtain, $\Psi(x)=\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
\downarrow
$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots \begin{array}{llllllllll}\ldots & x_{1} & \$ & x_{2} & x_{1} & \$ & \$ & x_{1} & \$ & x_{3}\end{array} \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots \begin{array}{llllllllll}\ldots & x_{1} & \$ & x_{2} & x_{1} & \$ & \$ & x_{1} & \$ & x_{3}\end{array} \ldots$
$\ldots \$ x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ x_{3} x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ \$ x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ x_{4} x_{1} \$ \ldots$

How does one prove such a thing?

\triangleright pick afinite set of generators S of G.
\triangleright construct a subshift Π where every configuration is (up to shifts and a set of measure 0) an S-tuple of configurations of the previous form.

$$
\begin{gathered}
S=\left\{1_{G}, s_{1}, \ldots s_{n}\right\} \\
\left(\Psi(x), \Psi\left(T^{s_{1}}(x), \ldots, \Psi\left(T^{s_{n}}(x)\right) \in \Pi\right.\right.
\end{gathered}
$$

How does one prove such a thing?

\triangleright pick afinite set of generators S of G.
\triangleright construct a subshift Π where every configuration is (up to shifts and a set of measure 0) an S-tuple of configurations of the previous form.

$$
\begin{gathered}
S=\left\{1_{G}, s_{1}, \ldots s_{n}\right\} \\
\left(\Psi(x), \Psi\left(T^{s_{1}}(x), \ldots, \Psi\left(T^{s_{n}}(x)\right) \in \Pi\right.\right.
\end{gathered}
$$

Claim

If T is an effectively closed action, Π is effectively closed.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\tilde{\Pi}$ having Π in every horizontal row.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\widetilde{\Pi}$ having Π in every horizontal row.
\triangleright Using the decoding argument, construct a map from Π to X.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\tilde{\Pi}$ having Π in every horizontal row.
\triangleright Using the decoding argument, construct a map from Π to X.
\triangleright Put in every G-coset of $G \times \mathbb{Z}^{2}$ a configuration of $\tilde{\Pi}$.

How does one prove such a thing?

Two corollaries

Theorem (B, Sablik 2016)

If G is finitely generated, $W P(G)$ is decidable and $d>1$. Then $G \rtimes \mathbb{Z}^{d}$ admits a SA SFT.

Theorem (B, Sablik 2016)

If G is finitely generated, $W P(G)$ is decidable and $d>1$. Then $G \rtimes \mathbb{Z}^{d}$ admits a $S A S F T$.

Theorem (B 2017)

If G_{i} are at least three infinite and finitely generated groups with decidable word problem. Then $G_{1} \times \cdots \times G_{n}$ admits a SA SFT.

What about the Grigorchuk group?

The Grigorchuk group is generated by the actions a, b, c, d over $\{0,1\}^{N}$.

What about the Grigorchuk group?

- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^{n}=1_{G}$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

What about the Grigorchuk group?

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

What about the Grigorchuk group?

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

What about the Grigorchuk group?

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.

Thank you for your attention! $\stackrel{L}{4}$

