Symbolic dynamics and simulation theorems

Sebastián Barbieri Lemp

LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon

Séminaire AUTOMATA, IRIF May, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A \mathbb{Z} -action by homeomorphisms.

 $\mathcal{T}: \mathbb{R}^2/\mathbb{Z}^2 o \mathbb{R}^2/\mathbb{Z}^2$ given by $\mathcal{T}(x,y) = (2x+y,x+y) \mod 1.$

A \mathbb{Z} -action by homeomorphisms.

 $\mathcal{T}: \mathbb{R}^2/\mathbb{Z}^2 o \mathbb{R}^2/\mathbb{Z}^2$ given by $\mathcal{T}(x,y) = (2x+y,x+y) \mod 1.$

A \mathbb{Z} -action by homeomorphisms.

 $T: \mathbb{R}^2/\mathbb{Z}^2 o \mathbb{R}^2/\mathbb{Z}^2$ given by $T(x,y) = (2x+y,x+y) \mod 1.$

A dynamical system is a pair (X, T) where X is a topological space and $T : G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z} -action by homeomorphisms.

 $T: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ given by $T(x, y) = (2x + y, x + y) \mod 1$.

A dynamical system is a pair (X, T) where X is a topological space and $T : G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z} -action by homeomorphisms.

$$\mathcal{T}: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$
 given by $\mathcal{T}(x,y) = (2x+y,x+y) \mod 1$.

A D > A P > A B > A B >

A dynamical system is a pair (X, T) where X is a topological space and $T : G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z} -action by homeomorphisms.

$$T: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$
 given by $T(x,y) = (2x+y,x+y) \mod 1$.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

A dynamical system is a pair (X, T) where X is a topological space and $T : G \curvearrowright X$ is a group action by homeomorphisms of X.

A \mathbb{Z} -action by homeomorphisms.

$$T: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$$
 given by $T(x,y) = (2x+y,x+y) \mod 1$.

ヘロト ヘヨト ヘヨト

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

A dynamical system might be complicated. A good idea is to code its trajectories using a partition.

Why would coding be a good idea?

- Instead of a complicated homeomorphism we get a shift action.
- If the coding is "good", dynamical properties are preserved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Easier to describe, run algorithms, etc.

Why would coding be a good idea?

- Instead of a complicated homeomorphism we get a shift action.
- If the coding is "good", dynamical properties are preserved.
- Easier to describe, run algorithms, etc.

Theorem

If X is a Cantor space and T is an expansive action then (X, T) is conjugate to a symbolic system (a subshift).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► *G* is a countable group.

▶
$$A$$
 is a finite alphabet. Ex: $A = \{0, 1\}$.

▶ \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$

• $\sigma: G \times \mathcal{A}^G \to \mathcal{A}^G$ is the left shift action given by:

$$\sigma(h,x)_g := \sigma^h(x)_g = x_{h^{-1}g}$$

► G is a countable group.

▶
$$A$$
 is a finite alphabet. Ex: $A = \{0, 1\}$.

▶ \mathcal{A}^{G} is the set of configurations, $x : G \to \mathcal{A}$

• $\sigma: G \times \mathcal{A}^G \to \mathcal{A}^G$ is the left shift action given by:

$$\sigma(h,x)_g := \sigma^h(x)_g = x_{h^{-1}g}.$$

Definition: full G-shift

The pair $(\mathcal{A}^{\mathcal{G}}, \sigma)$ is called the *full G-shift*.

Figure: A random configuration $x \in \{\blacksquare, \square\}^{\mathbb{Z}^2/20\mathbb{Z}^2}$ and its image by $\sigma^{(10,18)}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Figure: A random configuration $x \in \{\blacksquare, \square\}^{\mathbb{Z}^2/20\mathbb{Z}^2}$ and its image by $\sigma^{(10,18)}$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Figure: A random configuration $x \in \{\blacksquare, \square\}^{\mathbb{Z}^2/20\mathbb{Z}^2}$ and its image by $\sigma^{(10,18)}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Definition: G-subshift

 $X \subset \mathcal{A}^{G}$ is a *subshift* if and only if it is invariant under the action of σ and closed for the product topology on \mathcal{A}^{G} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition: G-subshift

 $X \subset \mathcal{A}^{G}$ is a *subshift* if and only if it is invariant under the action of σ and closed for the product topology on \mathcal{A}^{G} .

Examples:

•
$$X = \left\{ x \in \{0,1\}^{\mathbb{Z}} \mid \text{no two consecutive 1's in } x \right\}$$

• $X = \left\{ x \in \{0,1\}^{G} \mid \text{finite CC of 1's are of even length} \right\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Definitions

۲

Luckily, subshifts can also be described in a combinatorial way.

- A pattern is a finite configuration, i.e. p ∈ A^F where F ⊂ G and |F| < ∞. We denote supp(p) = F.
- A cylinder is the set $[a]_g := \{x \in \mathcal{A}^G \mid x_g = a\}.$

 $[p] := \bigcap_{g \in \mathrm{supp}(p)} [p_g]_g.$

Luckily, subshifts can also be described in a combinatorial way.

- A pattern is a finite configuration, i.e. p ∈ A^F where F ⊂ G and |F| < ∞. We denote supp(p) = F.
- A cylinder is the set $[a]_g := \{x \in \mathcal{A}^G \mid x_g = a\}.$

$$[p] := \bigcap_{g \in \mathrm{supp}(p)} [p_g]_g.$$

Proposition

۲

A subshift is a set of configurations avoiding patterns from a set \mathcal{F} .

$$X = X_{\mathcal{F}} := \mathcal{A}^{\mathcal{G}} \setminus \bigcup_{g \in \mathcal{G}, p \in \mathcal{F}} \sigma^{g}([p])$$

A D N A 目 N A E N A E N A B N A C N

Example in \mathbb{Z}^2 : Hard-square shift

Example: Hard-square shift. X is the set of assignments of \mathbb{Z}^2 to $\{0,1\}$ such that there are no two adjacent ones.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example: one-or-less subshift

Example: one-or-less subshift.

$$X_{\leq 1} := \{ x \in \{0,1\}^G \mid 0 \notin \{x_u, x_v\} \implies u = v \}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example: Fibonacci in F_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A subshift defined by Wang tiles: two tiles can be put next to each other only their adjacent colors match.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

A simple class with respect to the combinatorial definition

▶ 2D-SFT \equiv Wang tilings.

Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset A^G$ is *strongly aperiodic* if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset A^G$ is *strongly aperiodic* if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Proposition

Every 1D non-empty SFT contains a periodic configuration.

Strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset A^G$ is *strongly aperiodic* if all its configurations have trivial stabilizer

$$\forall x \in X, \forall g \in G, \ \sigma^g(x) = x \Rightarrow g = 1_G.$$

Proposition

Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao 2015)

There exist strongly aperiodic SFTs on \mathbb{Z}^2 .
Example of strongly aperiodic \mathbb{Z}^2 -SFT: Robinson tileset

The Robinson tileset, where tiles can be rotated and reflected.

(日) (四) (日) (日) (日)

Example of strongly aperiodic \mathbb{Z}^2 -SFT: Robinson tileset

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

► If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).

- ► If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ► If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)

- ► If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ► If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).

- ► If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ► If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- Discrete Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).

- ► If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ► If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- Discrete Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).

► Surface groups (Cohen & Goodman-Strauss, 2015).

- ► If G is r.p. with a strongly aperiodic SFT, then G has decidable WP (Jeandel, 2015).
- ► If G has at least two ends, then it has no strongly aperiodic SFTs (Cohen, 2015)
- ▶ Generalization of Kari's construction to some $G \times \mathbb{Z}$ (Jeandel, 2015).
- Discrete Heisenberg group (Sahin, Schraudner & Ugarcovici, 2015).
- ► Surface groups (Cohen & Goodman-Strauss, 2015).
- ▶ groups $\mathbb{Z}^2 \rtimes H$ where *H* has decidable **WP** (B & Sablik, 2016).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Simulation Theorems

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Finitely presented group

A group G is finitely presented if it can be described as $G = \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Finitely presented group

A group G is finitely presented if it can be described as $G = \langle S|R \rangle$ where both S and $R \subset (S \cup S^{-1})^*$ are finite.

$$\mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$$

Recursively presented group

A group G is recursively presented if it can be described as $G = \langle S | R \rangle$ where $S \subset \mathbb{N}$ and $R \subset (S \cup S^{-1})^*$ are recursive sets.

$$L = \langle a, t \mid (at^n a t^{-n})^2, n \in \mathbb{N} \rangle$$

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

"A complicated object is realized inside another object which admits a much simpler presentation."

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

"A complicated object is realized inside another object which admits a much simpler presentation."

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Apply Highman's theorem to $G = \langle a, b, c, d \mid b^{-n}ab^n = c^{-n}dc^n, n \in HALT \rangle.$

Effectively closed dynamical system

An action $T : \mathbb{Z} \curvearrowright \{0,1\}^{\mathbb{N}}$ is *effectively closed* if there exists a Turing machine which on entry $w \in \{0,1\}^*$ enumerates a language *L* such that:

$$T([w]) = \{0,1\}^{\mathbb{N}} \setminus \bigcup_{u \in L} [u].$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Effectively closed dynamical system

An action $T : \mathbb{Z} \curvearrowright \{0, 1\}^{\mathbb{N}}$ is *effectively closed* if there exists a Turing machine which on entry $w \in \{0, 1\}^*$ enumerates a language L such that:

$$T([w]) = \{0,1\}^{\mathbb{N}} \setminus \bigcup_{u \in L} [u].$$

Theorem (Hochman, 2009)

Let $T : \mathbb{Z} \curvearrowright \{0,1\}^{\mathbb{N}}$ be an effectively closed action. There exists a \mathbb{Z}^3 -SFT such that its \mathbb{Z} -subaction is an almost 1-1 extension (very close) of T.

sofic subshift

A subshift is called *sofic* if it is the image of an SFT by a local recoding.

Effectively closed subshift

A \mathbb{Z} -subshift is *effectively closed* if it can be described by a recursively enumerable set of forbidden words.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

sofic subshift

A subshift is called *sofic* if it is the image of an SFT by a local recoding.

Effectively closed subshift

A \mathbb{Z} -subshift is *effectively closed* if it can be described by a recursively enumerable set of forbidden words.

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen 2010)

For effectively closed \mathbb{Z} -subshift X there exists a \mathbb{Z}^2 -sofic subshift Y such that every $y \in Y$ is a periodic vertical extension of a configuration $x \in X$.

The case of subshifts

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

It is complicated to come up with $\mathbb{Z}^2\text{-}\mathsf{SFTs}$ which are strongly aperiodic, however, finding a $\mathbb{Z}\text{-}\mathsf{effectively}$ closed subshift which is aperiodic is easy.

It is complicated to come up with \mathbb{Z}^2 -SFTs which are strongly aperiodic, however, finding a \mathbb{Z} -effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

 $0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \dots$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Then $X = \overline{\text{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

So... why is simulation important?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So... why is simultation important?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Examples

• Easy construction of strongly aperiodic \mathbb{Z}^2 -SFTs

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^2 -SFTs
- ► Z²-SFTs with no computable configurations (Original result by Hanf-Myers 1974)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^2 -SFTs
- ► Z²-SFTs with no computable configurations (Original result by Hanf-Myers 1974)

► Classifying the entropies of Z²-SFTs (Original result by Hochman-Meyerovitch 2010) Let $T: G \curvearrowright \{0,1\}^{\mathbb{N}}$ be an effectively closed action of a finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product $\mathbb{Z}^2 \rtimes G$ there exists a $\mathbb{Z}^2 \rtimes G$ -SFT such that its G-subaction is an extension of T.

Let $\mathcal{T}: G \curvearrowright \{0,1\}^{\mathbb{N}}$ be an effectively closed action of a finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product $\mathbb{Z}^2 \rtimes G$ there exists a $\mathbb{Z}^2 \rtimes G$ -SFT such that its G-subaction is an extension of T.

Theorem (B, 2017)

For any pair of infinite and finitely generated groups H_1 , H_2 there exists a $(G \times H_1 \times H_2)$ -SFT such that its G-subaction is an extension of T.

Let's keep it simple, let's do $G \times \mathbb{Z}^2$.

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider

$$\begin{split} \Psi: \{0,1\}^{\mathbb{N}} \to \{0,1,\$\}^{\mathbb{Z}} \text{ given by:} \\ \Psi(x)_j &= \begin{cases} x_n & \text{if } j = 3^n \mod 3^{n+1} \\ \$ & \text{in the contrary case.} \end{cases} \end{split}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let's keep it simple, let's do $G \times \mathbb{Z}^2$. Consider

$$\begin{split} \Psi: \{0,1\}^{\mathbb{N}} \to \{0,1,\$\}^{\mathbb{Z}} \text{ given by:} \\ \Psi(x)_j &= \begin{cases} x_n & \text{if } j = 3^n \mod 3^{n+1} \\ \$ & \text{in the contrary case.} \end{cases} \end{split}$$

Example

If we write $x = x_0 x_1 x_2 x_3 \dots$ we obtain,

 $\Psi(x) = \dots \$x_0\$x_1x_0\$\$x_0\$x_2x_0\$x_1x_0\$\$x_0\$\$x_0\$x_1x_0\$\$x_0\$x_1x_0\$\$x_0\$x_3x_0\dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\dots x_0x_1x_0x_0x_2x_0x_1x_0x_0x_1x_0x_1x_0x_3x_0\dots$

 $\dots x_0x_1x_0x_2x_0x_1x_0x_0x_1x_0x_1x_0x_1x_0x_3x_0\dots$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\dots x_0x_1x_0x_2x_0x_1x_0x_0x_1x_0x_1x_0x_1x_0x_3x_0\dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 \triangleright pick afinite set of generators *S* of *G*.

 \triangleright construct a subshift Π where every configuration is (up to shifts and a set of measure 0) an *S*-tuple of configurations of the previous form.

$$S = \{1_G, s_1, \ldots s_n\}$$

 $(\Psi(x),\Psi(T^{s_1}(x),\ldots,\Psi(T^{s_n}(x))\in\Pi)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
\triangleright pick afinite set of generators *S* of *G*.

 \triangleright construct a subshift Π where every configuration is (up to shifts and a set of measure 0) an *S*-tuple of configurations of the previous form.

$$S = \{1_G, s_1, \ldots s_n\}$$

$$(\Psi(x),\Psi(\mathcal{T}^{s_1}(x),\ldots,\Psi(\mathcal{T}^{s_n}(x))\in\Pi)$$

Claim

If T is an effectively closed action, Π is effectively closed.

 \vartriangleright Take Π and construct a sofic \mathbb{Z}^2 subshift $\widetilde{\Pi}$ having Π in every horizontal row.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- \vartriangleright Take Π and construct a sofic \mathbb{Z}^2 subshift $\widetilde{\Pi}$ having Π in every horizontal row.
- \triangleright Using the decoding argument, construct a map from Π to X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- \vartriangleright Take Π and construct a sofic \mathbb{Z}^2 subshift $\widetilde{\Pi}$ having Π in every horizontal row.
- \triangleright Using the decoding argument, construct a map from Π to X.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \triangleright Put in every *G*-coset of $G \times \mathbb{Z}^2$ a configuration of Π .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

・ロト・雪・・雪・・雪・ うんの

Theorem (B, Sablik 2016)

If G is finitely generated, WP(G) is decidable and d > 1. Then $G \rtimes \mathbb{Z}^d$ admits a SA SFT.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (B, Sablik 2016)

If G is finitely generated, WP(G) is decidable and d > 1. Then $G \rtimes \mathbb{Z}^d$ admits a SA SFT.

Theorem (B 2017)

If G_i are at least three infinite and finitely generated groups with decidable word problem. Then $G_1 \times \cdots \times G_n$ admits a SA SFT.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

What about the Grigorchuk group?

The Grigorchuk group is generated by the actions a, b, c, d over $\{0, 1\}^{\mathbb{N}}$.

イロト 不得 トイヨト イヨト

3

- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^n = 1_G$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G \times G$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 \triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

 \triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

Theorem (B, 2017)

The Grigorchuk group admits a strongly aperiodic SFT.

Thank you for your attention!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @