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Motivation

A dynamical system is a pair (X ,T ) where X is a topological
space and T : G y X is a group action by homeomorphisms of X .

A Z-action by homeomorphisms.
T : R2/Z2 → R2/Z2 given by T (x , y) = (2x + y , x + y) mod 1.
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Coding of an orbit
A dynamical system might be complicated. A good idea is to code
its trajectories using a partition.

A Z-action by homeomorphisms.
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its trajectories using a partition.
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•T 4(x)

ϕ(x) = . . .
-1 0 1 2 3 4

. . . ∈ { , , }Z



Motivation

Why would coding be a good idea ?
Instead of a complicated group action we get a shift action.
If the coding is “good”, dynamical properties are preserved.
Easier to describe, run algorithms, etc.

Theorem
If X is a Cantor space and T is an expansive action then (X ,T ) is
conjugate to a symbolic system (a subshift).
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Definitions

I G is a countable group.
I A is a finite alphabet. Ex : A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by :

σ(h, x)g := σh(x)g = xh−1g .

Definition : full G-shift
The pair (AG , σ) is called the full G-shift.
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Definitions

Definition : G-subshift
X ⊂ AG is a subshift if and only if it is invariant under the action
of σ and closed for the product topology on AG .

Examples :

I X =
{
x ∈ {0, 1}Z | no two consecutive 1’s in x

}
I X =

{
x ∈ {0, 1}G | finite CC of 1’s are of even length

}
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Definitions

Luckily, subshifts can also be described in a combinatorial way.

A pattern is a finite configuration, i.e. p ∈ AF where F ⊂ G
and |F | <∞. We denote supp(p) = F .
A cylinder is the set [a]g := {x ∈ AG | xg = a}.

[p] :=
⋂

g∈supp(p)
[pg ]g .

Proposition
A subshift is a set of configurations avoiding patterns from a set F .

X = XF := AG \
⋃

g∈G,p∈F
σg ([p])
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Example in Z2 : Hard-square shift

Example : Hard-square shift. X is the set of assignments of Z2

to {0, 1} such that there are no two adjacent ones.
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Example : one-or-less subshift

Example : one-or-less subshift.

X≤1 := {x ∈ {0, 1}G | 0 /∈ {xu, xv} =⇒ u = v}.
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Example : Fibonacci in F2.
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Example : Wang tiling

A subshift defined by Wang tiles : two tiles can be put next to
each other only their adjacent colors match.



Subshifts of finite type (SFT)

Definition : subshift of finite type (SFT)
A subshift of finite type (SFT) is a subshift that can be defined by
a finite set of forbidden patterns.

I A simple class with respect to the combinatorial definition
I 2D-SFT ≡ Wang tilings.
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Definition (Strongly aperiodic subshift)
A subshift X ⊂ AG is strongly aperiodic if all its configurations
have trivial stabilizer

∀x ∈ X ,∀g ∈ G , σg (x) = x ⇒ g = 1G .

Proposition
Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari & Culik 1996, Jeandel
& Rao 2015)
There exist strongly aperiodic SFTs on Z2.
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Example of strongly aperiodic Z2-SFT : Robinson tileset

The Robinson tileset, where tiles can be rotated.
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Some recent results

I If G is r.p. with a strongly aperiodic SFT, then G has
decidable WP (Jeandel, 2015).

I If G has at least two ends, then it has no strongly aperiodic
SFTs (Cohen, 2015)

I Generalization of Kari’s construction to some G × Z (Jeandel,
2015).

I Discrete Heisenberg group (Sahin, Schraudner & Ugarcovici,
2015).

I Surface groups (Cohen & Goodman-Strauss, 2015).
I groups Z2 o H where H has decidable WP (B & Sablik,

2016).
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Some recent partial results

It is not obvious to come up with examples of aperiodic subshifts
in general groups even if no restrictions are supposed on the list of
forbidden patterns.

Question by Glasner and Uspenskij 2009
Is there any countable group which does not admit any non-empty
strongly aperiodic subshift on a two symbol alphabet ?

Theorem by Gao, Jackson and Seward 2009
No. All do.

And their proof is a quite technical construction.
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However...

However ! It is possible to show the same result by using tools from
probability and combinatorics.

Theorem by Aubrun, B, Thomassé
No. All do.

But now the proof is short. It uses the asymmetrical version of
Lovász Local Lemma.
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Lovász Local Lemma

Lovász Local Lemma (Asymmetrical version)
Let A := {A1,A2, . . . ,An} be a finite collection of measurable sets
in a probability space (X , µ,B). For A ∈ A , let Γ(A) be the
smallest subset of A such that A is independent of the collection
A \ ({A} ∪ Γ(A)). Suppose there exists a function x : A → (0, 1)
such that :

∀A ∈ A : µ(A) ≤ x(A)
∏

B∈Γ(A)
(1− x(B))

then the probability of avoiding all events in A is positive, in
particular :

µ

(
X \

n⋃
i=1

Ai

)
≥
∏

A∈A

(1− x(A)) > 0.



Lovász Local Lemma applied to subshifts

A sufficient condition for being non-empty
Let G a countable group and X ⊂ AG a subshift defined by the set
of forbidden patterns F =

⋃
n≥1Fn, where Fn ⊂ ASn . Suppose

that there exists a function x : N× G → (0, 1) such that :

∀n ∈ N, g ∈ G , µ(An,g ) ≤ x(n, g)
∏

gSn∩hSk 6=∅
(k,h) 6=(n,g)

(1− x(k, h)),

where An,g =
{
x ∈ AG : x |gSn ∈ Fn

}
and µ is any Bernoulli

probability measure on AG . Then the subshift X is non-empty.



Proof of the theorem

We say x ∈ {0, 1}G has the distinct neighborhood property if for
every h ∈ G \ {1G} there exists a finite subset T ⊂ G such that :

∀g ∈ G : x |ghT 6= x |gT .

Proposition
If x has the distinct neighborhood property then orbσ(x) is
strongly aperiodic.
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Proof of the theorem

It suffices to show that there is x ∈ {0, 1}G with the distinct
neighborhood property.

Ingredients
I A constant C ∈ N.
I An enumeration s1, s2, . . . of G .
I (Ti )i∈N a sequence of finite subsets of G such that for every

i ∈ N, Ti ∩ siTi = ∅ and |Ti | = C · i .
I The uniform Bernoulli measure µ
I A := {An,g}n≥1,g∈G

I An,g = {x ∈ {0, 1}G | x |gTn = x |gsnTn}

I x(An,g ) := 2−Cn
2

Proof : On the blackboard.
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Aftermath

We have shown :
Theorem
Every countable group has a non-empty, strongly aperiodic subshift
on the alphabet {0, 1}.

But we can show something more :

Theorem (Aubrun, B, Thomassé)
Every finitely generated group G with decidable word problem has
a non-empty, effectively closed strongly aperiodic subshift.
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enumerable coding of a set of forbidden patterns F .
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Square-free vertex coloring

Square-free vertex coloring
Let G = (V ,E ) be a graph. A vertex coloring is a function
x : V → A. We say it is square-free if for every odd-length path
p = v1 . . . v2n then there exists 1 ≤ j ≤ n such that
x(vj) 6= x(vj+n).

C5 has a square-free vertex coloring with 4 colors, but not with 3.
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Square-free vertex coloring

For our purposes, we are interested in coloring infinite graphs. This
can not always be done with a finite number of colors : KN.

Theorem : Alon, Grytczuk, Haluszczak and Riordan
Every finite graph with maximum degree ∆ can be colored with
2e16∆2 colors.

It is possible to adapt the proof in order to obtain the following :
Let G be a group which is generated by a finite set S and let
Γ(G , S) = (G , {{g , gs}, g ∈ G , s ∈ S}) be its undirected right
Cayley graph.

Theorem
G admits a coloring of its undirected Cayley graph Γ(G ,S) with
219|S|2 colors.
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The proof idea
Let |A| ≥ 219|S|2 and X ⊂ AG be the subshift such that every
square in Γ(G , S) is forbidden.

The previous result implies that X 6= ∅.
Let g ∈ G such that σg (x) = x for some x ∈ X .
Factorize g as uwv with u = v−1 and |w | minimal (as a word
on (S ∪ S−1)∗). If |w | = 0, then g = 1G .
If not, let w = w1 . . .wn and consider the odd length walk
π = v0v1 . . . v2n−1 on Γ(G , S) defined by :

vi =


1G if i = 0
w1 . . .wi if i ∈ {1, . . . , n}
ww1 . . .wi−n if i ∈ {n + 1, . . . , 2n − 1}

One can prove that π is a path. and that xvi = xvi+n . Yielding
a contradiction.
Therefore, g = 1G .
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Theorem (Aubrun, B, Thomassé)
Every finitely generated group with decidable word problem admits
a non-empty, effectively closed, strongly aperiodic subshift.

Putting it together with a result from Jeandel we get :

Theorem
Let G be a recursively presented group. There exists a non-empty
effectively closed strongly aperiodic G-subshift if and only if the
word problem of G is decidable.



Applications

Theorem (Aubrun, B, Thomassé)
Every finitely generated group with decidable word problem admits
a non-empty, effectively closed, strongly aperiodic subshift.

Putting it together with a result from Jeandel we get :

Theorem
Let G be a recursively presented group. There exists a non-empty
effectively closed strongly aperiodic G-subshift if and only if the
word problem of G is decidable.



Applications

Another application is producing strongly aperiodic SFTs. Using a
simulation theorem (A generalization of Hochman’s result from
2008). We can prove the following :
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Let G be a finitely generated group with decidable word problem.
Then Z2 o G admits a non-empty strongly aperiodic SFT.
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Thank you for your attention !


