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General setting

Consider an action by homeomorphisms
T:6n~ Xc{0,1}"

where:

@ G is a countable group
e Ais a countable set (usually N, Z or G).
o X is closed for the product topology.

In the case where we only consider one homeomorphism T we have
G=2

> The goal of this talk is to study under which conditions these
actions can be recovered as subactions of simpler dynamical
systems (SFTs and sofic subshifts).



General setting

Odometer T : Z ~ {0,1}N “addition in base 2 with right carry”

If x =1111... then T(x) =0000.... Otherwise let k(x) be the
index of the first 0 in x. Then:

1if n= k(x)
T(x)n=10if n < k(x)
xp if n > k(x)




General setting

Odometer T : Z ~ {0,1}N “addition in base 2 with right carry”

If x =1111... then T(x) =0000.... Otherwise let k(x) be the
index of the first 0 in x. Then:

1if n= k(x)
T(x)n=10if n < k(x)
xp if n > k(x)

x = 010010100010001000. . .
T(x) = 110010100010001000 . . .

T?(x) = 001010100010001000 . . .
T3(x) = 101010100010001000 . . .
T*(x) = 011010100010001000 . . .
T°(x) = 111010100010001000 . . .
T°(x) = 000110100010001000. . .
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General setting

¢ :Z ~ {0,1}2° (Invertible) cellular automaton

Let F C Z9 be a finite set and ® : {0,1}F — {0,1} a function. Let

P(x)y = P(a"(x)[F) =" P(x|v1F).




General setting

¢ :Z ~ {0,112 (Invertible) cellular automaton

Let F C Z9 be a finite set and ® : {0,1}F — {0,1} a function. Let

P(x)y = ®(a"(x)[F) =" P(x|v1F).

*This example is not invertible.
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Let A be a finite alphabet.

Definition: full G-shift
The full G-shift is the action o : G ~ A% where:

o8(X)h = Xg-1p-

Definition: G-subshift
X C A€ is a subshift if and only if it is invariant under the action
of o and closed for the product topology on A€.

Examples:

» X = {X € {0,1}# | no two consecutive 1's in x}

» X = {x € {0,1}%° | finite CC of 1's are of even Iength}



Luckily, subshifts can also be described in a combinatorial way.
o A pattern is a finite configuration, i.e. p € AF where F C G
and |F| < oo. We denote supp(p) = F.
o A cylinder is the set [a], := {x € A® | x; = a}.

[p] == m [Pele-

gesupp(p)



Luckily, subshifts can also be described in a combinatorial way.
o A pattern is a finite configuration, i.e. p € AF where F C G
and |F| < oo. We denote supp(p) = F.
o A cylinder is the set [a], := {x € A® | x; = a}.

[p] == m [Pele-

gesupp(p)

Proposition

A subshift is a set of configurations avoiding patterns from a set F.

X=Xr=A\ |J o%(n))

geG,peF




Example in Z?: Hard-square shift

Example: Hard-square shift. X is the set of assignments of Z2
to {0, 1} such that there are no two adjacent ones.




Example: one-or-less subshift

Example: one-or-less subshift.

X1 :={x€{0,1}° |0 ¢ {xy,x,} = u=v}.




Example: Same rule as hard-square in F;.
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Simple classes of subshifts

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by
a finite set of forbidden patterns.

Definition: sofic subshift

A sofic subshift is the image of an SFT via a shift-commuting
continuous map.

Definition: effective subshift

An effectively closed subshift is a subshift that can be defined by a
recursively enumerable set of forbidden patterns.




Example SFT: Hard-square shift




Example sofic: one-or-less subshift (in Z?)




Effectively closed subshift: Mirror shift
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What about the subactions of these classes?

Let X C A%’ be a subshift and H < Z9.

> What can we say about the system (X, o|n)?
D> Same question when X is an SFT, sofic or effectively closed.

Remark: Subshifts are expansive, subactions not necessarily

> Let (Z,0) < Z? and the sequence

(U)o = {1 if v=1(0,n)

0 else

But: sup d(U(LO)(Yn)vU(Z’O)(Ym)) <2° min (n,m)
zeZ




Question 1: What type of systems can we obtain as
subactions?

Effectively closed Cantor set

X C {0,1}A is effectively closed if X = {0,1}A\ U, [w] where L
is a recursively enumerable language.

Effectively closed dynamical system

X C ({0,1}4)€ is an effectively closed dynamical system if it is an
effectively closed Cantor set and G acts by shifts.
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subactions?

This gives a nice way of interpreting actions:

Effectively closed action
For T: G ~ X C {0,1}* consider Y C {0,1}*%¢ defined by:

X
Y = dy € {0,118%6 such that Y1Ax{te} € :
{y {0,1} Y\Ax{g} = Tg(Y\Ax{lg})




Question 1: What type of systems can we obtain as
subactions?

This gives a nice way of interpreting actions:

Effectively closed action

For T: G ~ X C {0,1}* consider Y C {0,1}*%€¢ defined by:

X
Y = dy € {0,118%6 such that Y1Ax{te} € :
{y {0,1} Y\Ax{g} = Tg(Y\Ax{lc})

Theorem (Hochman)

Every subaction of an effectively closed subshift (also sofic/SFT) is
an effectively closed dynamical system.
Proof: blackboard.
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No odometer is the subaction of a subshift.
Proof: blackboard

However, we will see later that the 2-odometer can be obtained as
a factor of a subaction of an SFT!
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extension of T.
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Question 2': can we realize any action as a

subaction of an ?

Answer: Yes.

Theorem (Hochman)

For every effectively closed action T : Z9 ~ X C {0,1}N there
exists a Z9T2.SFT X such that one of its Z%-subactions is an
extension of T.

ze+2 (X,0)
subaction
zd (X, 0]24) (X, T)

factor

Moreover, the factor is small, it is an ATIE (almost trivial isometric
extension)
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Answer: Yes. For the expansive case

Theorem (Hochman)

If T is an effectively closed expansive Z9-action (i.e. conjugate to
a subshift) then it is the subaction of a Z9*2-sofic subshift.
Proof idea: blackboard.




Question 4: in the expansive case, can we get rid of the
factor?

A

d+2 X 1%
z (X,0) symb factor (Y, 0)
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Question 4: in the expansive case, can we get rid of the
factor?
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Question 4: in the expansive case, can we get rid of the

factor?

Zd+2 (X, 0-)

subaction?

zd (X, T)

Answer: No.

Example (Hochman)

The fixed point of the Chacon substitution
0—0010, 1—0

generates an effectively closed subshift which is not the subaction
of any Z9-SFT.
(Actually, any minimal e.c. Z-subshift with Aut(X) = Z works)
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Example (Jeandel)

The mirror shift seen as a Z-action over a Cantor set is not the
factor of a subaction of any Z2-SFT.




Question 5: can we reduce the dimension?

Z7d+1 ()“(7 o)

subaction

zd ()A<,O'|Zd) (X, T)

factor

Answer: No.

Example (Jeandel)

The mirror shift seen as a Z-action over a Cantor set is not the
factor of a subaction of any Z2-SFT.

However, if we restrict to the expansive case...
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Question 5": can we reduce the dimension

d+1 X Y
z (X.0) symb factor (Y. )
subaction subaction‘
z4 (X, 0l24) (X, T)

factor

Answer: Yes!

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen)

Every effectively closed Z9-subshift is the subaction (projective
subaction) of a Z9+1-sofic subshift.




Panorama

AN ()A(’ o) symb factor ()A/’ o)
expansive subacﬁon‘
zd (X, T)
Zd+2 (X,0)
non-expansive subacﬁon‘
zd (X, 0]24) (X, T)

factor



Panorama

some questions

@ In the non-expansive case: The factor is an ATIE.
(X, 0)z4) = (X, T) x (W, S) — (X, T).

The first factor is a.e. 1-1 for every invariant measure, the
second is the projection, and (W, S) is an isometric action
(i.e. odometer).
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Panorama

some questions

@ In the non-expansive case: The factor is an ATIE.
(X, 0)z4) = (X, T) x (W, S) — (X, T).

The first factor is a.e. 1-1 for every invariant measure, the
second is the projection, and (W, S) is an isometric action
(i.e. odometer).
> Can we do better with the factor?

@ In the expansive case: Which are the systems that arise as
subactions of SFTs?

>> Partial answers by Pavlov and Schraudner and by Sablik
and Schraudner.
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The philosophy behind it

Finitely presented group

A group G is finitely presented if it can be described as G = (S|R)
where both S and R C (SU S™1)* are finite.

Z% = (a,b| aba~tb71)

Recursively presented group

A group G is recursively presented if it can be described as
G = (S|R) where S C N and R C (SU S™1)* are recursive sets.

L=<(a,t]|(at"at™™)?2 neN)

P z/2Z = (ap,n € N| {3 }nens (2], akjken)-
ieN
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The philosophy behind it

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely
presented group G such that H is isomorphic to a subgroup of G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]
There are finitely presented groups with undecidable word problem

Just apply Highman's theorem to
G = (a,b,c,d| b"ab" = ¢~ "dc", n € HALT)... done!
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An application: strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)
A subshift X C A€ is strongly aperiodic if the shift action is free

Vx € X,Vg € G, 08(x) =x = g=1¢.

Proposition
Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao

2015)
There exist strongly aperiodic SFTs on Z2.




Example of strongly aperiodic Z?-SFT: Robinson tileset
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The case of subshifts
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So... why is simulation important?

It is complicated to come up with Z?-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Let x be a fixed point of the Thue-Morse substitution.

0 — 01 — 0110 — 01101001 — 0110100110010110 — ...

Then X = Orb,(x) is strongly aperiodic and effectively closed.

A Sturmian subshift given by a computable slope a. l
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So... why is simulation important?

» Easy construction of strongly aperiodic Z?-SFTs

» Z2-SFTs with no computable configurations (Original result
by Hanf-Myers 1974)

» Classifying the entropies of Z2-SFTs (Original result by
Hochman-Meyerovitch 2010)




Two new results in general groups

Let T: G ~ X C {0,1}* be an effectively closed action of a
finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product Z% x G there exists a Z> x G-SFT such
that its G-subaction is an extension of T.




Two new results in general groups

Let T: G ~ X C {0,1}* be an effectively closed action of a
finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product Z? x G there exists a Z> x G-SFT such
that its G-subaction is an extension of T.

Theorem (B, 2017)

For any pair of infinite and finitely generated groups Hy, H, there
exists a (G x Hy x H»)-SFT such that its G-subaction is an
extension of T.
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How does one prove such a thing?

Let's keep it simple, let's do G x Z2. Consider
v {0, 11N — {0,1,$}4 given by:

() x, ifj=23" mod 31
X); =
’ $  in the contrary case.

If we write x = xpXx1Xpx3 ... we obtain,

V(x) =...8x08x1x09%9x09x2x0$x1x09Px09x0x1 %088 x0%x3%0 - . -
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How does one prove such a thing?

- $x08x1 X058 x0$x0x0 5 x1 X058 X055 x0 S x1 x0$S X0 $x3x0 % . . .

!

8081088 x0 X0 x0 5 x1 %05 x0 5 S x0 S x1 X0 5 x0 P X3 x0F . . .

I

L Sx18x0x1 88 x1 $x3x1 $x0x1 $8x1 85 x1 $xox1 $Fx1 $xaxa B . ..



How does one prove such a thing?

> pick afinite set of generators S of G.
D> construct a subshift I where every configuration is an S-tuple of
configurations of the previous form.

S={lg,s1,-.-5n}

(V(x), W(T*(x),...,¥(T*"(x)) en



How does one prove such a thing?

> pick afinite set of generators S of G.
D> construct a subshift I where every configuration is an S-tuple of
configurations of the previous form.

S={1lg,s1,..-5n}

(V(x), W(T*(x),...,¥(T*"(x)) en

If T is an effectively closed action, I1 is effectively closed. I
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How does one prove such a thing?

> Take I and construct a sofic Z2 subshift I having I in every
horizontal row using the expansive simulation theorem.
> Using the decoding argument, construct a map from 1 to X.
> Put in every G-coset of G x Z? a configuration of .
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How does one prove such a thing?
V(T (x))
( W( T (x) )
: en
W(To(x)
V(T (x))
(‘V(T“(X)))
: en
W(TH(x)

W(x)
(w(Tﬂ (x)))
: el
W(T (x))

S15n

S1



Two corollaries

Theorem (B, Sablik 2016)

If G is finitely generated, WP(G) is decidable and d > 1. Then
G x Z9 admits a SA SFT.




Two corollaries

Theorem (B, Sablik 2016)

If G is finitely generated, WP(G) is decidable and d > 1. Then
G x Z9 admits a SA SFT. |

Theorem (B 2017)

If G; are at least three infinite and finitely generated groups with
decidable word problem. Then Gy X --- X G, admits a SA SFT.

v




What about the Grigorchuk group?

0—0 0—0

0—~0
0—1 0
1—0 1

The Grigorchuk group is generated by the actions a, b, ¢, d over
{0, 1}N.



What about the Grigorchuk group?

@ The Grigorchuk group is infinite and finitely generated.

@ It contains no copy of Z as a subgroup. For every g € G,
there is n € N such that g" = 1.

@ Decidable word problem (and conjugacy problem).
@ It has intermediate growth.

@ It is commensurable to its square. ie: G and G x G have an
isomorphic finite index subgroup.
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What about the Grigorchuk group?

> If G is commensurable to G x G, then G is also commensurable
to G x G x G.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability
invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.




Thank you for your attention!
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