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General setting

Consider an action by homeomorphisms

T : G y X ⊂ {0, 1}A

where:

G is a countable group
A is a countable set (usually N,Z or G).
X is closed for the product topology.

In the case where we only consider one homeomorphism T we have
G = Z.

B The goal of this talk is to study under which conditions these
actions can be recovered as subactions of simpler dynamical
systems (SFTs and sofic subshifts).
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General setting

Odometer T : Z y {0, 1}N “addition in base 2 with right carry”
If x = 1111 . . . then T (x) = 0000 . . . . Otherwise let k(x) be the
index of the first 0 in x . Then:

T (x)n =


1 if n = k(x)
0 if n < k(x)
xn if n > k(x)

x = 010010100010001000 . . .

T (x) = 110010100010001000 . . .

T 2(x) = 001010100010001000 . . .

T 3(x) = 101010100010001000 . . .

T 4(x) = 011010100010001000 . . .

T 5(x) = 111010100010001000 . . .

T 6(x) = 000110100010001000 . . .
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General setting

Full G-shift
Let σ : G y {0, 1}G be given by:

σh(x)g = xh−1g .

σ(10,18)

Figure: A random configuration x ∈ {�,�}Z2/20Z2 and its image by
σ(10,18).
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General setting

φ : Z y {0, 1}Zd (Invertible) cellular automaton
Let F ⊂ Zd be a finite set and Φ : {0, 1}F → {0, 1} a function. Let

φ(x)v = Φ(σ−v (x)|F ) “=” Φ(x |v+F ).

φ

*This example is not invertible.
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Definitions

Let A be a finite alphabet.

Definition: full G-shift
The full G-shift is the action σ : G y AG where:

σg (x)h = xg−1h.

Definition: G-subshift
X ⊂ AG is a subshift if and only if it is invariant under the action
of σ and closed for the product topology on AG .

Examples:

I X =
{
x ∈ {0, 1}Z | no two consecutive 1’s in x

}
I X =

{
x ∈ {0, 1}Z2 | finite CC of 1’s are of even length

}
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Definitions

Luckily, subshifts can also be described in a combinatorial way.

A pattern is a finite configuration, i.e. p ∈ AF where F ⊂ G
and |F | <∞. We denote supp(p) = F .
A cylinder is the set [a]g := {x ∈ AG | xg = a}.

[p] :=
⋂

g∈supp(p)
[pg ]g .

Proposition
A subshift is a set of configurations avoiding patterns from a set F .

X = XF := AG \
⋃

g∈G,p∈F
σg ([p])
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Example in Z2: Hard-square shift

Example: Hard-square shift. X is the set of assignments of Z2

to {0, 1} such that there are no two adjacent ones.
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Example: one-or-less subshift

Example: one-or-less subshift.

X≤1 := {x ∈ {0, 1}G | 0 /∈ {xu, xv} =⇒ u = v}.
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Example: Same rule as hard-square in F2.
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Simple classes of subshifts

Definition: subshift of finite type (SFT)
A subshift of finite type (SFT) is a subshift that can be defined by
a finite set of forbidden patterns.

Definition: sofic subshift
A sofic subshift is the image of an SFT via a shift-commuting
continuous map.

Definition: effective subshift
An effectively closed subshift is a subshift that can be defined by a
recursively enumerable set of forbidden patterns.
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Example SFT: Hard-square shift
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Example sofic: one-or-less subshift (in Z2)
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Effectively closed subshift: Mirror shift



What about the subactions of these classes?

Let X ⊂ AZd be a subshift and H ≤ Zd .

B What can we say about the system (X , σ|H)?
B Same question when X is an SFT, sofic or effectively closed.

Remark: Subshifts are expansive, subactions not necessarily
B Let (Z, 0) ≤ Z2 and the sequence

(yn)v =
{
1 if v = (0, n)
0 else

But: sup
z∈Z

d(σ(z,0)(yn), σ(z,0)(ym)) ≤ 2−min (n,m)
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Question 1: What type of systems can we obtain as
subactions?

Effectively closed Cantor set
X ⊂ {0, 1}A is effectively closed if X = {0, 1}A \

⋃
w∈L[w ] where L

is a recursively enumerable language.

Effectively closed dynamical system
X ⊂ ({0, 1}A)G is an effectively closed dynamical system if it is an
effectively closed Cantor set and G acts by shifts.



Question 1: What type of systems can we obtain as
subactions?

This gives a nice way of interpreting actions:

Effectively closed action
For T : G y X ⊂ {0, 1}A consider Y ⊂ {0, 1}A×G defined by:

Y =
{
y ∈ {0, 1}A×G such that y |A×{1G} ∈ X

y |A×{g} = T g (y |A×{1G})

}
.

Theorem (Hochman)
Every subaction of an effectively closed subshift (also sofic/SFT) is
an effectively closed dynamical system.
Proof: blackboard.
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Question 2: can we realize any action as a subaction of a
subshift?

Answer: No.

No odometer is the subaction of a subshift.
Proof: blackboard

However, we will see later that the 2-odometer can be obtained as
a factor of a subaction of an SFT!
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Question 2’: can we realize any e.c. action as a factor of a
subaction of an SFT?

Answer: Yes.

Theorem (Hochman)
For every effectively closed action T : Zd y X ⊂ {0, 1}N there
exists a Zd+2-SFT X̂ such that one of its Zd -subactions is an
extension of T .

(X̂ , σ)Zd+2

Zd (X̂ , σ|Zd ) (X ,T )

subaction

factor

Moreover, the factor is small, it is an ATIE (almost trivial isometric
extension)
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Question 3: can we go the other way around?

(X̂ , σ) (Ŷ , σ)Zd+2

Zd (X̂ , σ|Zd ) (X ,T )

subaction

factor

symb factor

subaction

Answer: No. The odometer... However...

Answer: Yes. For the expansive case

Theorem (Hochman)
If T is an effectively closed expansive Zd -action (i.e. conjugate to
a subshift) then it is the subaction of a Zd+2-sofic subshift.
Proof idea: blackboard.
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Question 4: in the expansive case, can we get rid of the
factor?
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symb factor
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Answer: No.
Example (Hochman)
The fixed point of the Chacon substitution

0→ 0010, 1→ 0

generates an effectively closed subshift which is not the subaction
of any Zd -SFT.
(Actually, any minimal e.c. Z-subshift with Aut(X ) ∼= Z works)
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Question 5: can we reduce the dimension?

(X̂ , σ)Zd+2

Zd (X̂ , σ|Zd ) (X ,T )

subaction

factor

Answer: No.

Example (Jeandel)
The mirror shift seen as a Z-action over a Cantor set is not the
factor of a subaction of any Z2-SFT.

However, if we restrict to the expansive case...
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Question 5’: can we reduce the dimension in the expansive
case?

(X̂ , σ) (Ŷ , σ)Zd+2
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symb factor
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Answer: Yes!

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen)
Every effectively closed Zd -subshift is the subaction (projective
subaction) of a Zd+1-sofic subshift.
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Panorama

(X̂ , σ) (Ŷ , σ)Zd+1

expansive

Zd (X ,T )

symb factor

subaction

(X̂ , σ)Zd+2

Zd

non-expansive
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subaction
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Panorama

some questions
In the non-expansive case: The factor is an ATIE.

(X̂ , σ|Zd )� (X ,T )× (W ,S)� (X ,T ).

The first factor is a.e. 1-1 for every invariant measure, the
second is the projection, and (W , S) is an isometric action
(i.e. odometer).

B Can we do better with the factor?
In the expansive case: Which are the systems that arise as
subactions of SFTs?
B Partial answers by Pavlov and Schraudner and by Sablik
and Schraudner.
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Why is this thing useful?



The philosophy behind it

Finitely presented group
A group G is finitely presented if it can be described as G = 〈S|R〉
where both S and R ⊂ (S ∪ S−1)∗ are finite.

Z2 = 〈a, b | aba−1b−1〉

Recursively presented group
A group G is recursively presented if it can be described as
G = 〈S|R〉 where S ⊂ N and R ⊂ (S ∪ S−1)∗ are recursive sets.

L = 〈a, t | (atnat−n)2, n ∈ N〉

⊕
i∈N

Z/2Z ∼= 〈an, n ∈ N | {a2n}n∈N, [aj , ak ]j,k∈N〉.
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The philosophy behind it

Theorem (Highman 1961)
For every recursively presented group H there exists a finitely
presented group G such that H is isomorphic to a subgroup of G.

“A complicated object is realized inside another object which
admits a much simpler presentation.”

Corollary [Theorem: Novikov 1955, Boone 1958]
There are finitely presented groups with undecidable word problem

Just apply Highman’s theorem to
G = 〈a, b, c, d | b−nabn = c−ndcn, n ∈ HALT〉... done!
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An application: strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)
A subshift X ⊂ AG is strongly aperiodic if the shift action is free

∀x ∈ X ,∀g ∈ G , σg (x) = x ⇒ g = 1G .

Proposition
Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel & Rao
2015)
There exist strongly aperiodic SFTs on Z2.
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Example of strongly aperiodic Z2-SFT: Robinson tileset



The case of subshifts

∈ X

∈ Y



So... why is simulation important?

It is complicated to come up with Z2-SFTs which are strongly
aperiodic, however, finding a Z-effectively closed subshift which is
aperiodic is easy.

Example
Let x be a fixed point of the Thue-Morse substitution.

0→ 01→ 0110→ 01101001→ 0110100110010110→ . . .

Then X = Orbσ(x) is strongly aperiodic and effectively closed.

Example
A Sturmian subshift given by a computable slope α.
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I Easy construction of strongly aperiodic Z2-SFTs

I Z2-SFTs with no computable configurations (Original result
by Hanf-Myers 1974)

I Classifying the entropies of Z2-SFTs (Original result by
Hochman-Meyerovitch 2010)
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Two new results in general groups

Let T : G y X ⊂ {0, 1}A be an effectively closed action of a
finitely generated group.

Theorem (B-Sablik, 2016)
For any semidirect product Z2 o G there exists a Z2 o G-SFT such
that its G-subaction is an extension of T .

Theorem (B, 2017)
For any pair of infinite and finitely generated groups H1,H2 there
exists a (G × H1 × H2)-SFT such that its G-subaction is an
extension of T .
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How does one prove such a thing?

Let’s keep it simple, let’s do G × Z2.

Consider

Ψ : {0, 1}N → {0, 1, $}Z given by:

Ψ(x)j =
{
xn if j = 3n mod 3n+1

$ in the contrary case.

Example
If we write x = x0x1x2x3 . . . we obtain,

Ψ(x) = . . . $x0$x1x0$$x0$x2x0$x1x0$$x0$$x0$x1x0$$x0$x3x0 . . .
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How does one prove such a thing?

B pick afinite set of generators S of G .
B construct a subshift Π where every configuration is an S-tuple of
configurations of the previous form.

S = {1G , s1, . . . sn}

(Ψ(x),Ψ(T s1(x), . . . ,Ψ(T sn (x)) ∈ Π

Claim
If T is an effectively closed action, Π is effectively closed.
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How does one prove such a thing?

B Take Π and construct a sofic Z2 subshift Π̃ having Π in every
horizontal row using the expansive simulation theorem.

B Using the decoding argument, construct a map from Π to X .
B Put in every G-coset of G × Z2 a configuration of Π̃.
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Two corollaries

Theorem (B, Sablik 2016)
If G is finitely generated, WP(G) is decidable and d > 1. Then
G o Zd admits a SA SFT.

Theorem (B 2017)
If Gi are at least three infinite and finitely generated groups with
decidable word problem. Then G1 × · · · × Gn admits a SA SFT.
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What about the Grigorchuk group?

a id

b

c

d

0→ 1
1→ 0

0→ 0
1→ 1

0→ 0

1→ 1

1→ 1 1→ 1

0→ 0

0→ 0

The Grigorchuk group is generated by the actions a, b, c, d over
{0, 1}N.



What about the Grigorchuk group?

The Grigorchuk group is infinite and finitely generated.
It contains no copy of Z as a subgroup. For every g ∈ G ,
there is n ∈ N such that gn = 1G .
Decidable word problem (and conjugacy problem).
It has intermediate growth.
It is commensurable to its square. ie: G and G × G have an
isomorphic finite index subgroup.



What about the Grigorchuk group?

B If G is commensurable to G × G , then G is also commensurable
to G × G × G .

Theorem (Carroll-Penland, 2015)
Admitting a strongly aperiodic SFT is a commensurability
invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.



What about the Grigorchuk group?

B If G is commensurable to G × G , then G is also commensurable
to G × G × G .

Theorem (Carroll-Penland, 2015)
Admitting a strongly aperiodic SFT is a commensurability
invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.



What about the Grigorchuk group?

B If G is commensurable to G × G , then G is also commensurable
to G × G × G .

Theorem (Carroll-Penland, 2015)
Admitting a strongly aperiodic SFT is a commensurability
invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.



Thank you for your attention!
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