Realizability of non-expansive dynamics and applications

Sebastián Barbieri Lemp

LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon
Workshop dyadisc, AMIENS June, 2017

General setting

Consider an action by homeomorphisms

$$
T: G \curvearrowright X \subset\{0,1\}^{A}
$$

where:

- G is a countable group
- A is a countable set (usually \mathbb{N}, \mathbb{Z} or G).
- X is closed for the product topology.

General setting

Consider an action by homeomorphisms

$$
T: G \curvearrowright X \subset\{0,1\}^{A}
$$

where:

- G is a countable group
- A is a countable set (usually \mathbb{N}, \mathbb{Z} or G).
- X is closed for the product topology.

In the case where we only consider one homeomorphism T we have $G=\mathbb{Z}$.

General setting

Consider an action by homeomorphisms

$$
T: G \curvearrowright X \subset\{0,1\}^{A}
$$

where:

- G is a countable group
- A is a countable set (usually \mathbb{N}, \mathbb{Z} or G).
- X is closed for the product topology.

In the case where we only consider one homeomorphism T we have $G=\mathbb{Z}$.
\triangleright The goal of this talk is to study under which conditions these actions can be recovered as subactions of simpler dynamical systems (SFTs and sofic subshifts).

General setting

Odometer $T: \mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{N}}$ "addition in base 2 with right carry"
If $x=1111 \ldots$ then $T(x)=0000 \ldots$ Otherwise let $k(x)$ be the index of the first 0 in x. Then:

$$
T(x)_{n}=\left\{\begin{array}{l}
1 \text { if } n=k(x) \\
0 \text { if } n<k(x) \\
x_{n} \text { if } n>k(x)
\end{array}\right.
$$

General setting

Odometer $T: \mathbb{Z} \curvearrowright\{0,1\}^{N}$ "addition in base 2 with right carry"

If $x=1111 \ldots$ then $T(x)=0000 \ldots$ Otherwise let $k(x)$ be the index of the first 0 in x. Then:

$$
T(x)_{n}=\left\{\begin{array}{l}
1 \text { if } n=k(x) \\
0 \text { if } n<k(x) \\
x_{n} \text { if } n>k(x)
\end{array}\right.
$$

$$
\begin{aligned}
x & =010010100010001000 \ldots \\
T(x) & =110010100010001000 \ldots \\
T^{2}(x) & =001010100010001000 \ldots \\
T^{3}(x) & =101010100010001000 \ldots \\
T^{4}(x) & =011010100010001000 \ldots \\
T^{5}(x) & =111010100010001000 \ldots \\
T^{6}(x) & =000110100010001000 \ldots
\end{aligned}
$$

General setting

Full G-shift

Let $\sigma: G \curvearrowright\{0,1\}^{G}$ be given by:

$$
\sigma^{h}(x)_{g}=x_{h^{-1}} g .
$$

General setting

Full G-shift

Let $\sigma: G \curvearrowright\{0,1\}^{G}$ be given by:

$$
\sigma^{h}(x)_{g}=x_{h^{-1}} g .
$$

Figure: A random configuration $x \in\{\square, \square\}^{\mathbb{Z}^{2} / 20 \mathbb{Z}^{2}}$ and its image by $\sigma^{(10,18)}$.

General setting

Full G-shift

Let $\sigma: G \curvearrowright\{0,1\}^{G}$ be given by:

$$
\sigma^{h}(x)_{g}=x_{h^{-1}} g .
$$

Figure: A random configuration $x \in\{\boldsymbol{\square}, \square\}^{\mathbb{Z}^{2} / 20 \mathbb{Z}^{2}}$ and its image by $\sigma^{(10,18)}$.

General setting

$\phi: \mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}^{d}}$ (Invertible) cellular automaton
Let $F \subset \mathbb{Z}^{d}$ be a finite set and $\Phi:\{0,1\}^{F} \rightarrow\{0,1\}$ a function. Let

$$
\phi(x)_{v}=\Phi\left(\left.\sigma^{-v}(x)\right|_{F}\right) "=" \Phi\left(\left.x\right|_{v+F}\right)
$$

General setting

$\phi: \mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}^{d}}$ (Invertible) cellular automaton

Let $F \subset \mathbb{Z}^{d}$ be a finite set and $\Phi:\{0,1\}^{F} \rightarrow\{0,1\}$ a function. Let

$$
\phi(x)_{v}=\Phi\left(\left.\sigma^{-v}(x)\right|_{F}\right) \text { " }=" \Phi\left(\left.x\right|_{v+F}\right) .
$$

*This example is not invertible.

Definitions

Let \mathcal{A} be a finite alphabet.

Definition: full G-shift

The full G-shift is the action $\sigma: G \curvearrowright \mathcal{A}^{G}$ where:

$$
\sigma^{g}(x)_{h}=x_{g^{-1} h} .
$$

Definitions

Let \mathcal{A} be a finite alphabet.

Definition: full G-shift

The full G-shift is the action $\sigma: G \curvearrowright \mathcal{A}^{G}$ where:

$$
\sigma^{g}(x)_{h}=x_{g^{-1} h}
$$

Definition: G-subshift

$X \subset \mathcal{A}^{G}$ is a subshift if and only if it is invariant under the action of σ and closed for the product topology on \mathcal{A}^{G}.

Definitions

Let \mathcal{A} be a finite alphabet.

Definition: full G-shift

The full G-shift is the action $\sigma: G \curvearrowright \mathcal{A}^{G}$ where:

$$
\sigma^{g}(x)_{h}=x_{g}^{-1} h
$$

Definition: G-subshift

$X \subset \mathcal{A}^{G}$ is a subshift if and only if it is invariant under the action of σ and closed for the product topology on \mathcal{A}^{G}.

Examples:

- $X=\left\{x \in\{0,1\}^{\mathbb{Z}} \mid\right.$ no two consecutive 1 's in $\left.x\right\}$
- $X=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}} \mid\right.$ finite CC of 1 's are of even length $\}$

Definitions

Luckily, subshifts can also be described in a combinatorial way.

- A pattern is a finite configuration, i.e. $p \in \mathcal{A}^{F}$ where $F \subset G$ and $|F|<\infty$. We denote $\operatorname{supp}(p)=F$.
- A cylinder is the set $[a]_{g}:=\left\{x \in \mathcal{A}^{G} \mid x_{g}=a\right\}$.
-

$$
[p]:=\bigcap_{g \in \operatorname{supp}(p)}\left[p_{g}\right]_{g} .
$$

Definitions

Luckily, subshifts can also be described in a combinatorial way.

- A pattern is a finite configuration, i.e. $p \in \mathcal{A}^{F}$ where $F \subset G$ and $|F|<\infty$. We denote $\operatorname{supp}(p)=F$.
- A cylinder is the set $[a]_{g}:=\left\{x \in \mathcal{A}^{G} \mid x_{g}=a\right\}$.
-

$$
[p]:=\bigcap_{g \in \operatorname{supp}(p)}\left[p_{g}\right]_{g} .
$$

Proposition

A subshift is a set of configurations avoiding patterns from a set \mathcal{F}.

$$
X=X_{\mathcal{F}}:=\mathcal{A}^{G} \backslash \bigcup_{g \in G, p \in \mathcal{F}} \sigma^{g}([p])
$$

Example in \mathbb{Z}^{2} : Hard-square shift

Example: Hard-square shift. X is the set of assignments of \mathbb{Z}^{2} to $\{0,1\}$ such that there are no two adjacent ones.

Example: one-or-less subshift

Example: one-or-less subshift.

$$
X_{\leq 1}:=\left\{x \in\{0,1\}^{G} \mid 0 \notin\left\{x_{u}, x_{v}\right\} \Longrightarrow u=v\right\} .
$$

Example: Same rule as hard-square in F_{2}.

Simple classes of subshifts

Definition: subshift of finite type (SFT)
A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

Simple classes of subshifts

Definition: subshift of finite type (SFT)
A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

Definition: sofic subshift

A sofic subshift is the image of an SFT via a shift-commuting continuous map.

Simple classes of subshifts

Definition: subshift of finite type (SFT)

A subshift of finite type (SFT) is a subshift that can be defined by a finite set of forbidden patterns.

Definition: sofic subshift

A sofic subshift is the image of an SFT via a shift-commuting continuous map.

Definition: effective subshift

An effectively closed subshift is a subshift that can be defined by a recursively enumerable set of forbidden patterns.

Example SFT: Hard-square shift

Example sofic: one-or-less subshift (in \mathbb{Z}^{2})

Effectively closed subshift: Mirror shift

What about the subactions of these classes?

Let $X \subset \mathcal{A}^{\mathbb{Z}^{d}}$ be a subshift and $H \leq \mathbb{Z}^{d}$.
\triangleright What can we say about the system $\left(X,\left.\sigma\right|_{H}\right)$?
\triangleright Same question when X is an SFT, sofic or effectively closed.

What about the subactions of these classes?

Let $X \subset \mathcal{A}^{\mathbb{Z}^{d}}$ be a subshift and $H \leq \mathbb{Z}^{d}$.
\triangleright What can we say about the system $\left(X,\left.\sigma\right|_{H}\right)$?
\triangleright Same question when X is an SFT, sofic or effectively closed.
Remark: Subshifts are expansive, subactions not necessarily
\triangleright Let $(\mathbb{Z}, 0) \leq \mathbb{Z}^{2}$ and the sequence

$$
\left(y_{n}\right)_{v}=\left\{\begin{array}{l}
1 \text { if } v=(0, n) \\
0 \text { else }
\end{array}\right.
$$

But: $\sup _{z \in \mathbb{Z}} d\left(\sigma^{(z, 0)}\left(y_{n}\right), \sigma^{(z, 0)}\left(y_{m}\right)\right) \leq 2^{-\min (n, m)}$

Question 1: What type of systems can we obtain as subactions?

Effectively closed Cantor set

$X \subset\{0,1\}^{A}$ is effectively closed if $X=\{0,1\}^{A} \backslash \bigcup_{w \in L}[w]$ where L is a recursively enumerable language.

Effectively closed dynamical system
$X \subset\left(\{0,1\}^{A}\right)^{G}$ is an effectively closed dynamical system if it is an effectively closed Cantor set and G acts by shifts.

Question 1: What type of systems can we obtain as subactions?

This gives a nice way of interpreting actions:
Effectively closed action
For $T: G \curvearrowright X \subset\{0,1\}^{A}$ consider $Y \subset\{0,1\}^{A \times G}$ defined by:

$$
Y=\left\{y \in\{0,1\}^{A \times G} \text { such that } \begin{array}{l}
\left.y\right|_{A \times\left\{1_{G}\right\}} \in X \\
\left.y\right|_{A \times\{g\}}=T^{g}\left(\left.y\right|_{A \times\left\{1_{G}\right\}}\right)
\end{array}\right\} .
$$

Question 1: What type of systems can we obtain as subactions?

This gives a nice way of interpreting actions:
Effectively closed action
For $T: G \curvearrowright X \subset\{0,1\}^{A}$ consider $Y \subset\{0,1\}^{A \times G}$ defined by:

$$
Y=\left\{y \in\{0,1\}^{A \times G} \text { such that } \begin{array}{l}
\left.y\right|_{A \times\left\{1_{G}\right\}} \in X \\
\left.y\right|_{A \times\{g\}}=T^{g}\left(\left.y\right|_{A \times\left\{1_{G}\right\}}\right)
\end{array}\right\} .
$$

Theorem (Hochman)

Every subaction of an effectively closed subshift (also sofic/SFT) is an effectively closed dynamical system.
Proof: blackboard.

Question 2: can we realize any action as a subaction of a subshift?

Question 2: can we realize any action as a subaction of a subshift?

Answer: No.

No odometer is the subaction of a subshift.
Proof: blackboard

Question 2: can we realize any action as a subaction of a subshift?

Answer: No.

No odometer is the subaction of a subshift.

Proof: blackboard

However, we will see later that the 2-odometer can be obtained as a factor of a subaction of an SFT!

Question 2': can we realize any e.c. action as a factor of a subaction of an ?

> Question 2': can we realize any e.c. action as a factor of a subaction of an ?

Answer: Yes.
Theorem (Hochman)
For every effectively closed action $T: \mathbb{Z}^{d} \curvearrowright X \subset\{0,1\}^{\mathbb{N}}$ there exists a \mathbb{Z}^{d+2}-SFT \hat{X} such that one of its \mathbb{Z}^{d}-subactions is an extension of T.

> Question 2': can we realize any e.c. action as a factor of a subaction of an ?

Answer: Yes.

Theorem (Hochman)

For every effectively closed action $T: \mathbb{Z}^{d} \curvearrowright X \subset\{0,1\}^{\mathbb{N}}$ there exists a \mathbb{Z}^{d+2}-SFT \hat{X} such that one of its \mathbb{Z}^{d}-subactions is an extension of T.

$$
\begin{aligned}
& \mathbb{Z}^{d+2} \quad(\hat{X}, \sigma) \\
& \text { subaction } \\
& \mathbb{Z}^{d} \quad\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \xrightarrow[\text { factor }]{ }(X, T)
\end{aligned}
$$

Question 2': can we realize any e.c. action as a factor of a subaction of an ?

Answer: Yes.

Theorem (Hochman)

For every effectively closed action $T: \mathbb{Z}^{d} \curvearrowright X \subset\{0,1\}^{\mathbb{N}}$ there exists a \mathbb{Z}^{d+2}-SFT \hat{X} such that one of its \mathbb{Z}^{d}-subactions is an extension of T.

$$
\begin{aligned}
& \mathbb{Z}^{d+2} \quad(\hat{X}, \sigma) \\
& \text { subaction } \\
& \mathbb{Z}^{d} \quad\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \xrightarrow[\text { factor }]{ }(X, T)
\end{aligned}
$$

Moreover, the factor is small, it is an ATIE (almost trivial isometric extension)

Question 3: can we go the other way around?

Question 3: can we go the other way around?

Answer: No. The odometer... However...

Question 3: can we go the other way around?

Answer: No. The odometer... However...

Answer: Yes. For the expansive case

Theorem (Hochman)

If T is an effectively closed expansive \mathbb{Z}^{d}-action (i.e. conjugate to a subshift) then it is the subaction of a \mathbb{Z}^{d+2}-sofic subshift.
Proof idea: blackboard.

Question 4: in the expansive case, can we get rid of the factor?

$$
\begin{gathered}
\mathbb{Z}^{d+2} \quad(\hat{X}, \sigma) \xrightarrow[\text { symb factor }]{ }(\hat{Y}, \sigma) \\
\text { subaction }\left.\left.\right|_{\text {subaction }}\right|_{\text {factor }}(X, T) \\
\mathbb{Z}^{d} \quad\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \xrightarrow{ }(X)
\end{gathered}
$$

Question 4: in the expansive case, can we get rid of the factor?

Question 4: in the expansive case, can we get rid of the factor?

$$
\mathbb{Z}^{d+2} \quad(\hat{X}, \sigma)
$$

$$
\mathbb{Z}^{d}
$$

(X, T)
Answer: No.

Example (Hochman)

The fixed point of the Chacon substitution

$$
0 \rightarrow 0010, \quad 1 \rightarrow 0
$$

generates an effectively closed subshift which is not the subaction of any \mathbb{Z}^{d}-SFT.
(Actually, any minimal e.c. \mathbb{Z}-subshift with $\operatorname{Aut}(X) \cong \mathbb{Z}$ works)

Question 5: can we reduce the dimension?

$$
\begin{aligned}
& \mathbb{Z}^{d+2} \\
& \text { subaction } \\
& \mathbb{Z}^{d} \quad(\hat{X}, \sigma) \\
& \text { factor } \\
& (X, T)
\end{aligned}
$$

Question 5: can we reduce the dimension?

$$
\begin{aligned}
& \mathbb{Z}^{d+1} \quad(\hat{X}, \sigma) \\
& \left.\mathbb{Z}^{d} \quad\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \xrightarrow[\text { factor }]{ }(X, T)\right)
\end{aligned}
$$

Question 5: can we reduce the dimension?

$$
\begin{aligned}
& \mathbb{Z}^{d+1} \quad(\hat{X}, \sigma) \\
& \text { subaction } \\
& \mathbb{Z}^{d} \quad\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \xrightarrow[\text { factor }]{ }(X, T)
\end{aligned}
$$

Answer: No.

Example (Jeandel)

The mirror shift seen as a \mathbb{Z}-action over a Cantor set is not the factor of a subaction of any \mathbb{Z}^{2}-SFT.

Question 5: can we reduce the dimension?

$$
\begin{aligned}
& \mathbb{Z}^{d+1} \quad(\hat{X}, \sigma) \\
& \text { subaction }\left.\right|_{\mathbb{Z}^{d}} \quad\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \xrightarrow[\text { factor }]{ }(X, T), ~
\end{aligned}
$$

Answer: No.

Example (Jeandel)

The mirror shift seen as a \mathbb{Z}-action over a Cantor set is not the factor of a subaction of any \mathbb{Z}^{2}-SFT.

However, if we restrict to the expansive case...

case?

case?

 case?

Answer: Yes!

Theorem (Aubrun-Sablik, Durand-Romaschenko-Shen)

Every effectively closed \mathbb{Z}^{d}-subshift is the subaction (projective subaction) of a \mathbb{Z}^{d+1}-sofic subshift.

some questions

- In the non-expansive case: The factor is an ATIE.

$$
\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \rightarrow(X, T) \times(W, S) \rightarrow(X, T) .
$$

The first factor is a.e. 1-1 for every invariant measure, the second is the projection, and (W, S) is an isometric action (i.e. odometer).

some questions

- In the non-expansive case: The factor is an ATIE.

$$
\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \rightarrow(X, T) \times(W, S) \rightarrow(X, T)
$$

The first factor is a.e. 1-1 for every invariant measure, the second is the projection, and (W, S) is an isometric action (i.e. odometer).
\triangleright Can we do better with the factor?

some questions

- In the non-expansive case: The factor is an ATIE.

$$
\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \rightarrow(X, T) \times(W, S) \rightarrow(X, T) .
$$

The first factor is a.e. 1-1 for every invariant measure, the second is the projection, and (W, S) is an isometric action (i.e. odometer).
\triangleright Can we do better with the factor?

- In the expansive case: Which are the systems that arise as subactions of SFTs?

some questions

- In the non-expansive case: The factor is an ATIE.

$$
\left(\hat{X},\left.\sigma\right|_{\mathbb{Z}^{d}}\right) \rightarrow(X, T) \times(W, S) \rightarrow(X, T) .
$$

The first factor is a.e. 1-1 for every invariant measure, the second is the projection, and (W, S) is an isometric action (i.e. odometer).
\triangleright Can we do better with the factor?

- In the expansive case: Which are the systems that arise as subactions of SFTs?
\triangleright Partial answers by Pavlov and Schraudner and by Sablik and Schraudner.

Why is this thing useful?

The philosophy behind it

Finitely presented group
A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

The philosophy behind it

Finitely presented group

A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

Recursively presented group

A group G is recursively presented if it can be described as $G=\langle S \mid R\rangle$ where $S \subset \mathbb{N}$ and $R \subset\left(S \cup S^{-1}\right)^{*}$ are recursive sets.

$$
L=\left\langle a, t \mid\left(a t^{n} a t^{-n}\right)^{2}, n \in \mathbb{N}\right\rangle
$$

The philosophy behind it

Finitely presented group

A group G is finitely presented if it can be described as $G=\langle S \mid R\rangle$ where both S and $R \subset\left(S \cup S^{-1}\right)^{*}$ are finite.

$$
\mathbb{Z}^{2}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

Recursively presented group

A group G is recursively presented if it can be described as $G=\langle S \mid R\rangle$ where $S \subset \mathbb{N}$ and $R \subset\left(S \cup S^{-1}\right)^{*}$ are recursive sets.

$$
L=\left\langle a, t \mid\left(a t^{n} a t^{-n}\right)^{2}, n \in \mathbb{N}\right\rangle
$$

$$
\bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 2 \mathbb{Z} \cong\left\langle a_{n}, n \in \mathbb{N} \mid\left\{a_{n}^{2}\right\}_{n \in \mathbb{N}},\left[a_{j}, a_{k}\right]_{j, k \in \mathbb{N}}\right\rangle
$$

The philosophy behind it

Theorem (Highman 1961)
For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.

The philosophy behind it

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.
"A complicated object is realized inside another object which admits a much simpler presentation."

Theorem (Highman 1961)

For every recursively presented group H there exists a finitely presented group G such that H is isomorphic to a subgroup of G.
"A complicated object is realized inside another object which admits a much simpler presentation."

Corollary [Theorem: Novikov 1955, Boone 1958]

There are finitely presented groups with undecidable word problem
Just apply Highman's theorem to $G=\left\langle a, b, c, d \mid b^{-n} a b^{n}=c^{-n} d c^{n}, n \in \operatorname{HALT}\right\rangle \ldots$ done!

An application: strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset \mathcal{A}^{G}$ is strongly aperiodic if the shift action is free

$$
\forall x \in X, \forall g \in G, \sigma^{g}(x)=x \Rightarrow g=1_{G}
$$

An application: strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset \mathcal{A}^{G}$ is strongly aperiodic if the shift action is free

$$
\forall x \in X, \forall g \in G, \sigma^{g}(x)=x \Rightarrow g=1_{G}
$$

Proposition

Every 1D non-empty SFT contains a periodic configuration.

An application: strongly aperiodic subshifts

Definition (Strongly aperiodic subshift)

A subshift $X \subset \mathcal{A}^{G}$ is strongly aperiodic if the shift action is free

$$
\forall x \in X, \forall g \in G, \sigma^{g}(x)=x \Rightarrow g=1_{G}
$$

Proposition

Every 1D non-empty SFT contains a periodic configuration.

Theorem (Berger 1966, Robinson 1971, Kari 1996, Jeandel \& Rao 2015)

There exist strongly aperiodic SFTs on \mathbb{Z}^{2}.

Example of strongly aperiodic \mathbb{Z}^{2}-SFT: Robinson tileset

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

$$
0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \ldots
$$

Then $X=\overline{\operatorname{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

So... why is simulation important?

It is complicated to come up with \mathbb{Z}^{2}-SFTs which are strongly aperiodic, however, finding a \mathbb{Z}-effectively closed subshift which is aperiodic is easy.

Example

Let x be a fixed point of the Thue-Morse substitution.

$$
0 \rightarrow 01 \rightarrow 0110 \rightarrow 01101001 \rightarrow 0110100110010110 \rightarrow \ldots
$$

Then $X=\overline{\operatorname{Orb}_{\sigma}(x)}$ is strongly aperiodic and effectively closed.

Example

A Sturmian subshift given by a computable slope α.

So... why is simulation important?

So... why is simultation important?

So... why is simulation important?

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^{2}-SFTs

So... why is simulation important?

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^{2}-SFTs
- \mathbb{Z}^{2}-SFTs with no computable configurations (Original result by Hanf-Myers 1974)

So... why is simulation important?

Examples

- Easy construction of strongly aperiodic \mathbb{Z}^{2}-SFTs
- \mathbb{Z}^{2}-SFTs with no computable configurations (Original result by Hanf-Myers 1974)
- Classifying the entropies of \mathbb{Z}^{2}-SFTs (Original result by Hochman-Meyerovitch 2010)

Two new results in general groups

Let $T: G \curvearrowright X \subset\{0,1\}^{A}$ be an effectively closed action of a finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product $\mathbb{Z}^{2} \rtimes G$ there exists a $\mathbb{Z}^{2} \rtimes G$-SFT such that its G-subaction is an extension of T.

Two new results in general groups

Let $T: G \curvearrowright X \subset\{0,1\}^{A}$ be an effectively closed action of a finitely generated group.

Theorem (B-Sablik, 2016)

For any semidirect product $\mathbb{Z}^{2} \rtimes G$ there exists a $\mathbb{Z}^{2} \rtimes G$-SFT such that its G-subaction is an extension of T.

Theorem (B, 2017)

For any pair of infinite and finitely generated groups $\mathrm{H}_{1}, \mathrm{H}_{2}$ there exists a $\left(G \times H_{1} \times H_{2}\right)$-SFT such that its G-subaction is an extension of T.

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$.

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider
$\Psi:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1, \$\}^{\mathbb{Z}}$ given by:

$$
\Psi(x)_{j}= \begin{cases}x_{n} & \text { if } j=3^{n} \quad \bmod 3^{n+1} \\ \$ & \text { in the contrary case }\end{cases}
$$

How does one prove such a thing?

Let's keep it simple, let's do $G \times \mathbb{Z}^{2}$. Consider
$\Psi:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1, \$\}^{\mathbb{Z}}$ given by:

$$
\Psi(x)_{j}= \begin{cases}x_{n} & \text { if } j=3^{n} \quad \bmod 3^{n+1} \\ \$ & \text { in the contrary case }\end{cases}
$$

Example

If we write $x=x_{0} x_{1} x_{2} x_{3} \ldots$ we obtain, $\Psi(x)=\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
\downarrow
$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots \begin{array}{llllllllll}\ldots & x_{1} & \$ & x_{2} & x_{1} & \$ & \$ & x_{1} & \$ & x_{3}\end{array} \ldots$

How does one prove such a thing?

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$

$\ldots \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{2} x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ \$ x_{0} \$ x_{1} x_{0} \$ \$ x_{0} \$ x_{3} x_{0} \$ \ldots$
$\ldots \begin{array}{llllllllll}\ldots & x_{1} & \$ & x_{2} & x_{1} & \$ & \$ & x_{1} & \$ & x_{3}\end{array} \ldots$
$\ldots \$ x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ x_{3} x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ \$ x_{1} \$ x_{2} x_{1} \$ \$ x_{1} \$ x_{4} x_{1} \$ \ldots$

How does one prove such a thing?

\triangleright pick afinite set of generators S of G.
\triangleright construct a subshift Π where every configuration is an S-tuple of configurations of the previous form.

$$
\begin{gathered}
S=\left\{1_{G}, s_{1}, \ldots s_{n}\right\} \\
\left(\Psi(x), \Psi\left(T^{s_{1}}(x), \ldots, \Psi\left(T^{s_{n}}(x)\right) \in \Pi\right.\right.
\end{gathered}
$$

How does one prove such a thing?

\triangleright pick afinite set of generators S of G.
\triangleright construct a subshift Π where every configuration is an S-tuple of configurations of the previous form.

$$
\begin{gathered}
S=\left\{1_{G}, s_{1}, \ldots s_{n}\right\} \\
\left(\Psi(x), \Psi\left(T^{s_{1}}(x), \ldots, \Psi\left(T^{s_{n}}(x)\right) \in \Pi\right.\right.
\end{gathered}
$$

Claim

If T is an effectively closed action, Π is effectively closed.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\widetilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\widetilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem. \triangleright Using the decoding argument, construct a map from Π to X.

How does one prove such a thing?

\triangleright Take Π and construct a sofic \mathbb{Z}^{2} subshift $\widetilde{\Pi}$ having Π in every horizontal row using the expansive simulation theorem. \triangleright Using the decoding argument, construct a map from Π to X. \triangleright Put in every G-coset of $G \times \mathbb{Z}^{2}$ a configuration of $\widetilde{\Pi}$.

How does one prove such a thing?

Two corollaries

Theorem (B, Sablik 2016)

If G is finitely generated, $W P(G)$ is decidable and $d>1$. Then $G \rtimes \mathbb{Z}^{d}$ admits a SA SFT.

Theorem (B, Sablik 2016)

If G is finitely generated, $W P(G)$ is decidable and $d>1$. Then $G \rtimes \mathbb{Z}^{d}$ admits a $S A S F T$.

Theorem (B 2017)

If G_{i} are at least three infinite and finitely generated groups with decidable word problem. Then $G_{1} \times \cdots \times G_{n}$ admits a SA SFT.

What about the Grigorchuk group?

The Grigorchuk group is generated by the actions a, b, c, d over $\{0,1\}^{N}$.

What about the Grigorchuk group?

- The Grigorchuk group is infinite and finitely generated.
- It contains no copy of \mathbb{Z} as a subgroup. For every $g \in G$, there is $n \in \mathbb{N}$ such that $g^{n}=1_{G}$.
- Decidable word problem (and conjugacy problem).
- It has intermediate growth.
- It is commensurable to its square. ie: G and $G \times G$ have an isomorphic finite index subgroup.

What about the Grigorchuk group?

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

What about the Grigorchuk group?

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

What about the Grigorchuk group?

\triangleright If G is commensurable to $G \times G$, then G is also commensurable to $G \times G \times G$.

Theorem (Carroll-Penland, 2015)

Admitting a strongly aperiodic SFT is a commensurability invariant.

Theorem (B, 2017)
The Grigorchuk group admits a strongly aperiodic SFT.

Thank you for your attention! $\stackrel{L}{4}$

