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This is a periodic tiling

This is BORING.
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This is cool !
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Cool things are useful in real life !

A good example of uses of aperiodic tilings.
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G-Subshifts

I G is a countable group.
I A is a finite alphabet. Ex : A = {0, 1}.
I AG is the set of configurations, x : G → A
I σ : G ×AG → AG is the left shift action given by :

σ(h, x)g := σh(x)g = xh−1g .

Definition : G-subshift
X ⊂ AG is a G-subshift if and only if it is invariant under the
action of σ and closed for the product topology on AG .
Alternatively : ∃F ⊂

⋃
F⊂G,|F |<∞AF such that :

X = XF := AG \
⋃

g∈G,p∈F
σg ([p])
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Example in Z2 : Fibonacci shift
Example : Fibonacci shift. XFib is the set of assignments of Z2

to {0, 1} such that there are no two adjacent ones.
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Example : One-or-less subshift
Example : One-or-less subshift.

X≤1 := {x ∈ {0, 1}Zd | |{z ∈ Zd : xz = 1}| ≤ 1}.
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Fibonacci in F2.
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Classes of subshifts.

Definition : Subshift of finite type
A subshift is of finite type (SFT) if it can be defined by a finite set
F of forbidden patterns.

Definition : Sofic subshift
A subshift is sofic if it is the image of an SFT under a morphism.
(A continuous and shift-invariant function).

Definition : G-Effectively closed subshift.
A subshift is G-effectively closed if it can be defined by a set of
forbidden patterns F which is recognizable by a Turing machine
with oracle the word problem of G .
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Example SFT
Example : The Fibonacci shift is an Z2-SFT.
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Example of sofic subshift.
Example : The one-or-less subshift is sofic but not an SFT.

X≤1 := {x ∈ {0, 1}Zd | |{z ∈ Zd : xz = 1}| ≤ 1}.
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Example of effectively closed subshift
Example : The mirror shift is effectively closed but not sofic.
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Periodicity

Definition : Periodic point
We say x ∈ X is periodic if there exists g ∈ G \ {1G} such that :

σg (x) = x

Definition : Aperiodic G-subshift
We say X ⊂ AG is strongly aperiodic if every configuration x ∈ X
is not periodic.

∀x ∈ X , stabσ(x) = {g ∈ G | σg (x) = x} = {1G}

We say X ⊂ AG is weakly aperiodic if the orbit of every
configuration x ∈ X is infinite.

∀x ∈ X , orbσ(x) = {σg (x) | g ∈ G} is infinite.

Obviously, we are interested in non-empty aperiodic subshifts.
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Example of strongly aperiodic Z2-SFT : Robinson tileset

The Robinson tileset, where tiles can be rotated.

8/29



Example of strongly aperiodic Z2-SFT : Robinson tileset

⇒
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Some recent results

I There are weakly aperiodic SFTs in Baumslag Solitar groups
(2013 Aubrun-Kari)

I There are strongly aperiodic SFTs in the Heisenberg group
(2014 Sahin-Schraudner)

I The existence of a strongly aperiodic SFT in G implies that G
is one ended (2014 Cohen)

I The existence of a non-empty strongly aperiodic SFT is a
quasi-isometry invariant for finitely presented torsion-free
groups. (2014 Cohen)

I A recursively presented group which admits a non-empty
strongly aperiodic SFT has decidable word problem (2015
Jeandel)
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Some recent partial results

It is not obvious to come up with examples of aperiodic subshifts
in general groups even if no restrictions are supposed on the list of
forbidden patterns.

Question by Glasner and Uspenskij 2009
Is there any countable group which does not admit any non-empty
strongly aperiodic subshift on a two symbol alphabet ?

Theorem by Gao, Jackson and Seward 2009
No. All do.

And their proof is a quite technical construction.
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A new short proof
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However...

However ! It is possible to show the same result by using tools from
probability and combinatorics.

Theorem by Aubrun, B, Thomassé
No. All do.

But now the proof is short. It uses the asymmetrical version of
Lovász Local Lemma.
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Lovász Local Lemma

Lovász Local Lemma (Asymmetrical version)
Let A := {A1,A2, . . . ,An} be a finite collection of measurable sets
in a probability space (X , µ,B). For A ∈ A , let Γ(A) be the
smallest subset of A such that A is independent of the collection
A \ ({A} ∪ Γ(A)). Suppose there exists a function x : A → (0, 1)
such that :

∀A ∈ A : µ(A) ≤ x(A)
∏

B∈Γ(A)
(1− x(B))

then the probability of avoiding all events in A is positive, in
particular :

µ

(
X \

n⋃
i=1

Ai

)
≥
∏

A∈A

(1− x(A)) > 0.
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Lovász Local Lemma applied to subshifts

A sufficient condition for being non-empty
Let G a countable group and X ⊂ AG a subshift defined by the set
of forbidden patterns F =

⋃
n≥1Fn, where Fn ⊂ ASn . Suppose

that there exists a function x : N× G → (0, 1) such that :

∀n ∈ N, g ∈ G , µ(An,g ) ≤ x(n, g)
∏

gSn∩hSk 6=∅
(k,h) 6=(n,g)

(1− x(k, h)),

where An,g =
{
x ∈ AG : x |gSn ∈ Fn

}
and µ is any Bernoulli

probability measure on AG . Then the subshift X is non-empty.
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Proof of the theorem

We say x ∈ {0, 1}G has the distinct neighborhood property if for
every h ∈ G \ {1G} there exists a finite subset T ⊂ G such that :

∀g ∈ G : x |ghT 6= x |gT .

Proposition
If x has the distinct neighborhood property then orbσ(x) is
strongly aperiodic.
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Proof of the theorem

It suffices to show that there is x ∈ {0, 1}G with the distinct
neighborhood property.

Ingredients
I A constant C ∈ N.
I An enumeration s1, s2, . . . of G .
I (Ti )i∈N a sequence of finite subsets of G such that for every

i ∈ N, Ti ∩ siTi = ∅ and |Ti | = C · i .
I The uniform Bernoulli measure µ
I A := {An,g}n≥1,g∈G

I An,g = {x ∈ {0, 1}G | x |gTn = x |gsnTn}

I x(An,g ) := 2−Cn
2

Proof : On the blackboard.
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Aftermath

We have shown :
Theorem
Every countable group has a non-empty, strongly aperiodic subshift
on the alphabet {0, 1}.

But we can show something more :

Theorem (Aubrun, B, Thomassé)
Every finitely generated group G has a non-empty, G-effectively
closed strongly aperiodic subshift.
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Square-free vertex coloring

Square-free vertex coloring
Let G = (V ,E ) be a graph. A vertex coloring is a function
x : V → A. We say it is square-free if for every odd-length path
p = v1 . . . v2n then there exists 1 ≤ j ≤ n such that
x(vj) 6= x(vj+n).

C5 has a square-free vertex coloring with 4 colors, but not with 3.
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Square-free vertex coloring

For our purposes, we are interested in coloring infinite graphs. This
can not always be done with a finite number of colors : KN.

Theorem : Alon, Grytczuk, Haluszczak and Riordan
Every finite graph with maximum degree ∆ can be colored with
2e16∆2 colors.

It is possible to adapt the proof in order to obtain the following :
Let G be a group which is generated by a finite set S and let
Γ(G , S) = (G , {{g , gs}, g ∈ G , s ∈ S}) be its undirected right
Cayley graph.

Theorem
G admits a coloring of its undirected Cayley graph Γ(G ,S) with
219|S|2 colors.
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The proof idea
Let |A| ≥ 219|S|2 and X ⊂ AG be the subshift such that every
square in Γ(G , S) is forbidden.

The previous result implies that X 6= ∅.
Let g ∈ G such that σg (x) = x for some x ∈ X .
Factorize g as uwv with u = v−1 and |w | minimal (as a word
on (S ∪ S−1)∗). If |w | = 0, then g = 1G .
If not, let w = w1 . . .wn and consider the odd length walk
π = v0v1 . . . v2n−1 on Γ(G , S) defined by :

vi =


1G if i = 0
w1 . . .wi if i ∈ {1, . . . , n}
ww1 . . .wi−n if i ∈ {n + 1, . . . , 2n − 1}

One can prove that π is a path. and that xvi = xvi+n . Yielding
a contradiction.
Therefore, g = 1G .
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Applications

Theorem (Aubrun, B, Thomassé)
Every finitely generated group G has a non-empty, G-effectively
closed, strongly aperiodic subshift.

Putting it together with Jeandel’s result we get :

Theorem
Let G be a recursively presented group. There exists a non-empty
Z-effectively closed strongly aperiodic G-subshift if and only if the
word problem of G is decidable.
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Applications

Another application is producing strongly aperiodic SFTs. Using a
simulation theorem (A generalization of Hochman’s result from
2008). We can prove the following :

Theorem (B, Sablik (hopefully available on 2016))
Let G be a finitely generated group with decidable word problem.
Then Z2 o G admits a non-empty strongly aperiodic SFT.

The writing of this is still in progress !
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Uniform density subshifts
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Uniform density
Let G be a finitely generated group and S a finite set of generators
defining a word metric.

For x ∈ {0, 1}G and a finite subset F ⊂ G
let :

dens(1,F , x) := |{g ∈ F | xg = 1}|
|F | .

Uniform density
A G-subshift over {0, 1} has uniform density α ∈ [0, 1] if for every
configuration x ∈ X and for every sequence (gn)n∈N of elements in
G , one has

dens(1,B(gn, n), x)→ α

Example : Sturmian subshift
The Sturmian Z-subshift of slope α has uniform density α.
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Uniform density

Question
Given a finitely generated group G , a finite set of generators S and
α ∈ (0, 1). Does a subshift Xα ⊂ {0, 1}G with uniform density α
exist ?

Theorem (Aubrun, B, Thomassé)
Yes, if G is infinite and has subexponential growth.

More precisely we show :
Theorem
Let G be an infinite and finitely generated group and α ∈ [0, 1].
There is a non-empty subshift Xα ⊂ {0, 1}G such that for any
x ∈ Xα and Følner sequence (Fn)n∈N

lim
n→∞

dens(1,Fn, x) = α.
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Proof

Definition
Let F ,K be finite subsets of G

Int(F ,K ) = {g ∈ F | ∀k ∈ K , gk ∈ F}
∂K (F ) = F \ Int(F ,K )

Let Xα be given by the following forbidden patterns : P ∈ {0, 1}F
is forbidden if and only if the following condition is not satisfied :

|∂B(1G ,5n)F |
|F | <

1
2n =⇒ |dens(1,P)− α| ≤ 1

n .

Xα clearly satisfies the property. It suffices to show that it is
non-empty.
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An ingredient for the proof

Definition
Let (X , d) be a metric space. We say F ⊂ G is r -covering if for
each x ∈ G there is y ∈ F such that d(x , y) ≤ r . We say F is
s-separating if for each x 6= y ∈ F then d(x , y) > s

Proposition
If X is countable, then for any r ∈ R there exists Y ⊂ X such that
Y is both r -separating and r -covering.
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Example : 2-covering and 2-separating set in PSL(Z, 2)
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Proof

g

g

g

h

p1(h)

p2 ◦ p1(h)

C1(g) C2(g)
A0

p1

⊆A1

p2

⊆

A2

...

...

...

We can bound the size of a cluster of level n :

B(g , n) ⊂ Cn(g) ≤ B(g , 12(5n − 1)).
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Proof

Finally, consider a function φ : G → N satisfying that if
Cn(g) = Cn(h) then φ(g) 6= φ(h) and all integers between
φ(g) and φ(h) belong to Cn(g).

Let x ∈ {0, 1}G defined by xg = wφ(g) where w : N→ {0, 1}
is a Sturmian word of slope α (or a periodic configuration if
α ∈ Q).
x ∈ Xα by a straightforward calculation.
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Final remarks

The subshift obtained by this construction is weakly aperiodic
if α /∈ Q.

We can also realize every density in free groups
Hope : reduce the factor complexity of this construction to
realize entropies using

⋃
α<h Xα.
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Merci beaucoup de votre attention !
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