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Given a fullshift (A4, o) recall that its automorphism group is
given by

Aut(A%) = {¢ : A% = A% homeomorpism, [, ¢] = id}

It is still unknown whether Aut({0,1}%) = Aut({0, 1,2}4), but we
know that
Aut({0,1}%) < Aut({0,1,2}%)

Aut({0,1,2}%) — Aut({0,1}%)
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A simple example with that property :

G =Ez/aZand G, =2/22PZ/4Z

ieEN ieN
Gr — Gy : (a1, a2,---) = (0,a1,a,- )

GQ‘—> Gl:(21,82,-")—)(221,32,-")

However, they are not isomorphic : Each element of G; which has
order 2 has square roots, while (1,0,0,0,---) has none in G,.
Moral : we should try to understand torsion and roots in

Aut({0,1}%)
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Let G = (S | R) be a finitely generated group. The torsion problem
of G is the language TP(G) where

TP(G) = {w € S* | 3n € N such that w" =¢ 1}
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Talk highlights

Definition (Torsion problem)

Let G = (S | R) be a finitely generated group. The torsion problem
of G is the language TP(G) where

TP(G) = {w € S* | 3n € N such that w" =¢ 1}

Theorem (B, Kari, Salo)

For any finite alphabet |A| > 2, Aut(A?%) contains a finitely
generated subgroup with undecidable torsion problem

Theorem (B, Kari, Salo)

Let (Azd, o) be a full shift and |A| > 2. The topological fullgroup
[[c]] contains a finitely generated subgroup with undecidable
torsion problem if and only if d > 2.
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Recall that a Turing machine is defined by a rule :

T IxQ—>XxQx{-1,01}

R 5 5 1

5T(.a q) = (Da r, _1)



This defines a natural action

T: ¥4 xQ Y4 xQ



This defines a natural action

T:T2xQ—=%I4xQ
Such that if (x,q) € £% x Q and 67(x0,q) = (a, r, d) then :
T(Xa q) = (O-—d(;()7 q/)

where o : ¥4 — ¥4 is the shift action given by o4(x),; = x,_4,
Xo=a and )?|Z\{0} = X‘Z\{O}-
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@ The composition of two actions T o T is not necessarily an
action generated by a Turing machine.

@ if the action T is a bijection then the inverse it not necessarily
an action generated by a Turing machine.



Motivation

@ The composition of two actions T o T is not necessarily an
action generated by a Turing machine.

@ if the action T is a bijection then the inverse it not necessarily
an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by
some k € N is not closed under composition or inverses.



Definition

Let's get rid of these constrains. Given F, F’ finite subsets of a
group G, consider instead of §1 a function :

fr:fFxQ-f xQxG,



Let's get rid of these constrains. Given F, F’ finite subsets of a
group G, consider instead of §1 a function :

fr:fFxQ-f xQxG,
Let F = F' = {0,1,2}2, then fr(p, q) = (p/, ¢, d) means :

p /

e Turn state g into state ¢’
@ Move head by d.



Moving head model
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Moving head model

fT defines naturally an action

f(e,q1) = (o, q2,(1,1)) F ={(0,0),(1,0),(1,1)}

Let |X| =nand |Q| = k.

(TM(G, n, k), o) is the monoid of all such T with the composition
operation; (RTM(G, n, k), o) is the group of all such T which are
bijective .



Moving head model : As cellular automata

Let Q={1,...,k}and X ={0,...,n—1}.

Y6 ={x:6—-1}
Xk:{XG{O,l,...,k}G’0¢{Xg,xh} — g:h}
Let X,,7k:ZG X X and Y = X¢ x {0¢}. Then :



Moving head model : As cellular automata

Let Q={1,...,k}and X ={0,...,n—1}.
Y6 ={x:6—-1}
Xk:{XG{O,l,...,k}G]0¢{xg,xh} = g=h}
Let X,,7k:ZG X X and Y = X¢ x {0¢}. Then :

TM(G,n, k) = {¢ € End(Xy) | ¢y =id, ¢ (Y) = Y}
RTM(G, n, k) = {¢ € Aut(Xnx) | ¢|y = id}



Moving tape model

f+ defines naturally an action

TAYxQ




Moving tape model

f+ defines naturally an action

f(°3, qi) = (027 a2, (1,1))  F={(0,0),(1,0),(1,1)}

Let |X| = nand |Q| = k.

(TM;sx(G, n, k), 0) is the monoid of all such T with the
composition operation ; (RTMgy(G, n, k), o) is the group of all
such T which are bijective .
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Let x,y € ¥C. x and y are asymptotic, and write x ~ y, if they
differ in finitely many coordinates. We write x ~¢ y if xg = y,; for
all g ¢ F, F a finite subset of G.
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Moving tape model : dynamical definition

Let x,y € ¥C. x and y are asymptotic, and write x ~ y, if they
differ in finitely many coordinates. We write x ~¢ y if xg = y,; for
all g ¢ F, F a finite subset of G.

Let T:X¢ x Q — X% x Q be a function.

Dynamical definition

T is a moving tape Turing machine <= T is continuous, and for
a continuous function s : ¥ x Q@ — G and F C G we have
T(X, q)l ~F Js(x,q)(x) for all (X, q) € ¥l x Q.

s:YCG x Q — G is the shift indicator function



Equivalence of the models

RTM;y (G, 1, k) = S and G < RTM(G, 1, k).



Equivalence of the models

RTM;y (G, 1, k) = S and G < RTM(G, 1, k).

Proposition

If n> 2 then :

TM;sx(G, n, k) = TM(G, n, k)
RTMj(G, n, k) = RTM(G, n, k).




Properties of RTM

Let T € TMs(G, n, k). Then the following are equivalent :
© T is injective.
@ T is surjective.
@ T € RTM;g(G, n, k).
@ T preserves the uniform measure (u(T~1(A)) = u(A) for all
Borel sets A).
@ u(T(A)) = u(A) for all Borel sets A.
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If n>2 RTM(Z, n, k) is not finitely generated.




Properties of RTM

Proposition
If n>2 RTM(Z, n, k) is not finitely generated.

Proof : We find an epimorphism from RTM to a non-finitely
generated group.

Let T € RTMgy(Z, n, k), therefore, it has a shift indicator
s: Y2 x Q — Z. Define

o(T)i=Ey(s) = [, slx.q)dn

One can check that a(Ty 0 T3) = a(T1) + a( T?).
Therefore a : RTM(Z, n, k) — Q is an homomorphism



Properties of RTM

Now consider the machine Tgyrr,m Where for allac ¥ and g€ Q :

| [ [ [ | foJofojofojofofa] | | | | |

l Tsurr,m

| [ [ I | falofoJofofofofof | | | [ |

f(0™Ma, q) = (a0™, q,1). Otherwise f(u, q) = (u, q,0).
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Properties of RTM

Now consider the machine Tgyrr,m Where for allac ¥ and g€ Q :

| [ [ [ | foJofojofojofofa] | | | | |

l Tsurr,m

| [ [ I | falofoJofofofofof | | | [ |

f(0™Ma, q) = (a0™, q,1). Otherwise f(u, q) = (u, q,0).
Tsurr,m € RTM(Z, n, k) and o Tsyrr,m) = 1/n™

((1/n™)men) C a(RTM(Z, n, k)) which is thus a non-finitely
generated subgroup of Q.



Interesting subgroups of RTM

> LP(G, n, k) — Local permutations.
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Interesting subgroups of RTM

> LP(G, n, k) — Local permutations.
> RFA(G, n, k) — Reversible finite-state automata.
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Interesting subgroups of RTM

> LP(G, n, k) — Local permutations.

> RFA(G, n, k) — Reversible finite-state automata.
> OB(G, n, k) — Oblivous machines (LP, Shift).

> EL(G, n, k) — Elementary machines (LP, RFA).



Small group theory roadmap

Residually Finite —— LEF

—

Abelian Sofic

™~ —

Amenable — LEA

@ Res. finite groups are those where every non-identity element
can be mapped to a non-identity element by a homomorphism
to a finite group

@ Amenable groups admit left invariant finitely additive
measures.

o LEF and LEA stand for locally embeddable into
(finite/amenable) groups.

@ Sofic groups are generalizations of LEF and LEA.



Small group theory roadmap

Residually Finite —— LEF

—

Abelian Sofic

e —

Amenable — LEA

¥n > 2, RTM(Z9, n, k) is LEF but neither amenable nor residually
finite.
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Some properties : LP(G, n, k)

For n > 2, we have S, — LP(G, n, k).

This means that RTM is not residually finite, and that it contains
all finite groups.

LP(G, n, k) is locally finite.

In particular, for n > 2 LP(G, n, k) is amenable and not finitely
generated.
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Some properties : OB(Z9, n, k)

Now let’s add the shift. Recall that OB(G, n, k) = (LP, Shift).
OB(G, n, k) is amenable <= G is amenable.

Proof : Use the short exact sequence

1— LP(G,n k) — OB(G,n, k) — G — 1.



Some properties : RFA(Z9, n, k)

Recall that RFA(G, n, k) is the subgroup of machines which do
not modify the tape. Note that if [[¢]] is the fullgroup of (£¢, )
then [[0]] = RFA(G, n,1).

For n > 2, countable and not locally finite G we have that

Z/2Z % - Z/2Z < RFA(G, n, k)

m times




Some properties : RFA(Z9, n, k)

Recall that RFA(G, n, k) is the subgroup of machines which do
not modify the tape. Note that if [[¢]] is the fullgroup of (£¢, )
then [[0]] = RFA(G, n,1).

For n > 2, countable and not locally finite G we have that

Z/2Z % - Z/2Z < RFA(G, n, k)

m times

Proof : Blackboard.
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Some properties : RFA(Z9, n, k)

For n > 2, countable and not locally finite G we have that
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m times

In particular, this means that RFA and RTM are not amenable in
this case.



Some properties : RFA(Z9, n, k)

For n > 2, countable and not locally finite G we have that

Z/2Z % ---x Z/2Z — RFA(G, n, k)

m times

In particular, this means that RFA and RTM are not amenable in
this case.

For n > 2, infinite and residually finite G we have that
RFA(G, n, k) is residually finite but not finitely generated.
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EL(Z9, n, k) = (LP(Z9, n, k), RFA(Z9, n, k)) is the subgroup of
elementary Turing machines.
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Some properties : EL(Z?, n, k) and RTM(Z¢, n, k)

EL(Z9, n, k) = (LP(Z9, n, k), RFA(Z9, n, k)) is the subgroup of
elementary Turing machines.
Example : Langton's ant € EL(Z?,2,4).

Question : Is EL(Z9, n, k) = RTM(Z9, n, k) ?

For n > 2, a(EL(Z9, n, k)) = a(RFA(Z?, n, k)) has bounded
denominator. In particular EL C RTM.



Computability properties

Given a finite rules : f,f’ :

e It is decidable (in any model) whether T¢ = Ty .
@ We can effectively calculate a rule for T¢ o T¢.
@ It is decidable whether T¢ is reversible.

o If it is, we can effectively compute a rule for Tf_l.
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word problem.



Computability properties

Given a finite rules : f,f’ :

e It is decidable (in any model) whether T¢ = Ty .
@ We can effectively calculate a rule for T¢ o T¢.
@ It is decidable whether T¢ is reversible.

o If it is, we can effectively compute a rule for Tf_l.

RTM(Z9, n, k) is a recursively presented group with decidable
word problem.

What can we say about the torsion (3n such that 7" = 1)
problem ?
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We want to prove that the torsion problem is undecidable for a f.g.
subgroup of Aut(A?). The sketch is as follows :

@ The torsion problem for reversible classical Turing machines is
undecidable [Kari, Ollinger 2008].
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Back to the target : TP(Aut(A?)) is undecidable.

We want to prove that the torsion problem is undecidable for a f.g.
subgroup of Aut(A?). The sketch is as follows :

o

2]
o
o

The torsion problem for reversible classical Turing machines is
undecidable [Kari, Ollinger 2008].

Classical Turing machines embed into EL(Z, n, k).
EL(Z, n, k) is finitely generated.

There exists a "torsion preserving function" from EL(Z, n, k)
to Aut(A%)

Classical < EL” < "Aut(A%)



OB(Z7, n, k) is finitely generated.

This proof is inspired both on the existence of strongly universal
reversible gates for permutations of ¥ and the Juschenko Monod
proof for the fullgroup of minimal actions.

A controlled swap is a transposition (s, t) where s, t have
Hamming distance 1 in Q@ x X™.

The group generated by the applications of controlled swaps of

Q x X% at arbitrary positions generates Sym(Q x ¥™) if || is odd
and Alt(Q x ™) if it's even.

Corollary : [Sym(Q x T™)]m+1 C ([Sym(Q x )] m+1).




OB(Z7, n, k) is finitely generated.

Using this result, a generating set can be constructed :
e A; = Shifts T, for {ej}i<q a base of z9.
o Ay =All T, € LP(Z9, n, k) of fixed support E C Z9 of size 4.

@ A3z = The swaps of symbols in positions (6, e).
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EL(Z, n, k) is finitely generated.

EL(Z,n, k) = (LP(Z, n, k), RFA(Z, n, k)) = (OB(Z, n, k), RFA(Z, n, k))

We can show that RFA(Z, n, k) is generated by orbitwise shifts
and controlled position swaps.

© f is orbitwise shift is Vx € X dk € Z such that
Fo"(x)) = o™ (x).

@ f is controlled position swap if for some u,v € ¥*,
f(xu.avy) = xua.vy and f(xua.vy) = xu.avy.



EL(Z, n, k) is finitely generated.

EL(Z,n, k) = (LP(Z, n, k), RFA(Z, n, k)) = (OB(Z, n, k), RFA(Z, n, k))

We can show that RFA(Z, n, k) is generated by orbitwise shifts
and controlled position swaps.

© f is orbitwise shift is Vx € X dk € Z such that
Fo"(x)) = o™ (x).

@ f is controlled position swap if for some u,v € ¥*,
f(xu.avy) = xua.vy and f(xua.vy) = xu.avy.

In the fullshift, orbitwise shifts are precisely the shifts. So we only
need to implement controlled position swaps [technical].



From EL(Z, n, k) to Aut(A?)

Definition

Let G and H be groups. We say a function ¢ : G — H is a
blurphism if the following holds : If F C G* is finite, then the
group (w | w € F) < G is infinite if and only if the group
<¢(W1)(;5(W2) 200 ¢(W|W‘) | w e F> is infinite.
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From EL(Z, n, k) to Aut(A?)

Definition

Let G and H be groups. We say a function ¢ : G — H is a
blurphism if the following holds : If F C G* is finite, then the
group (w | w € F) < G is infinite if and only if the group
<¢(W1)¢(W2) 200 ¢(W|W‘) | w e F> is infinite.

If G has a finitely generated subgroup G’ with generating set B
with undecidable torsion problem and there is a computable
blurphism ¢ : G — H, then the subgroup H' of H generated by
¢(b) where b € B has undecidable torsion problem.

A better name than blurphism is needed, any ideas?
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Construction of the blurphism

o Let A={? x ({+-, =} U(Qx {1, i)}
@ Parse the third layer into zones (+* (q,a) —* | +*—%)*.

@ Define ¢ to act as a conveyor belt [Blackboard]



Construction of the blurphism

Let A= {2? x ({+, =} U(Q@x {14}
Parse the third layer into zones («* (g,a) —* | «+*—")*.

Define ¢ to act as a conveyor belt [Blackboard]
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¢ is a computable blurphism.



Construction of the blurphism

Let A= {2? x ({+, =} U(Q@x {14}
Parse the third layer into zones («* (g,a) —* | «+*—")*.

Define ¢ to act as a conveyor belt [Blackboard]

e 6 o6 o

¢ is a computable blurphism.

Therefore ¢(EL(Z, n, k)) is a finitely generated subgroup of
Aut(A?) with undecidable torsion problem. As

Aut(A%) < Aut({0,1}%) the same is valid for any automorphism
group of a fullshift.



The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof : As Z is two-ended, any non-torsion machine must shift to
the left or right in at least a periodic configuration.
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The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof : As Z is two-ended, any non-torsion machine must shift to
the left or right in at least a periodic configuration.

RFA(Z9, n, k) has a finitely generated subgroup with undecidable
torsion problem for d, n > 2.

Proof : Reduction to the snake tiling problem, which reduces to
the domino problem for Z9.



The snake problem

|
KD B XL

Can we tile the plane in a way which produces a bi-infinite path ?




The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.



The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T € RFA which walks the path of the snake, and turns back if it
encounters a problem.



The torsion problem for RFA : Cheating version

We'll first do it by cheating : Arbitrary alphabet 7 as an instance
of the snake tiling problem and at least two states L, R.

o Let t be the tile at (0,0). If t = ¢, do nothing.

@ Otherwise :

o If the state is L. Check the tile in the direction left(t). If it
matches correctly with t move the head to that position,
otherwise switch the state to R.

o If the state is R. Check the tile in the direction right(t). If it
matches correctly with t move the head to that position,
otherwise switch the state to L



The torsion problem for RFA : The real deal

We are going to code everything in a binary alphabet and use no
states.

1
0
bi|bo| b3

el e e e e L
HlOoOOoO|lo/lo|O|—
i
%)

g
RHIOOC|IO|O|O|(+
e Ll el L e Ll




The torsion problem for RFA : The real deal

Consider the group spanned by the following machines :

o

2]

(8]

{T7}vep that walks in the direction v € D independently of
the configuration.

Tua1x that walks along the direction codified by /1,5 or ri, r»
depending on the direction bit.

{gc}cec that flips the direction bit if the current pattern is
ce C,
{hc}cec that flips the auxiliary bit if the current pattern is
ceC,

{g+.c}cec that adds the auxiliary bit to the direction bit if the
current pattern is ¢ € C, and

{h+.c}cec that adds the direction bit to the auxiliary bit if the
current pattern is c € C,



The torsion problem for RFA : The real deal

The previous group spans the machines g, and h, for patterns p
composed of fragments of ¢ in compatible positions.



The torsion problem for RFA : The real deal

The previous group spans the machines g, and h, for patterns p
composed of fragments of ¢ in compatible positions.

g =(T_7p084c0T7yo hp;\{v})Z'
2
V}) ’

Finally, we use these machines to code the first ones.

hp* = (T_7‘7 o h+,c o T7‘7‘ [e) gp:-\{



- The real deal
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The torsion problem for RFA : The real deal

-,_>|< = (Twalk)M o H gp* O H gC

preM ceC

Acts as the first machine, but using these coded macrotiles.



The torsion problem for RFA : The real deal

-,_>|< = (Twalk)M o H gp* O H gC

preM ceC

Acts as the first machine, but using these coded macrotiles.

Let d > 2 and o be the shift action of Z9 over a full shift AZ°
where | A| > 2. Then the full group [[c]] contains a finitely
generated subgroup with undecidable torsion problem.




Thank you for your attention !



