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Motivation

Given a fullshift (AZ, σ) recall that its automorphism group is
given by

Aut(AZ) = {φ : AZ → AZ homeomorpism, [σ, φ] = id}

It is still unknown whether Aut({0, 1}Z) ∼= Aut({0, 1, 2}Z), but we
know that

Aut({0, 1}Z) ↪→ Aut({0, 1, 2}Z)

Aut({0, 1, 2}Z) ↪→ Aut({0, 1}Z)



Motivation

Given a fullshift (AZ, σ) recall that its automorphism group is
given by

Aut(AZ) = {φ : AZ → AZ homeomorpism, [σ, φ] = id}

It is still unknown whether Aut({0, 1}Z) ∼= Aut({0, 1, 2}Z), but we
know that

Aut({0, 1}Z) ↪→ Aut({0, 1, 2}Z)

Aut({0, 1, 2}Z) ↪→ Aut({0, 1}Z)



Motivation

A simple example with that property :

G1 =
⊕
i∈N

Z/4Z and G2 = Z/2Z
⊕
i∈N

Z/4Z

G1 ↪→ G2 : (a1, a2, · · · )→ (0, a1, a2, · · · )

G2 ↪→ G1 : (a1, a2, · · · )→ (2a1, a2, · · · )

However, they are not isomorphic : Each element of G1 which has
order 2 has square roots, while (1, 0, 0, 0, · · · ) has none in G2.
Moral : we should try to understand torsion and roots in
Aut({0, 1}Z)
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Talk highlights

Definition (Torsion problem)
Let G = 〈S | R〉 be a finitely generated group. The torsion problem
of G is the language TP(G) where

TP(G) = {w ∈ S∗ | ∃n ∈ N such that wn =G 1}

Theorem (B, Kari, Salo)
For any finite alphabet |A| ≥ 2, Aut(AZ) contains a finitely
generated subgroup with undecidable torsion problem

Theorem (B, Kari, Salo)

Let (AZd
, σ) be a full shift and |A| ≥ 2. The topological fullgroup

[[σ]] contains a finitely generated subgroup with undecidable
torsion problem if and only if d ≥ 2.
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Background

Recall that a Turing machine is defined by a rule :

δT : Σ× Q → Σ× Q × {−1, 0, 1}

q

δT ( , q) = ( , r ,−1)
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Background

This defines a natural action

T : ΣZ × Q → ΣZ × Q

Such that if (x , q) ∈ ΣZ × Q and δT (x0, q) = (a, r , d) then :

T (x , q) = (σ−d (x̃), q′)

where σ : ΣZ → ΣZ is the shift action given by σd (x)z = xz−d ,
x̃0 = a and x̃ |Z\{0} = x |Z\{0}.



Motivation

The composition of two actions T ◦ T ′ is not necessarily an
action generated by a Turing machine.
if the action T is a bijection then the inverse it not necessarily
an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by
some k ∈ N is not closed under composition or inverses.
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Definition

Let’s get rid of these constrains. Given F ,F ′ finite subsets of a
group G , consider instead of δT a function :

fT : ΣF × Q → ΣF ′ × Q × G ,

Let F = F ′ = {0, 1, 2}2, then fT (p, q) = (p′, q′, ~d) means :

p p′

Turn state q into state q′

Move head by ~d .



Definition

Let’s get rid of these constrains. Given F ,F ′ finite subsets of a
group G , consider instead of δT a function :

fT : ΣF × Q → ΣF ′ × Q × G ,

Let F = F ′ = {0, 1, 2}2, then fT (p, q) = (p′, q′, ~d) means :

p p′

Turn state q into state q′

Move head by ~d .



Moving head model
fT defines naturally an action

T y ΣG × Q × Zd

q1
q2

f ( , q1) = ( , q2, (1, 1)) F = {(0, 0), (1, 0), (1, 1)}

T

Let |Σ| = n and |Q| = k.
(TM(G , n, k), ◦) is the monoid of all such T with the composition
operation ; (RTM(G , n, k), ◦) is the group of all such T which are
bijective .
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Moving head model : As cellular automata

Let Q = {1, . . . , k} and Σ = {0, . . . , n − 1}.

ΣG = {x : G → Σ}

Xk = {x ∈ {0, 1, . . . , k}G | 0 /∈ {xg , xh} =⇒ g = h}

Let Xn,k = ΣG × Xk and Y = ΣG × {0G}. Then :

TM(G , n, k) = {φ ∈ End(Xn,k) | φ|Y = id, φ−1(Y ) = Y }
RTM(G , n, k) = {φ ∈ Aut(Xn,k) | φ|Y = id}
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Moving tape model

fT defines naturally an action

T y ΣG × Q

q1 q2

f ( , q1) = ( , q2, (1, 1)) F = {(0, 0), (1, 0), (1, 1)}

Tf

Let |Σ| = n and |Q| = k.
(TMfix(G , n, k), ◦) is the monoid of all such T with the
composition operation ; (RTMfix(G , n, k), ◦) is the group of all
such T which are bijective .
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Moving tape model : dynamical definition

Let x , y ∈ ΣG . x and y are asymptotic, and write x ∼ y , if they
differ in finitely many coordinates. We write x ∼F y if xg = yg for
all g /∈ F , F a finite subset of G .

Let T : ΣG × Q → ΣG × Q be a function.

Dynamical definition
T is a moving tape Turing machine ⇐⇒ T is continuous, and for
a continuous function s : ΣG × Q → G and F ⊂ G we have
T (x , q)1 ∼F σs(x ,q)(x) for all (x , q) ∈ ΣG × Q.

s : ΣG × Q → G is the shift indicator function
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Equivalence of the models

RTMfix(G , 1, k) ∼= Sk and G ↪→ RTM(G , 1, k).

Proposition
If n ≥ 2 then :

TMfix(G , n, k) ∼= TM(G , n, k)
RTMfix(G , n, k) ∼= RTM(G , n, k).
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Properties of RTM

Proposition
Let T ∈ TMfix(G , n, k). Then the following are equivalent :

1 T is injective.
2 T is surjective.
3 T ∈ RTMfix(G , n, k).
4 T preserves the uniform measure (µ(T−1(A)) = µ(A) for all

Borel sets A).
5 µ(T (A)) = µ(A) for all Borel sets A.



Properties of RTM

Proposition
If n ≥ 2 RTM(Z, n, k) is not finitely generated.

Proof : We find an epimorphism from RTM to a non-finitely
generated group.
Let T ∈ RTMfix(Z, n, k), therefore, it has a shift indicator
s : ΣZ × Q → Z. Define

α(T ) := Eµ(s) =
∫

ΣZ×Q
s(x , q)dµ,

One can check that α(T1 ◦ T2) = α(T1) + α(T2).
Therefore α : RTM(Z, n, k)→ Q is an homomorphism
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Properties of RTM

Now consider the machine TSURF,m where for all a ∈ Σ and q ∈ Q :

0 0 0 00 0 0 a

q

TSURF,m

00 0 00 0 0a

q

f (0ma, q) = (a0m, q, 1). Otherwise f (u, q) = (u, q, 0).

TSURF,m ∈ RTM(Z, n, k) and α(TSURF,m) = 1/nm

〈(1/nm)m∈N〉 ⊂ α(RTM(Z, n, k)) which is thus a non-finitely
generated subgroup of Q.
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Interesting subgroups of RTM

B LP(G , n, k) −→ Local permutations.

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

q

Tπ

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1

r

B RFA(G , n, k) −→ Reversible finite-state automata.
B OB(G , n, k) −→ Oblivous machines 〈LP,Shift〉.
B EL(G , n, k) −→ Elementary machines 〈LP,RFA〉.
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Small group theory roadmap

Abelian

Residually Finite

Amenable

LEF

LEA

Sofic

Res. finite groups are those where every non-identity element
can be mapped to a non-identity element by a homomorphism
to a finite group
Amenable groups admit left invariant finitely additive
measures.
LEF and LEA stand for locally embeddable into
(finite/amenable) groups.
Sofic groups are generalizations of LEF and LEA.

Theorem
∀n ≥ 2,RTM(Zd , n, k) is LEF but neither amenable nor residually
finite.
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Some properties : LP(G , n, k)

For n ≥ 2, we have S∞ ↪→ LP(G , n, k).

This means that RTM is not residually finite, and that it contains
all finite groups.

LP(G , n, k) is locally finite.

In particular, for n ≥ 2 LP(G , n, k) is amenable and not finitely
generated.
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Some properties : OB(Zd , n, k)

Now let’s add the shift. Recall that OB(G , n, k) = 〈LP,Shift〉.

OB(G , n, k) is amenable ⇐⇒ G is amenable.

Proof : Use the short exact sequence

1 −→ LP(G , n, k) −→ OB(G , n, k) −→ G −→ 1.
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Some properties : RFA(Zd , n, k)

Recall that RFA(G , n, k) is the subgroup of machines which do
not modify the tape. Note that if [[σ]] is the fullgroup of (ΣG , σ)
then [[σ]] ∼= RFA(G , n, 1).

Theorem
For n ≥ 2, countable and not locally finite G we have that

Z/2Z ∗ · · · ∗ Z/2Z︸ ︷︷ ︸
m times

↪→ RFA(G , n, k)

Proof : Blackboard.
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In particular, this means that RFA and RTM are not amenable in
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Theorem
For n ≥ 2, infinite and residually finite G we have that
RFA(G , n, k) is residually finite but not finitely generated.
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Some properties : EL(Zd , n, k) and RTM(Zd , n, k)

EL(Zd , n, k) = 〈LP(Zd , n, k),RFA(Zd , n, k)〉 is the subgroup of
elementary Turing machines.

Example : Langton’s ant ∈ EL(Z2, 2, 4).

Question : Is EL(Zd , n, k) = RTM(Zd , n, k) ?

For n ≥ 2, α(EL(Zd , n, k)) = α(RFA(Zd , n, k)) has bounded
denominator. In particular EL ( RTM.
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Computability properties

Given a finite rules : f , f ′ :

It is decidable (in any model) whether Tf = Tf ′ .
We can effectively calculate a rule for Tf ◦ Tf ′ .
It is decidable whether Tf is reversible.
If it is, we can effectively compute a rule for T−1f .

RTM(Zd , n, k) is a recursively presented group with decidable
word problem.

What can we say about the torsion (∃n such that T n = 1)
problem ?
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Back to the target : TP(Aut(AZ)) is undecidable.

We want to prove that the torsion problem is undecidable for a f.g.
subgroup of Aut(AZ). The sketch is as follows :

1 The torsion problem for reversible classical Turing machines is
undecidable [Kari, Ollinger 2008].

2 Classical Turing machines embed into EL(Z, n, k).
3 EL(Z, n, k) is finitely generated.
4 There exists a "torsion preserving function" from EL(Z, n, k)
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OB(Zd , n, k) is finitely generated.

This proof is inspired both on the existence of strongly universal
reversible gates for permutations of Σm and the Juschenko Monod
proof for the fullgroup of minimal actions.
A controlled swap is a transposition (s, t) where s, t have
Hamming distance 1 in Q × Σm.

Theorem
The group generated by the applications of controlled swaps of
Q ×Σ4 at arbitrary positions generates Sym(Q ×Σm) if |Σ| is odd
and Alt(Q × Σm) if it’s even.
Corollary : [Sym(Q × Σm)]m+1 ⊂ 〈[Sym(Q × Σ4)]m+1〉.



OB(Zd , n, k) is finitely generated.

Using this result, a generating set can be constructed :

A1 = Shifts Tei for {ei}i≤d a base of Zd .
A2 =All Tπ ∈ LP(Zd , n, k) of fixed support E ⊂ Zd of size 4.
A3 = The swaps of symbols in positions (~0, ei ).



EL(Z, n, k) is finitely generated.

EL(Z, n, k) = 〈LP(Z, n, k),RFA(Z, n, k)〉 = 〈OB(Z, n, k),RFA(Z, n, k)〉

We can show that RFA(Z, n, k) is generated by orbitwise shifts
and controlled position swaps.

1 f is orbitwise shift is ∀x ∈ X ∃k ∈ Z such that
f (σn(x)) = σn+k(x).

2 f is controlled position swap if for some u, v ∈ Σ∗,
f (xu.avy) = xua.vy and f (xua.vy) = xu.avy .

In the fullshift, orbitwise shifts are precisely the shifts. So we only
need to implement controlled position swaps [technical].
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From EL(Z, n, k) to Aut(AZ)

Definition
Let G and H be groups. We say a function φ : G → H is a
blurphism if the following holds : If F ⊂ G∗ is finite, then the
group 〈w | w ∈ F 〉 ≤ G is infinite if and only if the group
〈φ(w1)φ(w2) · · ·φ(w|w |) | w ∈ F 〉 is infinite.

Lemma
If G has a finitely generated subgroup G ′ with generating set B
with undecidable torsion problem and there is a computable
blurphism φ : G → H, then the subgroup H ′ of H generated by
φ(b) where b ∈ B has undecidable torsion problem.

A better name than blurphism is needed, any ideas ?
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Construction of the blurphism

Let A = {Σ2 × ({←,→} ∪ (Q × {↑, ↓}))}.

Parse the third layer into zones (←∗ (q, a)→∗ | ←∗→∗)∗.
Define φ to act as a conveyor belt [Blackboard]
φ is a computable blurphism.

Therefore φ(EL(Z, n, k)) is a finitely generated subgroup of
Aut(AZ) with undecidable torsion problem. As
Aut(AZ) ↪→ Aut({0, 1}Z) the same is valid for any automorphism
group of a fullshift.
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The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof : As Z is two-ended, any non-torsion machine must shift to
the left or right in at least a periodic configuration.

Theorem
RFA(Zd , n, k) has a finitely generated subgroup with undecidable
torsion problem for d , n ≥ 2.

Proof : Reduction to the snake tiling problem, which reduces to
the domino problem for Zd .
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The snake problem

ε

Can we tile the plane in a way which produces a bi-infinite path ?



The snake problem

Theorem (Kari)
The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T ∈ RFA which walks the path of the snake, and turns back if it
encounters a problem.



The snake problem

Theorem (Kari)
The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T ∈ RFA which walks the path of the snake, and turns back if it
encounters a problem.



The torsion problem for RFA : Cheating version

We’ll first do it by cheating : Arbitrary alphabet τ as an instance
of the snake tiling problem and at least two states L,R.

Let t be the tile at (0, 0). If t = ε, do nothing.
Otherwise :

If the state is L. Check the tile in the direction left(t). If it
matches correctly with t move the head to that position,
otherwise switch the state to R.
If the state is R. Check the tile in the direction right(t). If it
matches correctly with t move the head to that position,
otherwise switch the state to L



The torsion problem for RFA : The real deal

We are going to code everything in a binary alphabet and use no
states.
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The torsion problem for RFA : The real deal

Consider the group spanned by the following machines :
1 {T~v}v∈D that walks in the direction ~v ∈ D independently of

the configuration.
2 Twalk that walks along the direction codified by l1, l2 or r1, r2

depending on the direction bit.
3 {gc}c∈C that flips the direction bit if the current pattern is

c ∈ C ,
4 {hc}c∈C that flips the auxiliary bit if the current pattern is

c ∈ C ,
5 {g+,c}c∈C that adds the auxiliary bit to the direction bit if the

current pattern is c ∈ C , and
6 {h+,c}c∈C that adds the direction bit to the auxiliary bit if the

current pattern is c ∈ C ,



The torsion problem for RFA : The real deal

The previous group spans the machines gp and hp for patterns p
composed of fragments of c in compatible positions.

gp∗ = (T−7~v ◦ g+,c ◦ T7~v ◦ hp∗F\{~v})
2.

hp∗ = (T−7~v ◦ h+,c ◦ T7~v ◦ gp∗F\{~v})
2.

Finally, we use these machines to code the first ones.
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The torsion problem for RFA : The real deal

M(t) =



The torsion problem for RFA : The real deal

T ∗ = (Twalk)M ◦
∏

p∗∈M
gp∗ ◦

∏
c∈C

gc

Acts as the first machine, but using these coded macrotiles.

Corollary

Let d ≥ 2 and σ be the shift action of Zd over a full shift AZd

where |A| ≥ 2. Then the full group [[σ]] contains a finitely
generated subgroup with undecidable torsion problem.
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Thank you for your attention !


