The group of reversible Turing machines and the torsion problem for $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ and related topological fullgroups

Sebastián Barbieri

From a joint work with Jarkko Kari and Ville Salo
LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon
CMM, universidad de Chile
December, 2016

Motivation

Given a fullshift $\left(\mathcal{A}^{\mathbb{Z}}, \sigma\right)$ recall that its automorphism group is given by

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right)=\left\{\phi: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}} \text { homeomorpism, }[\sigma, \phi]=\mathrm{id}\right\}
$$

Motivation

Given a fullshift $\left(\mathcal{A}^{\mathbb{Z}}, \sigma\right)$ recall that its automorphism group is given by

$$
\operatorname{Aut}\left(\mathcal{A}^{\mathbb{Z}}\right)=\left\{\phi: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}} \text { homeomorpism, }[\sigma, \phi]=\operatorname{id}\right\}
$$

It is still unknown whether $\operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right) \cong \operatorname{Aut}\left(\{0,1,2\}^{\mathbb{Z}}\right)$, but we know that

$$
\begin{aligned}
& \operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right) \hookrightarrow \operatorname{Aut}\left(\{0,1,2\}^{\mathbb{Z}}\right) \\
& \operatorname{Aut}\left(\{0,1,2\}^{\mathbb{Z}}\right) \hookrightarrow \operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right)
\end{aligned}
$$

Motivation

A simple example with that property :

$$
G_{1}=\bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \text { and } G_{2}=\mathbb{Z} / 2 \mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z}
$$

Motivation

A simple example with that property :

$$
\begin{gathered}
G_{1}=\bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \text { and } G_{2}=\mathbb{Z} / 2 \mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \\
G_{1} \hookrightarrow G_{2}:\left(a_{1}, a_{2}, \cdots\right) \rightarrow\left(0, a_{1}, a_{2}, \cdots\right)
\end{gathered}
$$

Motivation

A simple example with that property :

$$
\begin{gathered}
G_{1}=\bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \text { and } G_{2}=\mathbb{Z} / 2 \mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \\
G_{1} \hookrightarrow G_{2}:\left(a_{1}, a_{2}, \cdots\right) \rightarrow\left(0, a_{1}, a_{2}, \cdots\right) \\
G_{2} \hookrightarrow G_{1}:\left(a_{1}, a_{2}, \cdots\right) \rightarrow\left(2 a_{1}, a_{2}, \cdots\right)
\end{gathered}
$$

Motivation

A simple example with that property :

$$
\begin{aligned}
& G_{1}=\bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \text { and } G_{2}=\mathbb{Z} / 2 \mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z} / 4 \mathbb{Z} \\
& G_{1} \hookrightarrow G_{2}:\left(a_{1}, a_{2}, \cdots\right) \rightarrow\left(0, a_{1}, a_{2}, \cdots\right) \\
& G_{2} \hookrightarrow G_{1}:\left(a_{1}, a_{2}, \cdots\right) \rightarrow\left(2 a_{1}, a_{2}, \cdots\right)
\end{aligned}
$$

However, they are not isomorphic : Each element of G_{1} which has order 2 has square roots, while $(1,0,0,0, \cdots)$ has none in G_{2}. Moral : we should try to understand torsion and roots in $\operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right)$

Talk highlights

Definition (Torsion problem)

Let $G=\langle S \mid R\rangle$ be a finitely generated group. The torsion problem of G is the language $\operatorname{TP}(G)$ where

$$
\operatorname{TP}(G)=\left\{w \in S^{*} \mid \exists n \in \mathbb{N} \text { such that } w^{n}={ }_{G} 1\right\}
$$

Talk highlights

Definition (Torsion problem)

Let $G=\langle S \mid R\rangle$ be a finitely generated group. The torsion problem of G is the language $\operatorname{TP}(G)$ where

$$
\operatorname{TP}(G)=\left\{w \in S^{*} \mid \exists n \in \mathbb{N} \text { such that } w^{n}={ }_{G} 1\right\}
$$

Theorem (B, Kari, Salo)

For any finite alphabet $|A| \geq 2$, $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ contains a finitely generated subgroup with undecidable torsion problem

Talk highlights

Definition (Torsion problem)

Let $G=\langle S \mid R\rangle$ be a finitely generated group. The torsion problem of G is the language $\operatorname{TP}(G)$ where

$$
\operatorname{TP}(G)=\left\{w \in S^{*} \mid \exists n \in \mathbb{N} \text { such that } w^{n}={ }_{G} 1\right\}
$$

Theorem (B, Kari, Salo)

For any finite alphabet $|A| \geq 2, \operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ contains a finitely generated subgroup with undecidable torsion problem

Theorem (B, Kari, Salo)

Let $\left(A^{\mathbb{Z}^{d}}, \sigma\right)$ be a full shift and $|A| \geq 2$. The topological fullgroup $[[\sigma]]$ contains a finitely generated subgroup with undecidable torsion problem if and only if $d \geq 2$.

Background

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

Background

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Background

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Background

This defines a natural action

Background

This defines a natural action

$$
T: \Sigma^{\mathbb{Z}} \times Q \rightarrow \Sigma^{\mathbb{Z}} \times Q
$$

Such that if $(x, q) \in \Sigma^{\mathbb{Z}} \times Q$ and $\delta_{T}\left(x_{0}, q\right)=(a, r, d)$ then :

$$
T(x, q)=\left(\sigma_{-d}(\tilde{x}), q^{\prime}\right)
$$

where $\sigma: \Sigma^{\mathbb{Z}} \rightarrow \Sigma^{\mathbb{Z}}$ is the shift action given by $\sigma_{d}(x)_{z}=x_{z-d}$, $\tilde{x}_{0}=a$ and $\left.\tilde{x}\right|_{\mathbb{Z} \backslash\{0\}}=\left.x\right|_{\mathbb{Z} \backslash\{0\}}$.

Motivation

- The composition of two actions $T \circ T^{\prime}$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then inverse it not necessarily an action generated by a Turing machine.

Motivation

- The composition of two actions $T \circ T^{\prime}$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by some $k \in \mathbb{N}$ is not closed under composition or inverses.

Definition

Let's get rid of these constrains. Given F, F^{\prime} finite subsets of a group G, consider instead of δ_{T} a function :

$$
f_{T}: \Sigma^{F} \times Q \rightarrow \Sigma^{F^{\prime}} \times Q \times G
$$

Definition

Let's get rid of these constrains. Given F, F^{\prime} finite subsets of a group G, consider instead of δ_{T} a function :

$$
f_{T}: \Sigma^{F} \times Q \rightarrow \Sigma^{F^{\prime}} \times Q \times G
$$

Let $F=F^{\prime}=\{0,1,2\}^{2}$, then $f_{T}(p, q)=\left(p^{\prime}, q^{\prime}, \vec{d}\right)$ means :

- Turn state q into state q^{\prime}
- Move head by \vec{d}.

Moving head model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{G} \times Q \times \mathbb{Z}^{d}
$$

$f\left(\bullet \circ, q_{1}\right)=\left(\circ \circ, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}$

Moving head model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{G} \times Q \times \mathbb{Z}^{d}
$$

$$
f\left(\bullet \circ, q_{1}\right)=\left(\circ \circ, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}
$$

Let $|\Sigma|=n$ and $|Q|=k$.
$(\operatorname{TM}(G, n, k), \circ)$ is the monoid of all such T with the composition operation $;(\operatorname{RTM}(G, n, k), \circ)$ is the group of all such T which are bijective.

Moving head model : As cellular automata

$$
\text { Let } Q=\{1, \ldots, k\} \text { and } \Sigma=\{0, \ldots, n-1\} .
$$

$$
\begin{gathered}
\Sigma^{G}=\{x: G \rightarrow \Sigma\} \\
X_{k}=\left\{x \in\{0,1, \ldots, k\}^{G} \mid 0 \notin\left\{x_{g}, x_{h}\right\} \Longrightarrow g=h\right\}
\end{gathered}
$$

$$
\text { Let } X_{n, k}=\Sigma^{G} \times X_{k} \text { and } Y=\Sigma^{G} \times\left\{0^{G}\right\} . \text { Then : }
$$

Moving head model : As cellular automata

Let $Q=\{1, \ldots, k\}$ and $\Sigma=\{0, \ldots, n-1\}$.

$$
\begin{gathered}
\Sigma^{G}=\{x: G \rightarrow \Sigma\} \\
X_{k}=\left\{x \in\{0,1, \ldots, k\}^{G} \mid 0 \notin\left\{x_{g}, x_{h}\right\} \Longrightarrow g=h\right\}
\end{gathered}
$$

Let $X_{n, k}=\Sigma^{G} \times X_{k}$ and $Y=\Sigma^{G} \times\left\{0^{G}\right\}$. Then :

$$
\begin{aligned}
\operatorname{TM}(G, n, k) & =\left\{\phi \in \operatorname{End}\left(X_{n, k}\right)|\phi|_{Y}=\mathrm{id}, \phi^{-1}(Y)=Y\right\} \\
\operatorname{RTM}(G, n, k) & =\left\{\phi \in \operatorname{Aut}\left(X_{n, k}\right)|\phi|_{Y}=\mathrm{id}\right\}
\end{aligned}
$$

Moving tape model

f_{T} defines naturally an action

Moving tape model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{G} \times Q
$$

Moving tape model : dynamical definition

Let $x, y \in \Sigma^{G} . x$ and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_{F} y$ if $x_{g}=y_{g}$ for all $g \notin F, F$ a finite subset of G.

Moving tape model : dynamical definition

Let $x, y \in \Sigma^{G} . x$ and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_{F} y$ if $x_{g}=y_{g}$ for all $g \notin F, F$ a finite subset of G.

Let $T: \Sigma^{G} \times Q \rightarrow \Sigma^{G} \times Q$ be a function.

Dynamical definition

T is a moving tape Turing machine $\Longleftrightarrow T$ is continuous, and for a continuous function $s: \Sigma^{G} \times Q \rightarrow G$ and $F \subset G$ we have $T(x, q)_{1} \sim_{F} \sigma_{s(x, q)}(x)$ for all $(x, q) \in \Sigma^{G} \times Q$.

Moving tape model : dynamical definition

Let $x, y \in \Sigma^{G} . x$ and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_{F} y$ if $x_{g}=y_{g}$ for all $g \notin F, F$ a finite subset of G.

Let $T: \Sigma^{G} \times Q \rightarrow \Sigma^{G} \times Q$ be a function.

Dynamical definition

T is a moving tape Turing machine $\Longleftrightarrow T$ is continuous, and for a continuous function $s: \Sigma^{G} \times Q \rightarrow G$ and $F \subset G$ we have $T(x, q)_{1} \sim_{F} \sigma_{s(x, q)}(x)$ for all $(x, q) \in \Sigma^{G} \times Q$.
$s: \Sigma^{G} \times Q \rightarrow G$ is the shift indicator function

Equivalence of the models

$\operatorname{RTM}_{\text {fix }}(G, 1, k) \cong S_{k}$ and $G \hookrightarrow \operatorname{RTM}(G, 1, k)$.

Equivalence of the models

$\operatorname{RTM}_{\text {fix }}(G, 1, k) \cong S_{k}$ and $G \hookrightarrow \operatorname{RTM}(G, 1, k)$.
Proposition
If $n \geq 2$ then :

$$
\begin{aligned}
\operatorname{TM}_{\mathrm{fix}}(G, n, k) & \cong \operatorname{TM}(G, n, k) \\
\operatorname{RTM}_{\mathrm{fix}}(G, n, k) & \cong \operatorname{RTM}(G, n, k)
\end{aligned}
$$

Properties of RTM

Proposition

Let $T \in \mathrm{TM}_{\mathrm{fix}}(G, n, k)$. Then the following are equivalent :
(1) T is injective.
(2) T is surjective.
(3) $T \in \operatorname{RTM}_{\mathrm{fix}}(G, n, k)$.
(9) T preserves the uniform measure $\left(\mu\left(T^{-1}(A)\right)=\mu(A)\right.$ for all Borel sets A).
(0) $\mu(T(A))=\mu(A)$ for all Borel sets A.

Properties of RTM

Proposition

If $n \geq 2 \operatorname{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.

Properties of RTM

Proposition

If $n \geq 2 \operatorname{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.
Proof: We find an epimorphism from RTM to a non-finitely generated group.
Let $T \in \mathrm{RTM}_{\mathrm{fix}}(\mathbb{Z}, n, k)$, therefore, it has a shift indicator $s: \Sigma^{\mathbb{Z}} \times Q \rightarrow \mathbb{Z}$. Define

$$
\alpha(T):=\mathrm{E}_{\mu}(s)=\int_{\Sigma \mathbb{Z} \times Q} s(x, q) d \mu
$$

One can check that $\alpha\left(T_{1} \circ T_{2}\right)=\alpha\left(T_{1}\right)+\alpha\left(T_{2}\right)$.
Therefore $\alpha: \operatorname{RTM}(\mathbb{Z}, n, k) \rightarrow \mathbb{Q}$ is an homomorphism

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right)$. Otherwise $f(u, q)=(u, q, 0)$.

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

$T_{\text {SURF }, m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha\left(T_{\text {SURF }, m}\right)=1 / n^{m}$

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

$T_{\text {SURF }, m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha\left(T_{\text {SURF }, m}\right)=1 / n^{m}$
$\left\langle\left(1 / n^{m}\right)_{m \in \mathbb{N}}\right\rangle \subset \alpha(\operatorname{RTM}(\mathbb{Z}, n, k))$ which is thus a non-finitely generated subgroup of \mathbb{Q}.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}(G, n, k) \longrightarrow$ Reversible finite-state automata.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}(G, n, k) \longrightarrow$ Reversible finite-state automata.
$\triangleright \mathrm{OB}(G, n, k) \longrightarrow$ Oblivous machines $\langle\mathrm{LP}$, Shift \rangle.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}(G, n, k) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}(G, n, k) \longrightarrow$ Reversible finite-state automata.
$\triangleright \mathrm{OB}(G, n, k) \longrightarrow$ Oblivous machines $\langle\mathrm{LP}$, Shift \rangle.
$\triangleright \mathrm{EL}(G, n, k) \longrightarrow$ Elementary machines $\langle\mathrm{LP}, \mathrm{RFA}\rangle$.

Small group theory roadmap

- Res. finite groups are those where every non-identity element can be mapped to a non-identity element by a homomorphism to a finite group
- Amenable groups admit left invariant finitely additive measures.
- LEF and LEA stand for locally embeddable into (finite/amenable) groups.
- Sofic groups are generalizations of LEF and LEA.

Small group theory roadmap

Theorem

$\forall n \geq 2, \operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is LEF but neither amenable nor residually finite.

Some properties : $\operatorname{LP}(G, n, k)$

For $n \geq 2$, we have $S_{\infty} \hookrightarrow \operatorname{LP}(G, n, k)$.

Some properties: $\operatorname{LP}(G, n, k)$

For $n \geq 2$, we have $S_{\infty} \hookrightarrow \operatorname{LP}(G, n, k)$.
This means that RTM is not residually finite, and that it contains all finite groups.

Some properties : $\operatorname{LP}(G, n, k)$

For $n \geq 2$, we have $S_{\infty} \hookrightarrow \operatorname{LP}(G, n, k)$.
This means that RTM is not residually finite, and that it contains all finite groups.
$\operatorname{LP}(G, n, k)$ is locally finite.

Some properties: $\operatorname{LP}(G, n, k)$

For $n \geq 2$, we have $S_{\infty} \hookrightarrow \operatorname{LP}(G, n, k)$.
This means that RTM is not residually finite, and that it contains all finite groups.
$\operatorname{LP}(G, n, k)$ is locally finite.
In particular, for $n \geq 2 \operatorname{LP}(G, n, k)$ is amenable and not finitely generated.

Some properties : $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}(G, n, k)=\langle\mathrm{LP}$, Shift \rangle.

Some properties : $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}(G, n, k)=\langle\mathrm{LP}$, Shift \rangle.
$\mathrm{OB}(G, n, k)$ is amenable $\Longleftrightarrow G$ is amenable.

Some properties: $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}(G, n, k)=\langle\mathrm{LP}$, Shift \rangle.

$$
\mathrm{OB}(G, n, k) \text { is amenable } \Longleftrightarrow G \text { is amenable. }
$$

Proof : Use the short exact sequence

$$
1 \longrightarrow \mathrm{LP}(G, n, k) \longrightarrow \mathrm{OB}(G, n, k) \longrightarrow G \longrightarrow 1
$$

Some properties : RFA $\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{RFA}(G, n, k)$ is the subgroup of machines which do not modify the tape. Note that if $[[\sigma]]$ is the fullgroup of $\left(\Sigma^{G}, \sigma\right)$ then $[[\sigma]] \cong \operatorname{RFA}(G, n, 1)$.

Theorem

For $n \geq 2$, countable and not locally finite G we have that

$$
\underbrace{\mathbb{Z} / 2 \mathbb{Z} * \cdots * \mathbb{Z} / 2 \mathbb{Z}}_{m \text { times }} \hookrightarrow \operatorname{RFA}(G, n, k)
$$

Some properties : RFA $\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{RFA}(G, n, k)$ is the subgroup of machines which do not modify the tape. Note that if $[[\sigma]]$ is the fullgroup of $\left(\Sigma^{G}, \sigma\right)$ then $[[\sigma]] \cong \operatorname{RFA}(G, n, 1)$.

Theorem

For $n \geq 2$, countable and not locally finite G we have that

$$
\underbrace{\mathbb{Z} / 2 \mathbb{Z} * \cdots * \mathbb{Z} / 2 \mathbb{Z}}_{m \text { times }} \hookrightarrow \operatorname{RFA}(G, n, k)
$$

Proof: Blackboard.

Some properties: $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$

Some properties : $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$

Theorem

For $n \geq 2$, countable and not locally finite G we have that

$$
\underbrace{\mathbb{Z} / 2 \mathbb{Z} * \cdots * \mathbb{Z} / 2 \mathbb{Z}}_{m \text { times }} \hookrightarrow \operatorname{RFA}(G, n, k)
$$

In particular, this means that RFA and RTM are not amenable in this case.

Some properties : $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$

Theorem

For $n \geq 2$, countable and not locally finite G we have that

$$
\underbrace{\mathbb{Z} / 2 \mathbb{Z} * \cdots * \mathbb{Z} / 2 \mathbb{Z}}_{m \text { times }} \hookrightarrow \operatorname{RFA}(G, n, k)
$$

In particular, this means that RFA and RTM are not amenable in this case.

Theorem

For $n \geq 2$, infinite and residually finite G we have that $\operatorname{RFA}(G, n, k)$ is residually finite but not finitely generated.

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

$\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

$\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Example : Langton's ant $\in \operatorname{EL}\left(\mathbb{Z}^{2}, 2,4\right)$.

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

$\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Example : Langton's ant $\in \operatorname{EL}\left(\mathbb{Z}^{2}, 2,4\right)$.

Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right) ?$

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

$\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Example : Langton's ant $\in \operatorname{EL}\left(\mathbb{Z}^{2}, 2,4\right)$.

Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right) ?$
For $n \geq 2, \alpha\left(\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)\right)=\alpha\left(\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right)$ has bounded denominator. In particular EL \subsetneq RTM.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.
$\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is a recursively presented group with decidable word problem.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.
$\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is a recursively presented group with decidable word problem.

What can we say about the torsion ($\exists n$ such that $T^{n}=1$) problem?

Back to the target: $\operatorname{TP}\left(\operatorname{Aut}\left(A^{\mathbb{Z}}\right)\right)$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows:
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].

Back to the target: $\operatorname{TP}\left(\operatorname{Aut}\left(A^{\mathbb{Z}}\right)\right)$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows:
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
(2) Classical Turing machines embed into $\mathrm{EL}(\mathbb{Z}, n, k)$.

Back to the target: $\operatorname{TP}\left(\operatorname{Aut}\left(A^{\mathbb{Z}}\right)\right)$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows:
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
(2) Classical Turing machines embed into $\mathrm{EL}(\mathbb{Z}, n, k)$.
(3) $\mathrm{EL}(\mathbb{Z}, n, k)$ is finitely generated.

Back to the target : $\operatorname{TP}\left(\operatorname{Aut}\left(A^{\mathbb{Z}}\right)\right)$ is undecidable.

We want to prove that the torsion problem is undecidable for a f.g. subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$. The sketch is as follows:
(1) The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
(2) Classical Turing machines embed into $\mathrm{EL}(\mathbb{Z}, n, k)$.
(3) $\mathrm{EL}(\mathbb{Z}, n, k)$ is finitely generated.
(9) There exists a "torsion preserving function" from $\mathrm{EL}(\mathbb{Z}, n, k)$ to $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$

$$
\text { Classical } \hookrightarrow E L " \hookrightarrow " A u t\left(A^{\mathbb{Z}}\right)
$$

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ is finitely generated.

This proof is inspired both on the existence of strongly universal reversible gates for permutations of Σ^{m} and the Juschenko Monod proof for the fullgroup of minimal actions.
A controlled swap is a transposition (s, t) where s, t have Hamming distance 1 in $Q \times \Sigma^{m}$.

Theorem

The group generated by the applications of controlled swaps of $Q \times \Sigma^{4}$ at arbitrary positions generates $\operatorname{Sym}\left(Q \times \Sigma^{m}\right)$ if $|\Sigma|$ is odd and $\operatorname{Alt}\left(Q \times \Sigma^{m}\right)$ if it's even.
Corollary : $\left[\operatorname{Sym}\left(Q \times \Sigma^{m}\right)\right]_{m+1} \subset\left\langle\left[\operatorname{Sym}\left(Q \times \Sigma^{4}\right)\right]_{m+1}\right\rangle$.

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ is finitely generated.

Using this result, a generating set can be constructed :

- $A_{1}=$ Shifts $T_{e_{i}}$ for $\left\{e_{i}\right\}_{i \leq d}$ a base of \mathbb{Z}^{d}.
- $A_{2}=\mathrm{All} T_{\pi} \in \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$ of fixed support $E \subset \mathbb{Z}^{d}$ of size 4.
- $A_{3}=$ The swaps of symbols in positions $\left(\overrightarrow{0}, e_{i}\right)$.

$E L(\mathbb{Z}, n, k)$ is finitely generated.

$\mathrm{EL}(\mathbb{Z}, n, k)=\langle L P(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle=\langle\mathrm{OB}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle$

$\mathrm{EL}(\mathbb{Z}, n, k)$ is finitely generated.

$\mathrm{EL}(\mathbb{Z}, n, k)=\langle L P(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle=\langle\mathrm{OB}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle$
We can show that $\operatorname{RFA}(\mathbb{Z}, n, k)$ is generated by orbitwise shifts and controlled position swaps.
(1) f is orbitwise shift is $\forall x \in X \exists k \in \mathbb{Z}$ such that $f\left(\sigma^{n}(x)\right)=\sigma^{n+k}(x)$.
(2) f is controlled position swap if for some $u, v \in \Sigma^{*}$, $f(x u . a v y)=x u a . v y$ and $f(x u a . v y)=x u \cdot a v y$.

$\mathrm{EL}(\mathbb{Z}, n, k)$ is finitely generated.

$\mathrm{EL}(\mathbb{Z}, n, k)=\langle\operatorname{LP}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle=\langle\mathrm{OB}(\mathbb{Z}, n, k), \operatorname{RFA}(\mathbb{Z}, n, k)\rangle$
We can show that $\operatorname{RFA}(\mathbb{Z}, n, k)$ is generated by orbitwise shifts and controlled position swaps.
(1) f is orbitwise shift is $\forall x \in X \exists k \in \mathbb{Z}$ such that

$$
f\left(\sigma^{n}(x)\right)=\sigma^{n+k}(x) .
$$

(2) f is controlled position swap if for some $u, v \in \Sigma^{*}$, $f(x u . a v y)=x u a . v y$ and $f(x u a . v y)=x u . a v y$.
In the fullshift, orbitwise shifts are precisely the shifts. So we only need to implement controlled position swaps [technical].

From $\operatorname{EL}(\mathbb{Z}, n, k)$ to $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$

Definition

Let G and H be groups. We say a function $\phi: G \rightarrow H$ is a blurphism if the following holds: If $F \subset G^{*}$ is finite, then the group $\langle w \mid w \in F\rangle \leq G$ is infinite if and only if the group $\left\langle\phi\left(w_{1}\right) \phi\left(w_{2}\right) \cdots \phi\left(w_{|w|}\right) \mid w \in F\right\rangle$ is infinite.

From $\operatorname{EL}(\mathbb{Z}, n, k)$ to $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$

Definition

Let G and H be groups. We say a function $\phi: G \rightarrow H$ is a blurphism if the following holds: If $F \subset G^{*}$ is finite, then the group $\langle w \mid w \in F\rangle \leq G$ is infinite if and only if the group $\left\langle\phi\left(w_{1}\right) \phi\left(w_{2}\right) \cdots \phi\left(w_{|w|}\right) \mid w \in F\right\rangle$ is infinite.

Lemma

If G has a finitely generated subgroup G^{\prime} with generating set B with undecidable torsion problem and there is a computable blurphism $\phi: G \rightarrow H$, then the subgroup H^{\prime} of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.

From $\operatorname{EL}(\mathbb{Z}, n, k)$ to $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$

Definition

Let G and H be groups. We say a function $\phi: G \rightarrow H$ is a blurphism if the following holds: If $F \subset G^{*}$ is finite, then the group $\langle w \mid w \in F\rangle \leq G$ is infinite if and only if the group $\left\langle\phi\left(w_{1}\right) \phi\left(w_{2}\right) \cdots \phi\left(w_{|w|}\right) \mid w \in F\right\rangle$ is infinite.

Lemma

If G has a finitely generated subgroup G^{\prime} with generating set B with undecidable torsion problem and there is a computable blurphism $\phi: G \rightarrow H$, then the subgroup H^{\prime} of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.

A better name than blurphism is needed, any ideas?

Construction of the blurphism

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.

Construction of the blurphism

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\leftarrow^{*}(q, a) \rightarrow^{*} \mid \leftarrow^{*} \rightarrow^{*}\right)^{*}$.

Construction of the blurphism

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\leftarrow^{*}(q, a) \rightarrow^{*} \mid \leftarrow^{*} \rightarrow^{*}\right)^{*}$.
- Define ϕ to act as a conveyor belt [Blackboard]

Construction of the blurphism

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\leftarrow^{*}(q, a) \rightarrow^{*} \mid \leftarrow^{*} \rightarrow^{*}\right)^{*}$.
- Define ϕ to act as a conveyor belt [Blackboard]
- ϕ is a computable blurphism.

Construction of the blurphism

- Let $A=\left\{\Sigma^{2} \times(\{\leftarrow, \rightarrow\} \cup(Q \times\{\uparrow, \downarrow\}))\right\}$.
- Parse the third layer into zones $\left(\leftarrow^{*}(q, a) \rightarrow^{*} \mid \leftarrow^{*} \rightarrow^{*}\right)^{*}$.
- Define ϕ to act as a conveyor belt [Blackboard]
- ϕ is a computable blurphism.

Therefore $\phi(\mathrm{EL}(\mathbb{Z}, n, k))$ is a finitely generated subgroup of $\operatorname{Aut}\left(A^{\mathbb{Z}}\right)$ with undecidable torsion problem. As $\operatorname{Aut}\left(A^{\mathbb{Z}}\right) \hookrightarrow \operatorname{Aut}\left(\{0,1\}^{\mathbb{Z}}\right)$ the same is valid for any automorphism group of a fullshift.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof: As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof: As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ has a finitely generated subgroup with undecidable torsion problem for $d, n \geq 2$.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof: As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ has a finitely generated subgroup with undecidable torsion problem for $d, n \geq 2$.

Proof: Reduction to the snake tiling problem, which reduces to the domino problem for \mathbb{Z}^{d}.

The snake problem

Can we tile the plane in a way which produces a bi-infinite path?

The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.
The proof uses a plane filling curve generated by a substitution.

The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.
The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct $T \in$ RFA which walks the path of the snake, and turns back if it encounters a problem.

The torsion problem for RFA : Cheating version

We'll first do it by cheating : Arbitrary alphabet τ as an instance of the snake tiling problem and at least two states L, R.

- Let t be the tile at $(0,0)$. If $t=\epsilon$, do nothing.
- Otherwise :
- If the state is L. Check the tile in the direction $\operatorname{left}(t)$. If it matches correctly with t move the head to that position, otherwise switch the state to R.
- If the state is R. Check the tile in the direction $\operatorname{right}(t)$. If it matches correctly with t move the head to that position, otherwise switch the state to L

The torsion problem for RFA : The real deal

We are going to code everything in a binary alphabet and use no states.

1	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	b_{1}	b_{2}	b_{3}	0	1
1	0	r_{1}	r_{2}	b_{4}	0	1
1	0	I_{1}	l_{2}	b_{5}	0	1
1	0	0	0	0	0	1
1	1	1	1	1	1	1

The torsion problem for RFA : The real deal

Consider the group spanned by the following machines :
(1) $\left\{T_{\vec{v}}\right\}_{v \in D}$ that walks in the direction $\vec{v} \in D$ independently of the configuration.
(2) $T_{\text {walk }}$ that walks along the direction codified by I_{1}, I_{2} or r_{1}, r_{2} depending on the direction bit.
(3) $\left\{g_{c}\right\}_{c \in C}$ that flips the direction bit if the current pattern is $c \in C$,
(9) $\left\{h_{c}\right\}_{c \in C}$ that flips the auxiliary bit if the current pattern is $c \in C$,
(0) $\left\{g_{+, c}\right\}_{c \in C}$ that adds the auxiliary bit to the direction bit if the current pattern is $c \in C$, and
(0) $\left\{h_{+, c}\right\}_{c \in C}$ that adds the direction bit to the auxiliary bit if the current pattern is $c \in C$,

The torsion problem for RFA : The real deal

The previous group spans the machines g_{p} and h_{p} for patterns p composed of fragments of c in compatible positions.

The torsion problem for RFA : The real deal

The previous group spans the machines g_{p} and h_{p} for patterns p composed of fragments of c in compatible positions.

$$
\begin{aligned}
& g_{p^{*}}=\left(T_{-7 \vec{v}} \circ g_{+, c} \circ T_{7 \vec{v}} \circ h_{p_{F \backslash\{\vec{v}\}}^{*}}\right)^{2} . \\
& h_{p^{*}}=\left(T_{-7 \vec{v}} \circ h_{+, c} \circ T_{7 \vec{v}} \circ g_{p_{\vec{F} \backslash\{\vec{v}\}}^{*}}\right)^{2} .
\end{aligned}
$$

Finally, we use these machines to code the first ones.

The torsion problem for RFA : The real deal

The torsion problem for RFA : The real deal

$$
T^{*}=\left(T_{\text {walk }}\right)^{M} \circ \prod_{p^{*} \in \mathcal{M}} g_{p^{*}} \circ \prod_{c \in C} g_{c}
$$

Acts as the first machine, but using these coded macrotiles.

The torsion problem for RFA : The real deal

$$
T^{*}=\left(T_{\text {walk }}\right)^{M} \circ \prod_{p^{*} \in \mathcal{M}} g_{p^{*}} \circ \prod_{c \in C} g_{c}
$$

Acts as the first machine, but using these coded macrotiles.

Corollary

Let $d \geq 2$ and σ be the shift action of \mathbb{Z}^{d} over a full shift $\mathcal{A}^{\mathbb{Z}^{d}}$ where $|\mathcal{A}| \geq 2$. Then the full group $[[\sigma]]$ contains a finitely generated subgroup with undecidable torsion problem.

Thank you for your attention!

