The group of reversible Turing machines and the torsion problem for $Aut(A^{\mathbb{Z}})$ and related topological fullgroups

Sebastián Barbieri

From a joint work with Jarkko Kari and Ville Salo LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de Lyon

> CMM, universidad de Chile December, 2016

Given a fullshift $(\mathcal{A}^{\mathbb{Z}},\sigma)$ recall that its automorphism group is given by

$$\operatorname{Aut}(\mathcal{A}^{\mathbb{Z}}) = \{\phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}} \text{ homeomorpism}, [\sigma, \phi] = \operatorname{id}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Given a fullshift $(\mathcal{A}^{\mathbb{Z}}, \sigma)$ recall that its automorphism group is given by

$$\operatorname{Aut}(\mathcal{A}^{\mathbb{Z}}) = \{\phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}} \text{ homeomorpism}, [\sigma, \phi] = \operatorname{id}\}$$

It is still unknown whether ${\rm Aut}(\{0,1\}^{\mathbb Z})\cong {\rm Aut}(\{0,1,2\}^{\mathbb Z}),$ but we know that

$$\operatorname{Aut}(\{0,1\}^{\mathbb{Z}}) \hookrightarrow \operatorname{Aut}(\{0,1,2\}^{\mathbb{Z}})$$
$$\operatorname{Aut}(\{0,1,2\}^{\mathbb{Z}}) \hookrightarrow \operatorname{Aut}(\{0,1\}^{\mathbb{Z}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Motivation

A simple example with that property :

$$G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$$
 and $G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$

Motivation

A simple example with that property :

$$G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$$
 and $G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$

$$G_1 \hookrightarrow G_2 : (a_1, a_2, \cdots) \rightarrow (0, a_1, a_2, \cdots)$$

Motivation

A simple example with that property :

$$G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$$
 and $G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$

$$G_1 \hookrightarrow G_2 : (a_1, a_2, \cdots) \to (0, a_1, a_2, \cdots)$$

$$G_2 \hookrightarrow G_1 : (a_1, a_2, \cdots) \to (2a_1, a_2, \cdots)$$

A simple example with that property :

$$G_1 = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$$
 and $G_2 = \mathbb{Z}/2\mathbb{Z} \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/4\mathbb{Z}$

$$G_1 \hookrightarrow G_2 : (a_1, a_2, \cdots) \to (0, a_1, a_2, \cdots)$$

$$G_2 \hookrightarrow G_1 : (a_1, a_2, \cdots) \to (2a_1, a_2, \cdots)$$

However, they are not isomorphic : Each element of G_1 which has order 2 has square roots, while $(1, 0, 0, 0, \cdots)$ has none in G_2 . Moral : we should try to understand torsion and roots in $\operatorname{Aut}(\{0, 1\}^{\mathbb{Z}})$

Talk highlights

Definition (Torsion problem)

Let $G = \langle S | R \rangle$ be a finitely generated group. The torsion problem of G is the language TP(G) where

 $\operatorname{TP}(G) = \{ w \in S^* \mid \exists n \in \mathbb{N} \text{ such that } w^n =_G 1 \}$

Talk highlights

Definition (Torsion problem)

Let $G = \langle S | R \rangle$ be a finitely generated group. The torsion problem of G is the language TP(G) where

 $\operatorname{TP}(G) = \{ w \in S^* \mid \exists n \in \mathbb{N} \text{ such that } w^n =_G 1 \}$

Theorem (B, Kari, Salo)

For any finite alphabet $|A| \ge 2$, $Aut(A^{\mathbb{Z}})$ contains a finitely generated subgroup with undecidable torsion problem

Talk highlights

Definition (Torsion problem)

Let $G = \langle S | R \rangle$ be a finitely generated group. The torsion problem of G is the language TP(G) where

 $\operatorname{TP}(G) = \{ w \in S^* \mid \exists n \in \mathbb{N} \text{ such that } w^n =_G 1 \}$

Theorem (B, Kari, Salo)

For any finite alphabet $|A| \ge 2$, $Aut(A^{\mathbb{Z}})$ contains a finitely generated subgroup with undecidable torsion problem

Theorem (B, Kari, Salo)

Let $(A^{\mathbb{Z}^d}, \sigma)$ be a full shift and $|A| \ge 2$. The topological fullgroup $[[\sigma]]$ contains a finitely generated subgroup with undecidable torsion problem if and only if $d \ge 2$.

Recall that a Turing machine is defined by a rule :

$$\delta_{\mathcal{T}}: \Sigma \times Q \to \Sigma \times Q \times \{-1, 0, 1\}$$

Recall that a Turing machine is defined by a rule :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recall that a Turing machine is defined by a rule :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This defines a natural action

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This defines a natural action

$$T: \Sigma^{\mathbb{Z}} \times Q \to \Sigma^{\mathbb{Z}} \times Q$$

Such that if $(x,q) \in \Sigma^{\mathbb{Z}} \times Q$ and $\delta_{\mathcal{T}}(x_0,q) = (a,r,d)$ then :

$$T(x,q) = (\sigma_{-d}(\tilde{x}),q')$$

where $\sigma : \Sigma^{\mathbb{Z}} \to \Sigma^{\mathbb{Z}}$ is the shift action given by $\sigma_d(x)_z = x_{z-d}$, $\tilde{x}_0 = a$ and $\tilde{x}|_{\mathbb{Z} \setminus \{0\}} = x|_{\mathbb{Z} \setminus \{0\}}$.

- The composition of two actions $T \circ T'$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The composition of two actions $T \circ T'$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by some $k \in \mathbb{N}$ is not closed under composition or inverses.

Let's get rid of these constrains. Given F, F' finite subsets of a group G, consider instead of δ_T a function :

$$f_T: \Sigma^F \times Q \to \Sigma^{F'} \times Q \times G,$$

Let's get rid of these constrains. Given F, F' finite subsets of a group G, consider instead of δ_T a function :

$$f_{\mathcal{T}}: \Sigma^{\mathcal{F}} \times Q \to \Sigma^{\mathcal{F}'} \times Q \times G,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $F = F' = \{0, 1, 2\}^2$, then $f_T(p, q) = (p', q', \vec{d})$ means : $p \longrightarrow p' \longrightarrow p'$

- Turn state q into state q'
- Move head by \vec{d} .

 f_T defines naturally an action

 f_T defines naturally an action

Let $|\Sigma| = n$ and |Q| = k.

 $(TM(G, n, k), \circ)$ is the monoid of all such T with the composition operation; $(RTM(G, n, k), \circ)$ is the group of all such T which are bijective.

Let
$$Q = \{1, \dots, k\}$$
 and $\Sigma = \{0, \dots, n-1\}$.

$$\Sigma^G = \{x : G \to \Sigma\}$$

$$X_k = \{x \in \{0, 1, \dots, k\}^G \mid 0 \notin \{x_g, x_h\} \implies g = h\}$$
Let $X_{n,k} = \Sigma^G \times X_k$ and $Y = \Sigma^G \times \{0^G\}$. Then :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let
$$Q = \{1, \dots, k\}$$
 and $\Sigma = \{0, \dots, n-1\}$.

$$\Sigma^G = \{x : G \to \Sigma\}$$

$$X_k = \{x \in \{0, 1, \dots, k\}^G \mid 0 \notin \{x_g, x_h\} \implies g = h\}$$
Let $X_{n,k} = \Sigma^G \times X_k$ and $Y = \Sigma^G \times \{0^G\}$. Then :

 $TM(G, n, k) = \{ \phi \in End(X_{n,k}) \mid \phi|_{Y} = id, \phi^{-1}(Y) = Y \}$ RTM(G, n, k) = $\{ \phi \in Aut(X_{n,k}) \mid \phi|_{Y} = id \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Moving tape model

 f_T defines naturally an action

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

 f_T defines naturally an action

Let $x, y \in \Sigma^G$. x and y are *asymptotic*, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_F y$ if $x_g = y_g$ for all $g \notin F$, F a finite subset of G.

Let $x, y \in \Sigma^G$. x and y are *asymptotic*, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_F y$ if $x_g = y_g$ for all $g \notin F$, F a finite subset of G.

Let
$$T: \Sigma^G \times Q \to \Sigma^G \times Q$$
 be a function.

Dynamical definition

T is a moving tape Turing machine $\iff T$ is continuous, and for a continuous function $s : \Sigma^G \times Q \to G$ and $F \subset G$ we have $T(x,q)_1 \sim_F \sigma_{s(x,q)}(x)$ for all $(x,q) \in \Sigma^G \times Q$.

Let $x, y \in \Sigma^G$. x and y are *asymptotic*, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_F y$ if $x_g = y_g$ for all $g \notin F$, F a finite subset of G.

Let
$$T: \Sigma^G \times Q \to \Sigma^G \times Q$$
 be a function.

Dynamical definition

T is a moving tape Turing machine $\iff T$ is continuous, and for a continuous function $s : \Sigma^G \times Q \to G$ and $F \subset G$ we have $T(x,q)_1 \sim_F \sigma_{s(x,q)}(x)$ for all $(x,q) \in \Sigma^G \times Q$.

$s: \Sigma^{\mathcal{G}} imes Q ightarrow G$ is the shift indicator function

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\operatorname{RTM}_{\operatorname{fix}}(G,1,k) \cong S_k \text{ and } G \hookrightarrow \operatorname{RTM}(G,1,k).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$\operatorname{RTM}_{\operatorname{fix}}(G,1,k) \cong S_k \text{ and } G \hookrightarrow \operatorname{RTM}(G,1,k).$

Proposition

If $n \ge 2$ then :

$$\begin{aligned} \mathrm{TM}_{\mathrm{fix}}(G,n,k) &\cong \mathrm{TM}(G,n,k) \\ \mathrm{RTM}_{\mathrm{fix}}(G,n,k) &\cong \mathrm{RTM}(G,n,k). \end{aligned}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Proposition

- Let $T \in TM_{fix}(G, n, k)$. Then the following are equivalent :
 - T is injective.
 - 2 T is surjective.
 - 3 $T \in \operatorname{RTM}_{\operatorname{fix}}(G, n, k)$.
 - T preserves the uniform measure (µ(T⁻¹(A)) = µ(A) for all Borel sets A).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• $\mu(T(A)) = \mu(A)$ for all Borel sets A.

Proposition

If $n \geq 2 \operatorname{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.

Proposition

If $n \ge 2 \operatorname{RTM}(\mathbb{Z}, n, k)$ is not finitely generated.

 $\mathsf{Proof}:\mathsf{We}\xspace$ find an epimorphism from RTM to a non-finitely generated group.

Let $T \in \operatorname{RTM}_{\operatorname{fix}}(\mathbb{Z}, n, k)$, therefore, it has a shift indicator $s : \Sigma^{\mathbb{Z}} \times Q \to \mathbb{Z}$. Define

$$\alpha(\mathcal{T}) := \mathrm{E}_{\mu}(s) = \int_{\Sigma^{\mathbb{Z}} \times Q} s(x, q) d\mu,$$

One can check that $\alpha(T_1 \circ T_2) = \alpha(T_1) + \alpha(T_2)$. Therefore $\alpha : \operatorname{RTM}(\mathbb{Z}, n, k) \to \mathbb{Q}$ is an homomorphism

 $f(0^{m}a, q) = (a0^{m}, q, 1)$. Otherwise f(u, q) = (u, q, 0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mathcal{T}_{\mathtt{SURF},m} \in \mathrm{RTM}(\mathbb{Z},n,k)$ and $lpha(\mathcal{T}_{\mathtt{SURF},m}) = 1/n^m$

 $f(0^m a, q) = (a0^m, q, 1).$ Otherwise f(u, q) = (u, q, 0). $T_{\text{SURF},m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha(T_{\text{SURF},m}) = 1/n^m$

 $\langle (1/n^m)_{m \in \mathbb{N}} \rangle \subset \alpha(\operatorname{RTM}(\mathbb{Z}, n, k))$ which is thus a non-finitely generated subgroup of \mathbb{Q} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

 $\succ \operatorname{LP}(G, n, k) \longrightarrow \text{Local permutations.}$ $\rhd \operatorname{RFA}(G, n, k) \longrightarrow \text{Reversible finite-state automata.}$ $\triangleright \operatorname{OB}(G, n, k) \longrightarrow \text{Oblivous machines } \langle \operatorname{LP}, \operatorname{Shift} \rangle.$

• Res. finite groups are those where every non-identity element can be mapped to a non-identity element by a homomorphism to a finite group

- Amenable groups admit left invariant finitely additive measures.
- LEF and LEA stand for locally embeddable into (finite/amenable) groups.
- Sofic groups are generalizations of LEF and LEA.

Theorem

 $\forall n \geq 2, \operatorname{RTM}(\mathbb{Z}^d, n, k)$ is LEF but neither amenable nor residually finite.

For $n \geq 2$, we have $S_{\infty} \hookrightarrow LP(G, n, k)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For $n \geq 2$, we have $S_{\infty} \hookrightarrow LP(G, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For
$$n \geq 2$$
, we have $S_{\infty} \hookrightarrow LP(G, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

LP(G, n, k) is locally finite.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For
$$n \geq 2$$
, we have $S_{\infty} \hookrightarrow LP(G, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

LP(G, n, k) is locally finite.

In particular, for $n \ge 2 \operatorname{LP}(G, n, k)$ is amenable and not finitely generated.

Now let's add the shift. Recall that OB(G, n, k) = (LP, Shift).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Now let's add the shift. Recall that OB(G, n, k) = (LP, Shift).

OB(G, n, k) is amenable $\iff G$ is amenable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Now let's add the shift. Recall that OB(G, n, k) = (LP, Shift).

OB(G, n, k) is amenable $\iff G$ is amenable.

Proof : Use the short exact sequence

 $1 \longrightarrow \operatorname{LP}(G, n, k) \longrightarrow \operatorname{OB}(G, n, k) \longrightarrow G \longrightarrow 1.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall that RFA(G, n, k) is the subgroup of machines which do not modify the tape. Note that if $[[\sigma]]$ is the fullgroup of (Σ^G, σ) then $[[\sigma]] \cong RFA(G, n, 1)$.

Theorem

For $n \ge 2$, countable and not locally finite G we have that

$$\underbrace{\mathbb{Z}/2\mathbb{Z}*\cdots*\mathbb{Z}/2\mathbb{Z}}_{\mathsf{KFA}}\hookrightarrow \mathrm{RFA}(G,n,k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

m times

Recall that RFA(G, n, k) is the subgroup of machines which do not modify the tape. Note that if $[[\sigma]]$ is the fullgroup of (Σ^G, σ) then $[[\sigma]] \cong RFA(G, n, 1)$.

Theorem

For $n \ge 2$, countable and not locally finite G we have that

$$\underbrace{\mathbb{Z}/2\mathbb{Z}\ast\cdots\ast\mathbb{Z}/2\mathbb{Z}}_{\mathsf{KFA}}\hookrightarrow\mathrm{RFA}(G,n,k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

m times

Proof : Blackboard.

Some properties : $RFA(\mathbb{Z}^d, n, k)$

・ロト・日本・日本・日本・日本・日本

Some properties : $RFA(\mathbb{Z}^d, n, k)$

In particular, this means that RFA and RTM are not amenable in this case.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some properties : $RFA(\mathbb{Z}^d, n, k)$

In particular, this means that RFA and RTM are not amenable in this case.

Theorem

For $n \ge 2$, infinite and residually finite G we have that RFA(G, n, k) is residually finite but not finitely generated.

 $\mathsf{EL}(\mathbb{Z}^d, n, k) = \langle \operatorname{LP}(\mathbb{Z}^d, n, k), \operatorname{RFA}(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.

 $EL(\mathbb{Z}^d, n, k) = \langle LP(\mathbb{Z}^d, n, k), RFA(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.

Example : Langton's ant $\in EL(\mathbb{Z}^2, 2, 4)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

 $EL(\mathbb{Z}^d, n, k) = \langle LP(\mathbb{Z}^d, n, k), RFA(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.

Example : Langton's ant $\in EL(\mathbb{Z}^2, 2, 4)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Question : Is $EL(\mathbb{Z}^d, n, k) = RTM(\mathbb{Z}^d, n, k)$?

 $EL(\mathbb{Z}^d, n, k) = \langle LP(\mathbb{Z}^d, n, k), RFA(\mathbb{Z}^d, n, k) \rangle$ is the subgroup of elementary Turing machines.

Example : Langton's ant $\in EL(\mathbb{Z}^2, 2, 4)$.

Question : Is $EL(\mathbb{Z}^d, n, k) = RTM(\mathbb{Z}^d, n, k)$?

For $n \ge 2$, $\alpha(\mathsf{EL}(\mathbb{Z}^d, n, k)) = \alpha(\operatorname{RFA}(\mathbb{Z}^d, n, k))$ has bounded denominator. In particular $\mathsf{EL} \subsetneq \operatorname{RTM}$.

Given a finite rules : f, f' :

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a finite rules : f, f' :

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

 $\operatorname{RTM}(\mathbb{Z}^d, n, k)$ is a recursively presented group with decidable word problem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a finite rules : f, f' :

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

 $\operatorname{RTM}(\mathbb{Z}^d, n, k)$ is a recursively presented group with decidable word problem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What can we say about the torsion $(\exists n \text{ such that } T^n = 1)$ problem ?

 The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].

The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].

2 Classical Turing machines embed into $EL(\mathbb{Z}, n, k)$.

 The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].

- **2** Classical Turing machines embed into $EL(\mathbb{Z}, n, k)$.
- **3** $EL(\mathbb{Z}, n, k)$ is finitely generated.

- The torsion problem for reversible classical Turing machines is undecidable [Kari, Ollinger 2008].
- **2** Classical Turing machines embed into $EL(\mathbb{Z}, n, k)$.
- **3** $EL(\mathbb{Z}, n, k)$ is finitely generated.
- There exists a "torsion preserving function" from EL(Z, n, k) to Aut(A^Z)

$$\mathsf{Classical} \hookrightarrow \mathsf{EL}" \hookrightarrow \mathrm{"Aut}(\mathsf{A}^{\mathbb{Z}})$$

This proof is inspired both on the existence of strongly universal reversible gates for permutations of Σ^m and the Juschenko Monod proof for the fullgroup of minimal actions. A controlled swap is a transposition (s, t) where s, t have

Hamming distance 1 in $Q \times \Sigma^m$.

Theorem

The group generated by the applications of controlled swaps of $Q \times \Sigma^4$ at arbitrary positions generates $Sym(Q \times \Sigma^m)$ if $|\Sigma|$ is odd and $Alt(Q \times \Sigma^m)$ if it's even. Corollary : $[Sym(Q \times \Sigma^m)]_{m+1} \subset \langle [Sym(Q \times \Sigma^4)]_{m+1} \rangle$.

Using this result, a generating set can be constructed :

•
$$A_1 =$$
Shifts T_{e_i} for $\{e_i\}_{i \leq d}$ a base of \mathbb{Z}^d .

• $A_2 = \text{All } T_{\pi} \in \text{LP}(\mathbb{Z}^d, n, k)$ of fixed support $E \subset \mathbb{Z}^d$ of size 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• A_3 = The swaps of symbols in positions $(\vec{0}, e_i)$.

$\mathsf{EL}(\mathbb{Z},n,k) = \langle \mathsf{LP}(\mathbb{Z},n,k), \operatorname{RFA}(\mathbb{Z},n,k) \rangle = \langle \operatorname{OB}(\mathbb{Z},n,k), \operatorname{RFA}(\mathbb{Z},n,k) \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathsf{EL}(\mathbb{Z},n,k) = \langle LP(\mathbb{Z},n,k), \operatorname{RFA}(\mathbb{Z},n,k) \rangle = \langle \operatorname{OB}(\mathbb{Z},n,k), \operatorname{RFA}(\mathbb{Z},n,k) \rangle$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can show that $RFA(\mathbb{Z}, n, k)$ is generated by orbitwise shifts and controlled position swaps.

- *f* is orbitwise shift is $\forall x \in X \exists k \in \mathbb{Z}$ such that $f(\sigma^n(x)) = \sigma^{n+k}(x)$.
- ② *f* is controlled position swap if for some $u, v \in \Sigma^*$, f(xu.avy) = xua.vy and f(xua.vy) = xu.avy.

 $\mathsf{EL}(\mathbb{Z},n,k) = \langle LP(\mathbb{Z},n,k), \operatorname{RFA}(\mathbb{Z},n,k) \rangle = \langle \operatorname{OB}(\mathbb{Z},n,k), \operatorname{RFA}(\mathbb{Z},n,k) \rangle$

We can show that $RFA(\mathbb{Z}, n, k)$ is generated by orbitwise shifts and controlled position swaps.

- *f* is orbitwise shift is $\forall x \in X \exists k \in \mathbb{Z}$ such that $f(\sigma^n(x)) = \sigma^{n+k}(x)$.
- *f* is controlled position swap if for some *u*, *v* ∈ Σ^* ,
 f(*xu.avy*) = *xua.vy* and *f*(*xua.vy*) = *xu.avy*.

In the fullshift, orbitwise shifts are precisely the shifts. So we only need to implement controlled position swaps [technical].

Definition

Let G and H be groups. We say a function $\phi : G \to H$ is a blurphism if the following holds : If $F \subset G^*$ is finite, then the group $\langle w \mid w \in F \rangle \leq G$ is infinite if and only if the group $\langle \phi(w_1)\phi(w_2)\cdots\phi(w_{|w|}) \mid w \in F \rangle$ is infinite.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Definition

Let G and H be groups. We say a function $\phi : G \to H$ is a blurphism if the following holds : If $F \subset G^*$ is finite, then the group $\langle w \mid w \in F \rangle \leq G$ is infinite if and only if the group $\langle \phi(w_1)\phi(w_2)\cdots\phi(w_{|w|}) \mid w \in F \rangle$ is infinite.

Lemma

If G has a finitely generated subgroup G' with generating set B with undecidable torsion problem and there is a computable blurphism $\phi : G \to H$, then the subgroup H' of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.

Definition

Let G and H be groups. We say a function $\phi : G \to H$ is a blurphism if the following holds : If $F \subset G^*$ is finite, then the group $\langle w \mid w \in F \rangle \leq G$ is infinite if and only if the group $\langle \phi(w_1)\phi(w_2)\cdots\phi(w_{|w|}) \mid w \in F \rangle$ is infinite.

Lemma

If G has a finitely generated subgroup G' with generating set B with undecidable torsion problem and there is a computable blurphism $\phi : G \to H$, then the subgroup H' of H generated by $\phi(b)$ where $b \in B$ has undecidable torsion problem.

A better name than blurphism is needed, any ideas?

• Let $A = \{\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Let $A = {\Sigma^2 \times ({\leftarrow, \rightarrow} \cup (Q \times {\uparrow, \downarrow}))}.$
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Let $A = {\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))}.$
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*$.

• Define ϕ to act as a conveyor belt [Blackboard]

- Let $A = \{\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))\}.$
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*$.

- Define ϕ to act as a conveyor belt [Blackboard]
- ϕ is a computable blurphism.

- Let $A = {\Sigma^2 \times (\{\leftarrow, \rightarrow\} \cup (Q \times \{\uparrow, \downarrow\}))}.$
- Parse the third layer into zones $(\leftarrow^* (q, a) \rightarrow^* | \leftarrow^* \rightarrow^*)^*$.
- Define ϕ to act as a conveyor belt [Blackboard]
- ϕ is a computable blurphism.

Therefore $\phi(\mathsf{EL}(\mathbb{Z}, n, k))$ is a finitely generated subgroup of $\operatorname{Aut}(A^{\mathbb{Z}})$ with undecidable torsion problem. As $\operatorname{Aut}(A^{\mathbb{Z}}) \hookrightarrow \operatorname{Aut}(\{0, 1\}^{\mathbb{Z}})$ the same is valid for any automorphism group of a fullshift.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$RFA(\mathbb{Z}, n, k)$ has decidable torsion problem.

Proof : As $\mathbb Z$ is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

$RFA(\mathbb{Z}, n, k)$ has decidable torsion problem.

Proof : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

 $\operatorname{RFA}(\mathbb{Z}^d, n, k)$ has a finitely generated subgroup with undecidable torsion problem for $d, n \geq 2$.

$RFA(\mathbb{Z}, n, k)$ has decidable torsion problem.

Proof : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

 $\operatorname{RFA}(\mathbb{Z}^d, n, k)$ has a finitely generated subgroup with undecidable torsion problem for $d, n \geq 2$.

Proof : Reduction to the snake tiling problem, which reduces to the domino problem for \mathbb{Z}^d .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The snake problem

Can we tile the plane in a way which produces a bi-infinite path?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct $T \in RFA$ which walks the path of the snake, and turns back if it encounters a problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We'll first do it by cheating : Arbitrary alphabet τ as an instance of the snake tiling problem and at least two states L, R.

- Let t be the tile at (0,0). If $t = \epsilon$, do nothing.
- Otherwise :
 - If the state is *L*. Check the tile in the direction left(*t*). If it matches correctly with *t* move the head to that position, otherwise switch the state to *R*.
 - If the state is R. Check the tile in the direction right(t). If it matches correctly with t move the head to that position, otherwise switch the state to L

We are going to code everything in a binary alphabet and use no states.

1	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	b_1	<i>b</i> ₂	<i>b</i> ₃	0	1
1	0	<i>r</i> ₁	<i>r</i> ₂	<i>b</i> 4	0	1
1	0	I_1	I_2	b_5	0	1
1	0	0	0	0	0	1
1	1	1	1	1	1	1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider the group spanned by the following machines :

- { *T_v*}_{v∈D} that walks in the direction *v* ∈ *D* independently of the configuration.
- **2** T_{walk} that walks along the direction codified by l_1, l_2 or r_1, r_2 depending on the direction bit.
- § {g_c}_{c∈C} that flips the direction bit if the current pattern is c ∈ C,
- {h_c}_{c∈C} that flips the auxiliary bit if the current pattern is c ∈ C,
- $\{g_{+,c}\}_{c \in C}$ that adds the auxiliary bit to the direction bit if the current pattern is $c \in C$, and
- { h_{+,c}}_{c∈C} that adds the direction bit to the auxiliary bit if the current pattern is c ∈ C,

The previous group spans the machines g_p and h_p for patterns p composed of fragments of c in compatible positions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The previous group spans the machines g_p and h_p for patterns p composed of fragments of c in compatible positions.

$$g_{p^*} = (T_{-7\vec{v}} \circ g_{+,c} \circ T_{7\vec{v}} \circ h_{p^*_{F \setminus \{\vec{v}\}}})^2.$$
$$h_{p^*} = (T_{-7\vec{v}} \circ h_{+,c} \circ T_{7\vec{v}} \circ g_{p^*_{F \setminus \{\vec{v}\}}})^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finally, we use these machines to code the first ones.

The torsion problem for RFA : The real deal

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\mathcal{T}^* = (\mathcal{T}_{\texttt{walk}})^M \circ \prod_{p^* \in \mathcal{M}} g_{p^*} \circ \prod_{c \in C} g_c$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Acts as the first machine, but using these coded macrotiles.

$$\mathcal{T}^* = (\mathcal{T}_{ t walk})^M \circ \prod_{p^* \in \mathcal{M}} g_{p^*} \circ \prod_{c \in \mathcal{C}} g_c$$

Acts as the first machine, but using these coded macrotiles.

Corollary

Let $d \ge 2$ and σ be the shift action of \mathbb{Z}^d over a full shift $\mathcal{A}^{\mathbb{Z}^d}$ where $|\mathcal{A}| \ge 2$. Then the full group $[[\sigma]]$ contains a finitely generated subgroup with undecidable torsion problem.

Thank you for your attention !

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @