The domino problem for self-similar structures

Sebastián Barbieri and Mathieu Sablik

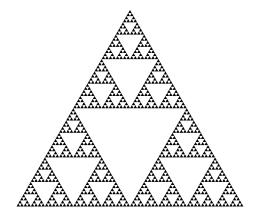
LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon

Aix-Marseille Université

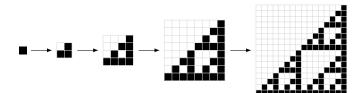
CIE June, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

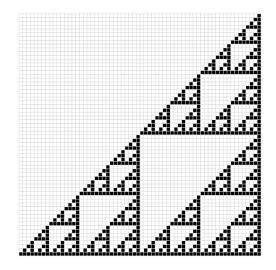
Tilings fractals



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

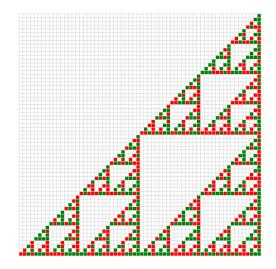


▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Tilings fractals



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Goals of this talk

► Constructing a framework to study tilings over fractals.

Goals of this talk

- ► Constructing a framework to study tilings over fractals.
- ▶ In particular tilings with a finite number of local constrains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

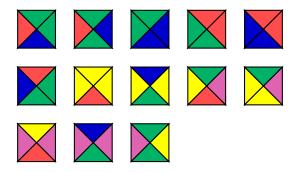
Goals of this talk

- Constructing a framework to study tilings over fractals.
- ▶ In particular tilings with a finite number of local constrains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Decidability aspects : The domino problem.

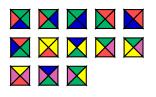
Wang tiles are unit squares with colored edges.

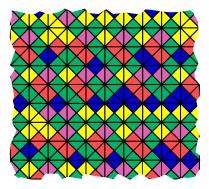


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The domino problem

Goal : cover the plane with squares in such a way that matching edges have the same color.





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The domino problem

Is there a Turing machine which given on entry a set of Wang tiles decides whether they tile the plane or not ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

What about periodicity in Wang Tilings?

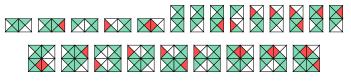
Let τ be a finite set of Wang tiles.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What about periodicity in Wang Tilings?

Let τ be a finite set of Wang tiles.

It is easy to generate all the local patterns which satisfy the rules.

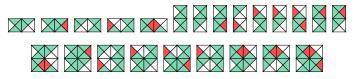


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

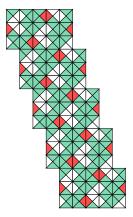
What about periodicity in Wang Tilings?

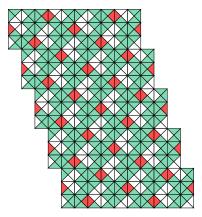
Let τ be a finite set of Wang tiles.

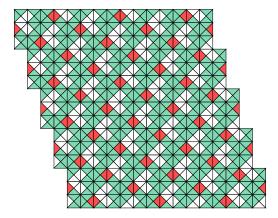
It is easy to generate all the local patterns which satisfy the rules.



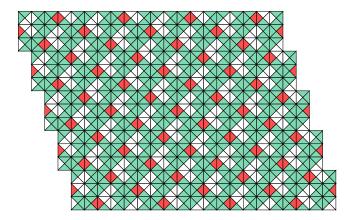
If you find a locally admissible pattern with matching edges, then τ tiles the plane periodically.

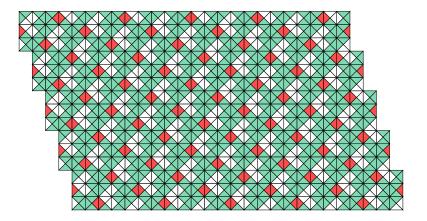


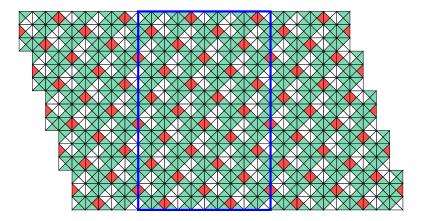




▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@







◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged to do so periodically.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Wang's conjecture (1961)

If a set of Wang tiles can tile the plane, then they can always be arranged to do so periodically.

If Wang's conjecture is true, we can decide if a set of Wang tiles can tile the plane !

Semi-algorithm 1 :

- Accept if there is a periodic configuration.
- loops otherwise

Semi-algorithm 2 :

- Accept if a block [0, n]² cannot be tiled without breaking local rules.
- Ioops otherwise

Theorem[Berger 1966]

Wang's conjecture is FALSE

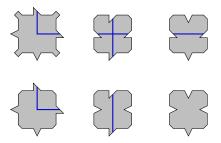
Theorem[Berger 1966]

Wang's conjecture is FALSE

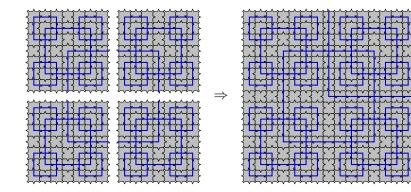
His construction encodes a Turing machine using an alphabet of size 20426.

His proof was later simplified by Robinson[1971]. A proof with a different approach was also presented by Kari[1996].

The Robinson tileset, where tiles can be rotated.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Theorem :

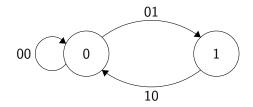
The set of colorings of a line subject to a finite number of patterns not appearing can be characterized as the set of bi-infinite walks in a finite graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem :

The set of colorings of a line subject to a finite number of patterns not appearing can be characterized as the set of bi-infinite walks in a finite graph.

Example : Consider the set of words $X \subset \{0,1\}^{\mathbb{Z}}$ where $\{11\}$ does not appear.

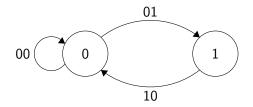


(日) (四) (日) (日) (日)

Theorem :

The set of colorings of a line subject to a finite number of patterns not appearing can be characterized as the set of bi-infinite walks in a finite graph.

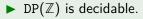
Example : Consider the set of words $X \subset \{0,1\}^{\mathbb{Z}}$ where $\{11\}$ does not appear.



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

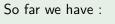
The domino problem is decidable in the line.

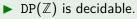
So far we have :



▶ $DP(\mathbb{Z}^2)$ is undecidable.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



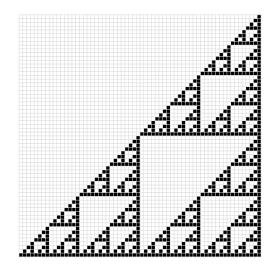


▶ $DP(\mathbb{Z}^2)$ is undecidable.

What about intermediate structures?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Toy case : Sierpiński triangle



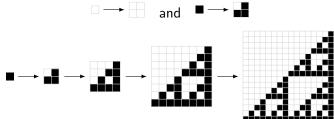
▲□▶▲□▶▲≣▶▲≣▶ = ● ● ●

We fix a two-dimensional substitution s over the alphabet $\mathcal{A} = \{\Box, \blacksquare\}$ such that \Box gets sent to a rectangle of \Box and \blacksquare to a mixture of both.

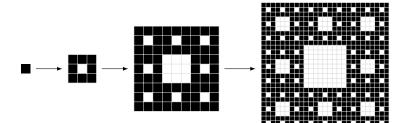
The input of the problem is a finite alphabet ex : $\Sigma = \{\blacksquare, \blacksquare, \blacksquare\}$ and a finite set of forbidden patterns, ex :

$$\mathcal{F} = \{\blacksquare, \blacksquare, \blacksquare, \blacksquare\}.$$

Consider the alphabet $\mathcal{A} = \{\Box, \blacksquare\}$ and the self-similar substitution s such that :

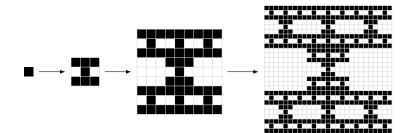


Example 2 : Sierpiński carpet



◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Example 3 : The Bridge.



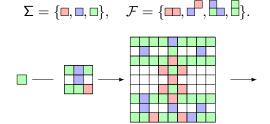
▲□▶▲□▶▲≧▶▲≧▶ 差 のへ⊙

Goal : Can we color each of the black squares in each iteration of the substitution *s* starting from \blacksquare using colors from Σ without any pattern from \mathcal{F} appearing?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Setting

Goal : Can we color each of the black squares in each iteration of the substitution *s* starting from \blacksquare using colors from Σ without any pattern from \mathcal{F} appearing?

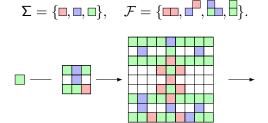


 $\mathtt{DP}(s) = \{ \langle \Sigma, \mathcal{F} \rangle \mid s \text{ can be tiled by } \Sigma, \mathcal{F} \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting

Goal : Can we color each of the black squares in each iteration of the substitution *s* starting from \blacksquare using colors from Σ without any pattern from \mathcal{F} appearing?



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $DP(s) = \{ \langle \Sigma, \mathcal{F} \rangle \mid s \text{ can be tiled by } \Sigma, \mathcal{F} \}.$ Domino problem : for which s is DP(s) decidable?

Why are we interested in this kind of structures?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Why are we interested in this kind of structures?

- ► They are a nice class of intermediate structures between Z and Z² defined by a {0,1}-matrix.
- It is easy to calculate a Hausdorff dimension (in this case box-counting dimension). Is there a threshold in the dimension which enforces undecidability?
- These objects are in fact subshifts. And they can be defined by local rules (sofic subshifts) according to Mozes Theorem.

The domino problem is decidable in the Sierpiński triangle.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The domino problem is decidable in the Sierpiński triangle.

Proof strategy :

 Consider a rectangle containing the union of the support of all forbidden patterns.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The domino problem is decidable in the Sierpiński triangle.

Proof strategy :

- Consider a rectangle containing the union of the support of all forbidden patterns.
- Suppose we can tile locally an iteration *n* of the substitution without producing forbidden patterns.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The domino problem is decidable in the Sierpiński triangle.

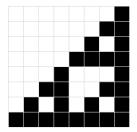
Proof strategy :

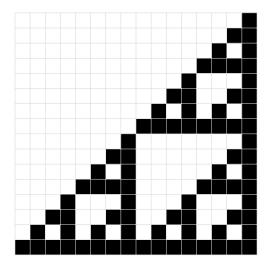
- Consider a rectangle containing the union of the support of all forbidden patterns.
- Suppose we can tile locally an iteration *n* of the substitution without producing forbidden patterns.
- To construct a tiling of the next level, it suffices to "paste" three tilings of the iteration n without producing forbidden patterns.

The domino problem is decidable in the Sierpiński triangle.

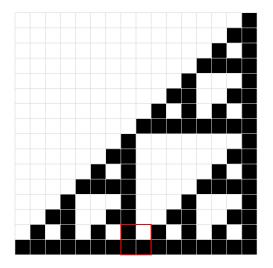
Proof strategy :

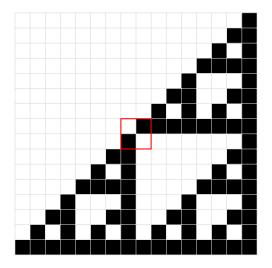
- Consider a rectangle containing the union of the support of all forbidden patterns.
- Suppose we can tile locally an iteration *n* of the substitution without producing forbidden patterns.
- To construct a tiling of the next level, it suffices to "paste" three tilings of the iteration n without producing forbidden patterns.

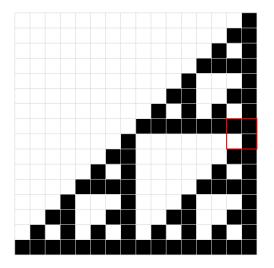


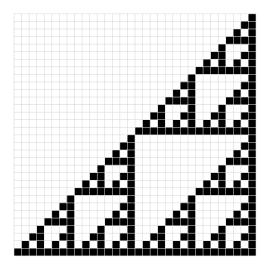


▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

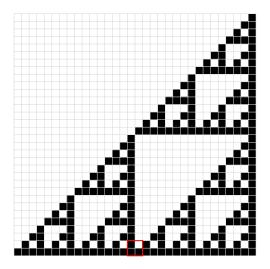




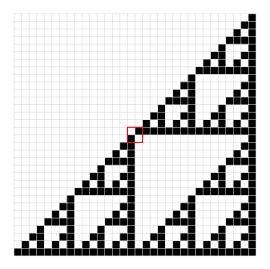




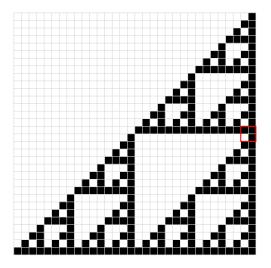
▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで



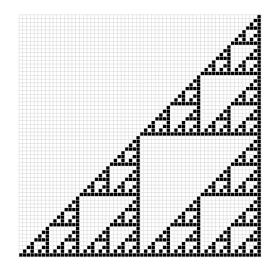
▲□▶▲□▶▲目▶▲目▶ 目 のへの

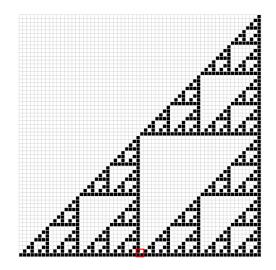


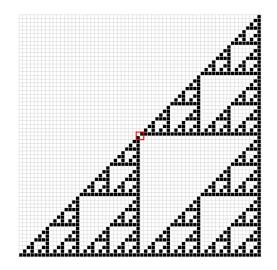
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@



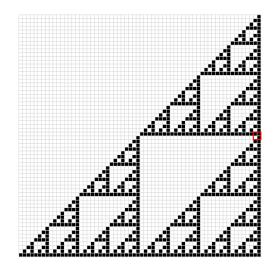
▲□▶▲□▶▲≡▶▲≡▶ = 三 のへ⊙







▲□▶▲□▶▲≣▶▲≣▶ ■ のへの



▲□▶▲□▶▲≣▶▲≣▶ = ● ● ●

The domino problem is decidable in the Sierpiński triangle.

Proof strategy (continued) :

Keep the information about the pasting places (finite tuples) and build pasting rules (T₁, T₂, T₃) → T₄.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The domino problem is decidable in the Sierpiński triangle.

Proof strategy (continued) :

- Keep the information about the pasting places (finite tuples) and build pasting rules (T₁, T₂, T₃) → T₄.
- ▶ For each iteration *n*, construct the set of tuples observed in the pasting places. Construct the next set using this one.

The domino problem is decidable in the Sierpiński triangle.

Proof strategy (continued) :

- Keep the information about the pasting places (finite tuples) and build pasting rules (T₁, T₂, T₃) → T₄.
- ► For each iteration *n*, construct the set of tuples observed in the pasting places. Construct the next set using this one.
- This process either cycles (arbitrary iterations can be tiled) or ends up producing the empty set.

The domino problem is decidable in the Sierpiński triangle.

Proof strategy (continued) :

- Keep the information about the pasting places (finite tuples) and build pasting rules (T₁, T₂, T₃) → T₄.
- ► For each iteration *n*, construct the set of tuples observed in the pasting places. Construct the next set using this one.
- This process either cycles (arbitrary iterations can be tiled) or ends up producing the empty set.

This technique can be extended to a big class of self-similar substitutions which we call **Bounded connectivity substitutions** !

The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

 Suppose we can simulate substitutions over the Sierpiński carpet (using a bigger alphabet).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

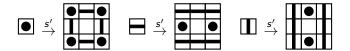
 Suppose we can simulate substitutions over the Sierpiński carpet (using a bigger alphabet).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

							æ
					H	2.82	
					78		
4	H	i				H.	
	islislisli				III		
							17
		الملاعلاتين			. .		
				- 636			
						1.11.1	
				1.11.			
					-111		18
	idid			. isi	3	. id	. 1
							m
							-
				111		-::::::::	18
				. isi			18
		a de la cale	**********				88
		المتتعالية					-
				1.11.1	1.11.1		- 1
						•••••	
3 13					101		18
							-8
	. Intintinti						
							81

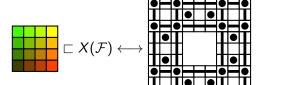
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

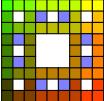
Suppose we can realize the following substitution using local rules.



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Toy case 2 : Sierpiński carpet.





The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

- Suppose we can simulate substitutions over the Sierpiński carpet (using a bigger alphabet).
- Use the substitution shown above to simulate arbitrarily big patterns of a Z²-tiling (say by Wang tiles)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

- Suppose we can simulate substitutions over the Sierpiński carpet (using a bigger alphabet).
- Use the substitution shown above to simulate arbitrarily big patterns of a Z²-tiling (say by Wang tiles)

• $DP(\mathbb{Z}^2)$ is reduced to the domino problem in the carpet.

The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

- Suppose we can simulate substitutions over the Sierpiński carpet (using a bigger alphabet).
- Use the substitution shown above to simulate arbitrarily big patterns of a Z²-tiling (say by Wang tiles)
- $DP(\mathbb{Z}^2)$ is reduced to the domino problem in the carpet.

It only remains to show that we can simulate substitutions with local rules.

We need to prove a modified version of Mozes' theorem :

Theorem : Mozes.

The subshifts generated by \mathbb{Z}^2 -substitutions are sofic (are the image of a subshift of finite type under a factor map)

We can prove a similar version in our setting for some substitutions. Among them the Sierpiński carpet.

Toy case 2 : Sierpiński carpet and Mozes

(3,1)	 	(3,2)	 	(3,3)	
	Î				
E	Î				
(2, 1)	$\left[\right]$			(2,3)	
	(1, 1)		 	\rightarrow	
(1, 1)	 	(1,2)	 	(1,3)	

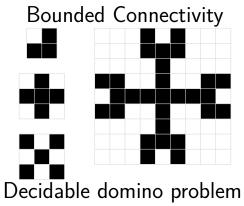
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusion

We can generalize the ideas in the previous toy problems to attack classes of substitutions :

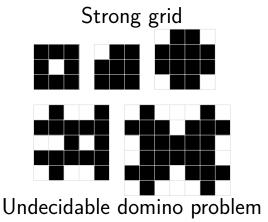
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We can generalize the ideas in the previous toy problems to attack classes of substitutions :

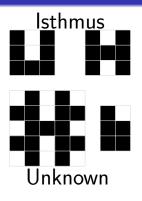


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

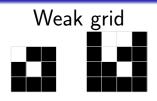
We can generalize the ideas in the previous toy problems to attack classes of substitutions :



Conclusion

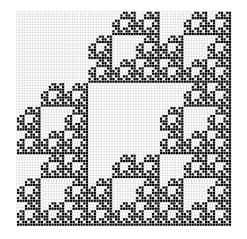


Conclusion



<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Weak grid



イロト イロト イヨト イヨト 三日

The proof is much harder than in the strong grid case.

lsthmus

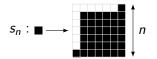
.........

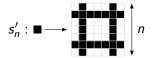
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

We don't know anything about this one.

And about the Hausdorff dimension ?...

And about the Hausdorff dimension ?...





There is no threshold.

Thank you for your attention !

(ロ)、(型)、(E)、(E)、 E) の(()