The group of reversible Turing machines

Sebastián Barbieri, Jarkko Kari and Ville Salo

LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon
University of Turku
Center for Mathematical Modeling, University of Chile

AUTOMATA

June, 2016

Motivation

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

Motivation

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Motivation

Recall that a Turing machine is defined by a rule :

$$
\delta_{T}: \Sigma \times Q \rightarrow \Sigma \times Q \times\{-1,0,1\}
$$

$$
\delta_{T}(\square, q)=(\square, r,-1)
$$

Motivation

This defines a natural action

$$
T: \Sigma^{\mathbb{Z}} \times Q \rightarrow \Sigma^{\mathbb{Z}} \times Q
$$

Motivation

This defines a natural action

$$
T: \Sigma^{\mathbb{Z}} \times Q \rightarrow \Sigma^{\mathbb{Z}} \times Q
$$

Such that if $(x, q) \in \Sigma^{\mathbb{Z}} \times Q$ and $\delta_{T}\left(x_{0}, q\right)=(a, r, d)$ then:

$$
T(x, q)=\left(\sigma_{-d}(\tilde{x}), q^{\prime}\right)
$$

where $\sigma: \Sigma^{\mathbb{Z}} \rightarrow \Sigma^{\mathbb{Z}}$ is the shift action given by $\sigma_{d}(x)_{z}=x_{z-d}$, $\tilde{x}_{0}=a$ and $\left.\tilde{x}\right|_{\mathbb{Z} \backslash\{0\}}=\left.x\right|_{\mathbb{Z} \backslash\{0\}}$.

Motivation

- The composition of two actions $T \circ T^{\prime}$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then inverse it not necessarily an action generated by a Turing machine.

Motivation

- The composition of two actions $T \circ T^{\prime}$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by some $k \in \mathbb{N}$ is not closed under composition or inverses.

Definition

Let's get rid of these constrains. Given F, F^{\prime} finite subsets of \mathbb{Z}^{d}, consider instead of δ_{T} a function :

$$
f_{T}: \Sigma^{F} \times Q \rightarrow \Sigma^{F^{\prime}} \times Q \times \mathbb{Z}^{d}
$$

Definition

Let's get rid of these constrains. Given F, F^{\prime} finite subsets of \mathbb{Z}^{d}, consider instead of δ_{T} a function :

$$
f_{T}: \Sigma^{F} \times Q \rightarrow \Sigma^{F^{\prime}} \times Q \times \mathbb{Z}^{d}
$$

Let $F=F^{\prime}=\{0,1,2\}^{2}$, then $f_{T}(p, q)=\left(p^{\prime}, q^{\prime}, \vec{d}\right)$ means :

- Turn state q into state q^{\prime}
- Move head by \vec{d}.

Moving head model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{\mathbb{Z}^{d}} \times Q \times \mathbb{Z}^{d}
$$

$f\left(\bullet \circ, q_{1}\right)=\left(\circ \circ, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}$

Moving head model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{\mathbb{Z}^{d}} \times Q \times \mathbb{Z}^{d}
$$

$$
f\left(\bullet \circ, q_{1}\right)=\left(\circ \circ, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}
$$

Let $|\Sigma|=n$ and $|Q|=k$.
$\left(\operatorname{TM}\left(\mathbb{Z}^{d}, n, k\right), \circ\right)$ is the monoid of all such T with the composition operation; $\left(\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right), \circ\right)$ is the group of all such T which are bijective.

Moving head model : As cellular automata

$$
\begin{aligned}
& \text { Let } Q=\{1, \ldots, k\} \text { and } \Sigma=\{0, \ldots, n-1\} . \\
& \qquad \Sigma^{\mathbb{Z}^{d}}=\left\{x: \mathbb{Z}^{d} \rightarrow \Sigma\right\} \\
& \qquad X_{k}=\left\{x \in\{0,1, \ldots, k\}^{\mathbb{Z}^{d}} \mid 0 \notin\left\{x_{\vec{u}}, x_{\vec{v}}\right\} \Longrightarrow \vec{u}=\vec{v}\right\} \\
& \text { Let } X_{n, k}=\Sigma^{\mathbb{Z}^{d}} \times X_{k} \text { and } Y=\Sigma^{\mathbb{Z}^{d}} \times\left\{0^{\mathbb{Z}^{d}}\right\} \text {. Then : }
\end{aligned}
$$

Moving head model : As cellular automata

Let $Q=\{1, \ldots, k\}$ and $\Sigma=\{0, \ldots, n-1\}$.

$$
\begin{gathered}
\Sigma^{\mathbb{Z}^{d}}=\left\{x: \mathbb{Z}^{d} \rightarrow \Sigma\right\} \\
X_{k}=\left\{x \in\{0,1, \ldots, k\}^{\mathbb{Z}^{d}} \mid 0 \notin\left\{x_{\vec{u}}, x_{\vec{v}}\right\} \Longrightarrow \vec{u}=\vec{v}\right\}
\end{gathered}
$$

Let $X_{n, k}=\Sigma^{\mathbb{Z}^{d}} \times X_{k}$ and $Y=\Sigma^{\mathbb{Z}^{d}} \times\left\{0^{\mathbb{Z}^{d}}\right\}$. Then:

$$
\begin{aligned}
\operatorname{TM}\left(\mathbb{Z}^{d}, n, k\right) & =\left\{\phi \in \operatorname{End}\left(X_{n, k}\right)|\phi|_{Y}=\mathrm{id}, \phi^{-1}(Y)=Y\right\} \\
\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right) & =\left\{\phi \in \operatorname{Aut}\left(X_{n, k}\right)|\phi|_{Y}=\mathrm{id}\right\}
\end{aligned}
$$

Moving tape model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{\mathbb{Z}^{d}} \times Q
$$

$f\left(\bullet \circ, q_{1}\right)=\left(\circ \circ, q_{2},(1,1)\right) \quad F=\{(0,0),(1,0),(1,1)\}$

Moving tape model

f_{T} defines naturally an action

$$
T \curvearrowright \Sigma^{\mathbb{Z}^{d}} \times Q
$$

Let $|\Sigma|=n$ and $|Q|=k$.
$\left(\operatorname{TM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, n, k\right), \circ\right)$ is the monoid of all such T with the composition operation; $\left(\mathrm{RTM}_{\text {fix }}\left(\mathbb{Z}^{d}, n, k\right), \circ\right)$ is the group of all such T which are bijective.

Moving tape model : dynamical definition

Let $x, y \in \Sigma^{\mathbb{Z}^{d}} . x$ and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_{m} y$ if $x_{\vec{v}}=y_{\vec{v}}$ for all $|\vec{v}| \geq m$.

Moving tape model : dynamical definition

Let $x, y \in \Sigma^{\mathbb{Z}^{d}} . x$ and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_{m} y$ if $x_{\vec{v}}=y_{\vec{v}}$ for all $|\vec{v}| \geq m$. Let $T: \Sigma^{\mathbb{Z}^{d}} \times Q \rightarrow \Sigma^{\mathbb{Z}^{d}} \times Q$ be a function.
T is a moving tape Turing machine $\Longleftrightarrow T$ is continuous, and for a continuous function $s: \Sigma^{\mathbb{Z}^{d}} \times Q \rightarrow \mathbb{Z}^{d}$ and $a \in \mathbb{N}$ we have $T(x, q)_{1} \sim_{a} \sigma_{s(x, q)}(x)$ for all $(x, q) \in \Sigma^{\mathbb{Z}^{d}} \times Q$.

Moving tape model : dynamical definition

Let $x, y \in \Sigma^{\mathbb{Z}^{d}} . x$ and y are asymptotic, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_{m} y$ if $x_{\vec{v}}=y_{\vec{v}}$ for all $|\vec{v}| \geq m$. Let $T: \Sigma^{\mathbb{Z}^{d}} \times Q \rightarrow \Sigma^{\mathbb{Z}^{d}} \times Q$ be a function.
T is a moving tape Turing machine $\Longleftrightarrow T$ is continuous, and for a continuous function $s: \Sigma^{\mathbb{Z}^{d}} \times Q \rightarrow \mathbb{Z}^{d}$ and $a \in \mathbb{N}$ we have $T(x, q)_{1} \sim_{a} \sigma_{s(x, q)}(x)$ for all $(x, q) \in \Sigma^{\mathbb{Z}^{d}} \times Q$.
$s: \Sigma^{\mathbb{Z}^{d}} \times Q \rightarrow \mathbb{Z}^{d}$ is the shift indicator function

Equivalence of the models

$\operatorname{RTM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, 1, k\right) \cong S_{k}$ and $\mathbb{Z}^{d} \hookrightarrow \operatorname{RTM}\left(\mathbb{Z}^{d}, 1, k\right)$.

Equivalence of the models

$\operatorname{RTM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, 1, k\right) \cong S_{k}$ and $\mathbb{Z}^{d} \hookrightarrow \operatorname{RTM}\left(\mathbb{Z}^{d}, 1, k\right)$.
Proposition
If $n \geq 2$ then :

$$
\begin{aligned}
\operatorname{TM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, n, k\right) & \cong \operatorname{TM}\left(\mathbb{Z}^{d}, n, k\right) \\
\operatorname{RTM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, n, k\right) & \cong \operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right) .
\end{aligned}
$$

Properties of RTM

Proposition

Let $T \in \mathrm{TM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, n, k\right)$. Then the following are equivalent:
(1) T is injective.
(2) T is surjective.
(3) $T \in \operatorname{RTM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, n, k\right)$.
(9) T preserves the uniform measure $\left(\mu\left(T^{-1}(A)\right)=\mu(A)\right.$ for all Borel sets A).
(3) $\mu(T(A))=\mu(A)$ for all Borel sets A.

Properties of RTM

Proposition

If $n \geq 2 \operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is not finitely generated.

Properties of RTM

Proposition

If $n \geq 2 \operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is not finitely generated.
Proof: We find an epimorphism from RTM to a non-finitely generated group.
Let $T \in \operatorname{RTM}_{\mathrm{fix}}\left(\mathbb{Z}^{d}, n, k\right)$, therefore, it has a shift indicator $s: \Sigma^{\mathbb{Z}^{d}} \times Q \rightarrow \mathbb{Z}^{d}$. Define

$$
\alpha(T):=\mathrm{E}_{\mu}(s)=\int_{\Sigma^{\mathbb{Z}^{d}} \times Q} s(x, q) d \mu
$$

One can check that $\alpha\left(T_{1} \circ T_{2}\right)=\alpha\left(T_{1}\right)+\alpha\left(T_{2}\right)$. Therefore $\alpha: \operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right) \rightarrow \mathbb{Q}^{d}$ is an homomorphism

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right)$. Otherwise $f(u, q)=(u, q, 0)$.

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

$T_{\text {SURF }, m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha\left(T_{\text {SURF }, m}\right)=1 / n^{m}$

Properties of RTM

Now consider the machine $T_{\text {SURF }, m}$ where for all $a \in \Sigma$ and $q \in Q$:

$$
f\left(0^{m} a, q\right)=\left(a 0^{m}, q, 1\right) . \text { Otherwise } f(u, q)=(u, q, 0)
$$

$T_{\text {SURF }, m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha\left(T_{\text {SURF }, m}\right)=1 / n^{m}$
$\left\langle\left(1 / n^{m}\right)_{m \in \mathbb{N}}\right\rangle \subset \alpha(\operatorname{RTM}(\mathbb{Z}, n, k))$ which is thus a non-finitely generated subgroup of \mathbb{Q}.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Local permutations.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Reversible finite-state automata.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Reversible finite-state automata.
$\triangleright \mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Oblivous machines $\langle\mathrm{LP}$, Shift \rangle.

Interesting subgroups of RTM

$\triangleright \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Local permutations.
$\triangleright \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Reversible finite-state automata.
$\triangleright \mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Oblivous machines $\langle\mathrm{LP}$, Shift \rangle.
$\triangleright \operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow$ Elementary machines $\langle\mathrm{LP}, \mathrm{RFA}\rangle$.

Small group theory roadmap

- Res. finite groups are those where every non-identity element can be mapped to a non-identity element by a homomorphism to a finite group
- Amenable groups admit left invariant finitely additive measures.
- LEF and LEA stand for locally embeddable into (finite/amenable) groups.
- Sofic groups are generalizations of LEF and LEA.
- Surjunctive groups satisfy that all injective CA are surjective.

Small group theory roadmap

Theorem

$\forall n \geq 2, \operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is LEF but neither amenable nor residually finite.

Some properties : $\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$

For $n \geq 2$, we have $S_{\infty} \hookrightarrow \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$.

Some properties : $\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$

$$
\text { For } n \geq 2 \text {, we have } S_{\infty} \hookrightarrow \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \text {. }
$$

This means that RTM is not residually finite, and that it contains all finite groups.

Some properties : $\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$

$$
\text { For } n \geq 2 \text {, we have } S_{\infty} \hookrightarrow \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \text {. }
$$

This means that RTM is not residually finite, and that it contains all finite groups.
$\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$ is locally finite and amenable.

Some properties : $\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$

$$
\text { For } n \geq 2 \text {, we have } S_{\infty} \hookrightarrow \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right) \text {. }
$$

This means that RTM is not residually finite, and that it contains all finite groups.
$\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$ is locally finite and amenable.
In particular, for $n \geq 2 \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$ is not finitely generated.

Some properties : $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)=\langle\mathrm{LP}$, Shift \rangle.

Some properties : $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)=\langle\mathrm{LP}$, Shift \rangle.
$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ is amenable.

Some properties: $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)=\langle\mathrm{LP}$, Shift \rangle.

$$
\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \text { is amenable. }
$$

Proof: α gives a short exact sequence

$$
1 \longrightarrow \mathrm{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow \mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow \mathbb{Z}^{d} \longrightarrow 1
$$

Some properties: $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)=\langle\mathrm{LP}$, Shift \rangle.

$$
\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \text { is amenable. }
$$

Proof: α gives a short exact sequence

$$
1 \longrightarrow \mathrm{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow \mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow \mathbb{Z}^{d} \longrightarrow 1
$$

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ contains all generalized lamplighter groups $G \imath \mathbb{Z}^{d}$.

Some properties : $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$

Now let's add the shift. Recall that $\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)=\langle$ LP, Shift \rangle.

$$
\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \text { is amenable. }
$$

Proof: α gives a short exact sequence

$$
1 \longrightarrow \mathrm{LP}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow \mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right) \longrightarrow \mathbb{Z}^{d} \longrightarrow 1
$$

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ contains all generalized lamplighter groups $G \backslash \mathbb{Z}^{d}$.

Theorem

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ is finitely generated.

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ is finitely generated.

This proof is based on the existence of strongly universal reversible gates for permutations of \sum^{m}.
A controlled swap is a transposition (s, t) where s, t have Hamming distance 1 in $Q \times \Sigma^{m}$.

Theorem

The group generated by the applications of controlled swaps of $Q \times \Sigma^{4}$ at arbitrary positions generates $\operatorname{Sym}\left(Q \times \Sigma^{m}\right)$ if $|\Sigma|$ is odd and $A l t\left(Q \times \Sigma^{m}\right)$ if it's even.
Corollary : $\left[\operatorname{Sym}\left(Q \times \Sigma^{m}\right)\right]_{m+1} \subset\left\langle\left[\operatorname{Sym}\left(Q \times \Sigma^{4}\right)\right]_{m+1}\right\rangle$.

$\mathrm{OB}\left(\mathbb{Z}^{d}, n, k\right)$ is finitely generated.

Using this result, a generating set can be constructed :

- $A_{1}=$ Shifts $T_{e_{i}}$ for $\left\{e_{i}\right\}_{i \leq d}$ a base of \mathbb{Z}^{d}.
- $A_{2}=\mathrm{All} T_{\pi} \in \operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right)$ of fixed support $E \subset \mathbb{Z}^{d}$ of size 4.
- $A_{3}=$ The swaps of symbols in positions $\left(\overrightarrow{0}, e_{i}\right)$.

Some properties : $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ is the subgroup of machines which do not modify the tape.

For $n \geq 2, \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ contains all countable free groups.

Some properties : $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ is the subgroup of machines which do not modify the tape.

For $n \geq 2, \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ contains all countable free groups.
In particular, this means that RFA and RTM are not amenable.

Some properties : $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ is the subgroup of machines which do not modify the tape.

For $n \geq 2, \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ contains all countable free groups.
In particular, this means that RFA and RTM are not amenable.
$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ is residually finite but not finitely generated.

Some properties : $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$?

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$?
For $n \geq 2, \alpha\left(\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)\right)=\alpha\left(\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right)$ has bounded denominator.

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$?
For $n \geq 2, \alpha\left(\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)\right)=\alpha\left(\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right)$ has bounded denominator.

In particular, this means that EL \subsetneq RTM.

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$?
For $n \geq 2, \alpha\left(\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)\right)=\alpha\left(\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right)$ has bounded denominator.

In particular, this means that EL \subsetneq RTM.
Open: Is EL $=\left\langle\operatorname{Ker}_{\alpha}(\mathrm{RTM})\right.$, Shift \rangle ?

Some properties : $\mathrm{EL}\left(\mathbb{Z}^{d}, n, k\right)$ and $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$

Recall that $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\left\langle\operatorname{LP}\left(\mathbb{Z}^{d}, n, k\right), \operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right\rangle$ is the subgroup of elementary Turing machines.
Question: Is $\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)=\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$?
For $n \geq 2, \alpha\left(\operatorname{EL}\left(\mathbb{Z}^{d}, n, k\right)\right)=\alpha\left(\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)\right)$ has bounded denominator.

In particular, this means that EL \subsetneq RTM.
Open: Is EL $=\left\langle\operatorname{Ker}_{\alpha}(\mathrm{RTM})\right.$, Shift \rangle ?
RTM is a LEF group, in particular, it is sofic.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.
$\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is a recursively presented group with decidable word problem.

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.
$\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is a recursively presented group with decidable word problem.

What can we say about the torsion $\left(\exists n\right.$ such that $\left.T^{n}=1\right)$ problem?

Computability properties

Given a finite rules: f, f^{\prime} :

- It is decidable (in any model) whether $T_{f}=T_{f^{\prime}}$.
- We can effectively calculate a rule for $T_{f} \circ T_{f^{\prime}}$.
- It is decidable whether T_{f} is reversible.
- If it is, we can effectively compute a rule for T_{f}^{-1}.
$\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ is a recursively presented group with decidable word problem.

What can we say about the torsion $\left(\exists n\right.$ such that $\left.T^{n}=1\right)$ problem?
It is undecidable in $\operatorname{RTM}\left(\mathbb{Z}^{d}, n, k\right)$ if $n \geq 2$. What about RFA?

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof: As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ has undecidable torsion problem for $d, n \geq 2$.

The torsion problem for RFA

$\operatorname{RFA}(\mathbb{Z}, n, k)$ has decidable torsion problem.
Proof: As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

$\operatorname{RFA}\left(\mathbb{Z}^{d}, n, k\right)$ has undecidable torsion problem for $d, n \geq 2$.
Proof: Reduction to the snake tiling problem, which reduces to the domino problem for \mathbb{Z}^{d}.

The snake problem

Can we tile the plane in a way which produces a bi-infinite path?

The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.
The proof uses a plane filling curve generated by a substitution.

The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.
The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct $T \in$ RFA which walks the path of the snake, and turns back if it encounters a problem.

Thank you for your attention!

