The group of reversible Turing machines

Sebastián Barbieri, Jarkko Kari and Ville Salo

LIP, ENS de Lyon - CNRS - INRIA - UCBL - Université de Lyon

University of Turku

Center for Mathematical Modeling, University of Chile

AUTOMATA June, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that a Turing machine is defined by a rule :

$$\delta_{\mathcal{T}}: \Sigma \times Q \to \Sigma \times Q \times \{-1, 0, 1\}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Recall that a Turing machine is defined by a rule :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Recall that a Turing machine is defined by a rule :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This defines a natural action

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

This defines a natural action

$$T: \Sigma^{\mathbb{Z}} \times Q \to \Sigma^{\mathbb{Z}} \times Q$$

Such that if $(x,q) \in \Sigma^{\mathbb{Z}} \times Q$ and $\delta_{\mathcal{T}}(x_0,q) = (a,r,d)$ then :

$$T(x,q) = (\sigma_{-d}(\tilde{x}),q')$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\sigma : \Sigma^{\mathbb{Z}} \to \Sigma^{\mathbb{Z}}$ is the shift action given by $\sigma_d(x)_z = x_{z-d}$, $\tilde{x}_0 = a$ and $\tilde{x}|_{\mathbb{Z} \setminus \{0\}} = x|_{\mathbb{Z} \setminus \{0\}}$.

- The composition of two actions $T \circ T'$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The composition of two actions $T \circ T'$ is not necessarily an action generated by a Turing machine.
- if the action T is a bijection then the inverse it not necessarily an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by some $k \in \mathbb{N}$ is not closed under composition or inverses.

Let's get rid of these constrains. Given F, F' finite subsets of \mathbb{Z}^d , consider instead of δ_T a function :

$$f_T: \Sigma^F \times Q \to \Sigma^{F'} \times Q \times \mathbb{Z}^d,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let's get rid of these constrains. Given F, F' finite subsets of \mathbb{Z}^d , consider instead of δ_T a function :

$$f_T: \Sigma^F imes Q o \Sigma^{F'} imes Q imes \mathbb{Z}^d,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $F = F' = \{0, 1, 2\}^2$, then $f_T(p, q) = (p', q', \vec{d})$ means : $p \longrightarrow p' \longrightarrow p'$

- Turn state q into state q'
- Move head by \vec{d} .

 f_T defines naturally an action

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 f_T defines naturally an action

Let $|\Sigma| = n$ and |Q| = k. $(TM(\mathbb{Z}^d, n, k), \circ)$ is the monoid of all such T with the composition operation; $(RTM(\mathbb{Z}^d, n, k), \circ)$ is the group of all such T which are bijective.

Let
$$Q = \{1, \dots, k\}$$
 and $\Sigma = \{0, \dots, n-1\}$.

$$\Sigma^{\mathbb{Z}^d} = \{x : \mathbb{Z}^d \to \Sigma\}$$

$$X_k = \{x \in \{0, 1, \dots, k\}^{\mathbb{Z}^d} \mid 0 \notin \{x_{\vec{u}}, x_{\vec{v}}\} \implies \vec{u} = \vec{v}\}$$
Let $X_{n,k} = \Sigma^{\mathbb{Z}^d} \times X_k$ and $Y = \Sigma^{\mathbb{Z}^d} \times \{0^{\mathbb{Z}^d}\}$. Then :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let
$$Q = \{1, \dots, k\}$$
 and $\Sigma = \{0, \dots, n-1\}$.

$$\Sigma^{\mathbb{Z}^d} = \{x : \mathbb{Z}^d \to \Sigma\}$$

$$X_k = \{x \in \{0, 1, \dots, k\}^{\mathbb{Z}^d} \mid 0 \notin \{x_{\vec{u}}, x_{\vec{v}}\} \implies \vec{u} = \vec{v}\}$$
Let $X_{n,k} = \Sigma^{\mathbb{Z}^d} \times X_k$ and $Y = \Sigma^{\mathbb{Z}^d} \times \{0^{\mathbb{Z}^d}\}$. Then :

$$TM(\mathbb{Z}^d, n, k) = \{\phi \in End(X_{n,k}) \mid \phi \mid_Y = id, \phi^{-1}(Y) = Y\}$$

$$RTM(\mathbb{Z}^d, n, k) = \{\phi \in Aut(X_{n,k}) \mid \phi \mid_Y = id\}$$

Moving tape model

 f_T defines naturally an action

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Moving tape model

 f_T defines naturally an action

Let $x, y \in \Sigma^{\mathbb{Z}^d}$. x and y are *asymptotic*, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_m y$ if $x_{\vec{v}} = y_{\vec{v}}$ for all $|\vec{v}| \geq m$.

Let $x, y \in \Sigma^{\mathbb{Z}^d}$. x and y are *asymptotic*, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_m y$ if $x_{\vec{v}} = y_{\vec{v}}$ for all $|\vec{v}| \geq m$. Let $T : \Sigma^{\mathbb{Z}^d} \times Q \to \Sigma^{\mathbb{Z}^d} \times Q$ be a function.

T is a moving tape Turing machine $\iff T$ is continuous, and for a continuous function $s: \Sigma^{\mathbb{Z}^d} \times Q \to \mathbb{Z}^d$ and $a \in \mathbb{N}$ we have $T(x,q)_1 \sim_a \sigma_{s(x,q)}(x)$ for all $(x,q) \in \Sigma^{\mathbb{Z}^d} \times Q$.

Let $x, y \in \Sigma^{\mathbb{Z}^d}$. x and y are *asymptotic*, and write $x \sim y$, if they differ in finitely many coordinates. We write $x \sim_m y$ if $x_{\vec{v}} = y_{\vec{v}}$ for all $|\vec{v}| \geq m$. Let $T : \Sigma^{\mathbb{Z}^d} \times Q \to \Sigma^{\mathbb{Z}^d} \times Q$ be a function.

T is a moving tape Turing machine $\iff T$ is continuous, and for a continuous function $s: \Sigma^{\mathbb{Z}^d} \times Q \to \mathbb{Z}^d$ and $a \in \mathbb{N}$ we have $T(x,q)_1 \sim_a \sigma_{s(x,q)}(x)$ for all $(x,q) \in \Sigma^{\mathbb{Z}^d} \times Q$.

 $s: \Sigma^{\mathbb{Z}^d} imes Q
ightarrow \mathbb{Z}^d$ is the shift indicator function

(日)((1))

$\operatorname{RTM}_{\operatorname{fix}}(\mathbb{Z}^d, 1, k) \cong S_k \text{ and } \mathbb{Z}^d \hookrightarrow \operatorname{RTM}(\mathbb{Z}^d, 1, k).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\operatorname{RTM}_{\operatorname{fix}}(\mathbb{Z}^d, 1, k) \cong S_k \text{ and } \mathbb{Z}^d \hookrightarrow \operatorname{RTM}(\mathbb{Z}^d, 1, k).$

Proposition

If $n \ge 2$ then :

$$\begin{aligned} \mathrm{TM}_{\mathrm{fix}}(\mathbb{Z}^d,n,k) &\cong \mathrm{TM}(\mathbb{Z}^d,n,k) \\ \mathrm{RTM}_{\mathrm{fix}}(\mathbb{Z}^d,n,k) &\cong \mathrm{RTM}(\mathbb{Z}^d,n,k). \end{aligned}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proposition

Let $T \in \mathrm{TM}_{\mathrm{fix}}(\mathbb{Z}^d, n, k)$. Then the following are equivalent :

- T is injective.
- 2 T is surjective.
- $T \in \operatorname{RTM}_{\operatorname{fix}}(\mathbb{Z}^d, n, k).$
- T preserves the uniform measure (µ(T⁻¹(A)) = µ(A) for all Borel sets A).

• $\mu(T(A)) = \mu(A)$ for all Borel sets A.

Proposition

If $n \geq 2 \operatorname{RTM}(\mathbb{Z}^d, n, k)$ is not finitely generated.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proposition

If $n \ge 2 \operatorname{RTM}(\mathbb{Z}^d, n, k)$ is not finitely generated.

Proof : We find an epimorphism from RTM to a non-finitely generated group. Let $T \in \operatorname{RTM}_{\operatorname{fix}}(\mathbb{Z}^d, n, k)$, therefore, it has a shift indicator $s : \Sigma^{\mathbb{Z}^d} \times Q \to \mathbb{Z}^d$. Define

$$\alpha(\mathcal{T}) := \mathrm{E}_{\mu}(s) = \int_{\Sigma^{\mathbb{Z}^d} \times Q} s(x, q) d\mu,$$

One can check that $\alpha(T_1 \circ T_2) = \alpha(T_1) + \alpha(T_2)$. Therefore $\alpha : \operatorname{RTM}(\mathbb{Z}^d, n, k) \to \mathbb{Q}^d$ is an homomorphism

 $f(0^m a, q) = (a0^m, q, 1)$. Otherwise f(u, q) = (u, q, 0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\mathcal{T}_{\mathtt{SURF},m} \in \mathrm{RTM}(\mathbb{Z},n,k)$ and $lpha(\mathcal{T}_{\mathtt{SURF},m}) = 1/n^m$

 $f(0^m a, q) = (a0^m, q, 1).$ Otherwise f(u, q) = (u, q, 0). $T_{\text{SURF},m} \in \operatorname{RTM}(\mathbb{Z}, n, k)$ and $\alpha(T_{\text{SURF},m}) = 1/n^m$

 $\langle (1/n^m)_{m \in \mathbb{N}} \rangle \subset \alpha(\operatorname{RTM}(\mathbb{Z}, n, k))$ which is thus a non-finitely generated subgroup of \mathbb{Q} .

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

 $\succ \operatorname{LP}(\mathbb{Z}^d, n, k) \longrightarrow \text{Local permutations.}$ $<math display="block"> \succ \operatorname{RFA}(\mathbb{Z}^d, n, k) \longrightarrow \text{Reversible finite-state automata.}$ $<math display="block"> \succ \operatorname{OB}(\mathbb{Z}^d, n, k) \longrightarrow \text{Oblivous machines } \langle \operatorname{LP}, \operatorname{Shift} \rangle.$

 $\succ \operatorname{LP}(\mathbb{Z}^d, n, k) \longrightarrow \text{Local permutations.}$ $<math display="block"> \triangleright \operatorname{RFA}(\mathbb{Z}^d, n, k) \longrightarrow \text{Reversible finite-state automata.}$ $<math display="block"> \triangleright \operatorname{OB}(\mathbb{Z}^d, n, k) \longrightarrow \text{Oblivous machines } \langle \operatorname{LP}, \operatorname{Shift} \rangle. \\ \\ \triangleright \operatorname{EL}(\mathbb{Z}^d, n, k) \longrightarrow \text{Elementary machines } \langle \operatorname{LP}, \operatorname{RFA} \rangle.$

- Res. finite groups are those where every non-identity element can be mapped to a non-identity element by a homomorphism to a finite group
- Amenable groups admit left invariant finitely additive measures.
- LEF and LEA stand for locally embeddable into (finite/amenable) groups.
- Sofic groups are generalizations of LEF and LEA.
- Surjunctive groups satisfy that all injective CA are surjective.

Theorem

 $\forall n \geq 2, \operatorname{RTM}(\mathbb{Z}^d, n, k)$ is LEF but neither amenable nor residually finite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Some properties : $LP(\mathbb{Z}^d, n, k)$

For $n \geq 2$, we have $S_{\infty} \hookrightarrow LP(\mathbb{Z}^d, n, k)$.

For $n \geq 2$, we have $S_{\infty} \hookrightarrow LP(\mathbb{Z}^d, n, k)$.

This means that ${\rm RTM}$ is not residually finite, and that it contains all finite groups.

For
$$n \geq 2$$
, we have $S_{\infty} \hookrightarrow \operatorname{LP}(\mathbb{Z}^d, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

 $LP(\mathbb{Z}^d, n, k)$ is locally finite and amenable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

For
$$n \geq 2$$
, we have $S_{\infty} \hookrightarrow \operatorname{LP}(\mathbb{Z}^d, n, k)$.

This means that RTM is not residually finite, and that it contains all finite groups.

 $LP(\mathbb{Z}^d, n, k)$ is locally finite and amenable.

In particular, for $n \ge 2 \operatorname{LP}(\mathbb{Z}^d, n, k)$ is not finitely generated.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $OB(\mathbb{Z}^d, n, k)$ is amenable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $OB(\mathbb{Z}^d, n, k)$ is amenable.

 $\mathsf{Proof}: \alpha \text{ gives a short exact sequence}$

$$1 \longrightarrow \operatorname{LP}(\mathbb{Z}^d, n, k) \longrightarrow \operatorname{OB}(\mathbb{Z}^d, n, k) \longrightarrow \mathbb{Z}^d \longrightarrow 1.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $OB(\mathbb{Z}^d, n, k)$ is amenable.

 $\mathsf{Proof}: \alpha \text{ gives a short exact sequence}$

$$1 \longrightarrow \operatorname{LP}(\mathbb{Z}^d, n, k) \longrightarrow \operatorname{OB}(\mathbb{Z}^d, n, k) \longrightarrow \mathbb{Z}^d \longrightarrow 1.$$

 $OB(\mathbb{Z}^d, n, k)$ contains all generalized lamplighter groups $G \wr \mathbb{Z}^d$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $OB(\mathbb{Z}^d, n, k)$ is amenable.

Proof : α gives a short exact sequence

$$1 \longrightarrow \operatorname{LP}(\mathbb{Z}^d, n, k) \longrightarrow \operatorname{OB}(\mathbb{Z}^d, n, k) \longrightarrow \mathbb{Z}^d \longrightarrow 1.$$

 $OB(\mathbb{Z}^d, n, k)$ contains all generalized lamplighter groups $G \wr \mathbb{Z}^d$.

Theorem

 $OB(\mathbb{Z}^d, n, k)$ is finitely generated.

This proof is based on the existence of strongly universal reversible gates for permutations of Σ^m .

A controlled swap is a transposition (s, t) where s, t have Hamming distance 1 in $Q \times \Sigma^m$.

Theorem

The group generated by the applications of controlled swaps of $Q \times \Sigma^4$ at arbitrary positions generates $Sym(Q \times \Sigma^m)$ if $|\Sigma|$ is odd and $Alt(Q \times \Sigma^m)$ if it's even. Corollary : $[Sym(Q \times \Sigma^m)]_{m+1} \subset \langle [Sym(Q \times \Sigma^4)]_{m+1} \rangle$.

Using this result, a generating set can be constructed :

•
$$A_1 =$$
Shifts T_{e_i} for $\{e_i\}_{i \leq d}$ a base of \mathbb{Z}^d .

• $A_2 = \text{All } T_{\pi} \in \text{LP}(\mathbb{Z}^d, n, k)$ of fixed support $E \subset \mathbb{Z}^d$ of size 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• A_3 = The swaps of symbols in positions $(\vec{0}, e_i)$.

Recall that $RFA(\mathbb{Z}^d, n, k)$ is the subgroup of machines which do not modify the tape.

For $n \ge 2$, RFA(\mathbb{Z}^d , n, k) contains all countable free groups.

Recall that $RFA(\mathbb{Z}^d, n, k)$ is the subgroup of machines which do not modify the tape.

For $n \ge 2$, $\operatorname{RFA}(\mathbb{Z}^d, n, k)$ contains all countable free groups.

In particular, this means that RFA and RTM are not amenable.

Recall that $RFA(\mathbb{Z}^d, n, k)$ is the subgroup of machines which do not modify the tape.

For $n \ge 2$, RFA(\mathbb{Z}^d , n, k) contains all countable free groups.

In particular, this means that RFA and RTM are not amenable.

 $\operatorname{RFA}(\mathbb{Z}^d, n, k)$ is residually finite but not finitely generated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

For $n \ge 2$, $\alpha(\mathsf{EL}(\mathbb{Z}^d, n, k)) = \alpha(\operatorname{RFA}(\mathbb{Z}^d, n, k))$ has bounded denominator.

For $n \ge 2$, $\alpha(\mathsf{EL}(\mathbb{Z}^d, n, k)) = \alpha(\operatorname{RFA}(\mathbb{Z}^d, n, k))$ has bounded denominator.

In particular, this means that $\mathsf{EL} \subsetneq \operatorname{RTM}$.

For $n \ge 2$, $\alpha(\mathsf{EL}(\mathbb{Z}^d, n, k)) = \alpha(\operatorname{RFA}(\mathbb{Z}^d, n, k))$ has bounded denominator.

In particular, this means that $\mathsf{EL} \subsetneq \mathrm{RTM}$. Open : Is $\mathsf{EL} = \langle \mathsf{Ker}_{\alpha}(\mathrm{RTM}), \mathrm{Shift} \rangle$?

For $n \ge 2$, $\alpha(\mathsf{EL}(\mathbb{Z}^d, n, k)) = \alpha(\operatorname{RFA}(\mathbb{Z}^d, n, k))$ has bounded denominator.

In particular, this means that $\mathsf{EL} \subsetneq \mathrm{RTM}$. Open : Is $\mathsf{EL} = \langle \mathsf{Ker}_{\alpha}(\mathrm{RTM}), \mathrm{Shift} \rangle$?

 RTM is a LEF group, in particular, it is sofic.

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

 $\operatorname{RTM}(\mathbb{Z}^d, n, k)$ is a recursively presented group with decidable word problem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

 $\operatorname{RTM}(\mathbb{Z}^d, n, k)$ is a recursively presented group with decidable word problem.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What can we say about the torsion $(\exists n \text{ such that } T^n = 1)$ problem ?

- It is decidable (in any model) whether $T_f = T_{f'}$.
- We can effectively calculate a rule for $T_f \circ T_{f'}$.
- It is decidable whether T_f is reversible.
- If it is, we can effectively compute a rule for T_f^{-1} .

 $\operatorname{RTM}(\mathbb{Z}^d, n, k)$ is a recursively presented group with decidable word problem.

What can we say about the torsion $(\exists n \text{ such that } T^n = 1)$ problem? It is undecidable in $\operatorname{RTM}(\mathbb{Z}^d, n, k)$ if $n \ge 2$. What about RFA?

$RFA(\mathbb{Z}, n, k)$ has decidable torsion problem.

Proof : As $\mathbb Z$ is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$RFA(\mathbb{Z}, n, k)$ has decidable torsion problem.

Proof : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

 $\operatorname{RFA}(\mathbb{Z}^d, n, k)$ has undecidable torsion problem for $d, n \geq 2$.

$RFA(\mathbb{Z}, n, k)$ has decidable torsion problem.

Proof : As \mathbb{Z} is two-ended, any non-torsion machine must shift to the left or right in at least a periodic configuration.

Theorem

 $\operatorname{RFA}(\mathbb{Z}^d, n, k)$ has undecidable torsion problem for $d, n \geq 2$.

Proof : Reduction to the snake tiling problem, which reduces to the domino problem for \mathbb{Z}^d .

The snake problem

Can we tile the plane in a way which produces a bi-infinite path?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct $T \in RFA$ which walks the path of the snake, and turns back if it encounters a problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you for your attention !

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @