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Motivation

This defines a natural action

T : ΣZ × Q → ΣZ × Q

Such that if (x , q) ∈ ΣZ × Q and δT (x0, q) = (a, r , d) then :

T (x , q) = (σ−d (x̃), q′)

where σ : ΣZ → ΣZ is the shift action given by σd (x)z = xz−d ,
x̃0 = a and x̃ |Z\{0} = x |Z\{0}.



Motivation

The composition of two actions T ◦ T ′ is not necessarily an
action generated by a Turing machine.
if the action T is a bijection then the inverse it not necessarily
an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by
some k ∈ N is not closed under composition or inverses.
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Definition

Let’s get rid of these constrains. Given F ,F ′ finite subsets of Zd ,
consider instead of δT a function :

fT : ΣF × Q → ΣF ′ × Q × Zd ,

Let F = F ′ = {0, 1, 2}2, then fT (p, q) = (p′, q′, ~d) means :

p p′

Turn state q into state q′

Move head by ~d .
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Moving head model
fT defines naturally an action

T y ΣZd × Q × Zd

q1
q2

f ( , q1) = ( , q2, (1, 1)) F = {(0, 0), (1, 0), (1, 1)}

T

Let |Σ| = n and |Q| = k.
(TM(Zd , n, k), ◦) is the monoid of all such T with the composition
operation ; (RTM(Zd , n, k), ◦) is the group of all such T which are
bijective .



Moving head model
fT defines naturally an action

T y ΣZd × Q × Zd

q1
q2

f ( , q1) = ( , q2, (1, 1)) F = {(0, 0), (1, 0), (1, 1)}

T

Let |Σ| = n and |Q| = k.
(TM(Zd , n, k), ◦) is the monoid of all such T with the composition
operation ; (RTM(Zd , n, k), ◦) is the group of all such T which are
bijective .



Moving head model : As cellular automata

Let Q = {1, . . . , k} and Σ = {0, . . . , n − 1}.

ΣZd = {x : Zd → Σ}

Xk = {x ∈ {0, 1, . . . , k}Zd | 0 /∈ {x~u, x~v} =⇒ ~u = ~v}

Let Xn,k = ΣZd × Xk and Y = ΣZd × {0Zd}. Then :

TM(Zd , n, k) = {φ ∈ End(Xn,k) | φ|Y = id, φ−1(Y ) = Y }
RTM(Zd , n, k) = {φ ∈ Aut(Xn,k) | φ|Y = id}
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Moving tape model

fT defines naturally an action

T y ΣZd × Q

q1 q2
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Tf

Let |Σ| = n and |Q| = k.
(TMfix(Zd , n, k), ◦) is the monoid of all such T with the
composition operation ; (RTMfix(Zd , n, k), ◦) is the group of all
such T which are bijective .
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Moving tape model : dynamical definition

Let x , y ∈ ΣZd . x and y are asymptotic, and write x ∼ y , if they
differ in finitely many coordinates. We write x ∼m y if x~v = y~v for
all |~v | ≥ m.

Let T : ΣZd × Q → ΣZd × Q be a function.

T is a moving tape Turing machine ⇐⇒ T is continuous, and for
a continuous function s : ΣZd × Q → Zd and a ∈ N we have
T (x , q)1 ∼a σs(x ,q)(x) for all (x , q) ∈ ΣZd × Q.

s : ΣZd × Q → Zd is the shift indicator function
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Equivalence of the models

RTMfix(Zd , 1, k) ∼= Sk and Zd ↪→ RTM(Zd , 1, k).

Proposition
If n ≥ 2 then :

TMfix(Zd , n, k) ∼= TM(Zd , n, k)
RTMfix(Zd , n, k) ∼= RTM(Zd , n, k).
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Properties of RTM

Proposition
Let T ∈ TMfix(Zd , n, k). Then the following are equivalent :

1 T is injective.
2 T is surjective.
3 T ∈ RTMfix(Zd , n, k).
4 T preserves the uniform measure (µ(T−1(A)) = µ(A) for all

Borel sets A).
5 µ(T (A)) = µ(A) for all Borel sets A.



Properties of RTM

Proposition
If n ≥ 2 RTM(Zd , n, k) is not finitely generated.

Proof : We find an epimorphism from RTM to a non-finitely
generated group.
Let T ∈ RTMfix(Zd , n, k), therefore, it has a shift indicator
s : ΣZd × Q → Zd . Define

α(T ) := Eµ(s) =
∫

ΣZd×Q
s(x , q)dµ,

One can check that α(T1 ◦ T2) = α(T1) + α(T2).
Therefore α : RTM(Zd , n, k)→ Qd is an homomorphism
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Properties of RTM

Now consider the machine TSURF,m where for all a ∈ Σ and q ∈ Q :

0 0 0 00 0 0 a

q

TSURF,m

00 0 00 0 0a

q

f (0ma, q) = (a0m, q, 1). Otherwise f (u, q) = (u, q, 0).

TSURF,m ∈ RTM(Z, n, k) and α(TSURF,m) = 1/nm

〈(1/nm)m∈N〉 ⊂ α(RTM(Z, n, k)) which is thus a non-finitely
generated subgroup of Q.
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Interesting subgroups of RTM

B LP(Zd , n, k) −→ Local permutations.

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

q

Tπ

0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1

r

B RFA(Zd , n, k) −→ Reversible finite-state automata.
B OB(Zd , n, k) −→ Oblivous machines 〈LP, Shift〉.
B EL(Zd , n, k) −→ Elementary machines 〈LP,RFA〉.
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Small group theory roadmap

Abelian

Residually Finite

Amenable

LEF

LEA

Sofic Surjunctive

Res. finite groups are those where every non-identity element
can be mapped to a non-identity element by a homomorphism
to a finite group
Amenable groups admit left invariant finitely additive
measures.
LEF and LEA stand for locally embeddable into
(finite/amenable) groups.
Sofic groups are generalizations of LEF and LEA.
Surjunctive groups satisfy that all injective CA are surjective.

Theorem
∀n ≥ 2,RTM(Zd , n, k) is LEF but neither amenable nor residually
finite.
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Some properties : LP(Zd , n, k)

For n ≥ 2, we have S∞ ↪→ LP(Zd , n, k).

This means that RTM is not residually finite, and that it contains
all finite groups.

LP(Zd , n, k) is locally finite and amenable.

In particular, for n ≥ 2 LP(Zd , n, k) is not finitely generated.
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Some properties : OB(Zd , n, k)

Now let’s add the shift. Recall that OB(Zd , n, k) = 〈LP, Shift〉.

OB(Zd , n, k) is amenable.

Proof : α gives a short exact sequence

1 −→ LP(Zd , n, k) −→ OB(Zd , n, k) −→ Zd −→ 1.

OB(Zd , n, k) contains all generalized lamplighter groups G o Zd .

Theorem
OB(Zd , n, k) is finitely generated.
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OB(Zd , n, k) is finitely generated.

This proof is based on the existence of strongly universal reversible
gates for permutations of Σm.
A controlled swap is a transposition (s, t) where s, t have
Hamming distance 1 in Q × Σm.

Theorem
The group generated by the applications of controlled swaps of
Q ×Σ4 at arbitrary positions generates Sym(Q ×Σm) if |Σ| is odd
and Alt(Q × Σm) if it’s even.
Corollary : [Sym(Q × Σm)]m+1 ⊂ 〈[Sym(Q × Σ4)]m+1〉.



OB(Zd , n, k) is finitely generated.

Using this result, a generating set can be constructed :

A1 = Shifts Tei for {ei}i≤d a base of Zd .
A2 =All Tπ ∈ LP(Zd , n, k) of fixed support E ⊂ Zd of size 4.
A3 = The swaps of symbols in positions (~0, ei ).



Some properties : RFA(Zd , n, k)

Recall that RFA(Zd , n, k) is the subgroup of machines which do
not modify the tape.

For n ≥ 2, RFA(Zd , n, k) contains all countable free groups.

In particular, this means that RFA and RTM are not amenable.

RFA(Zd , n, k) is residually finite but not finitely generated.
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Some properties : EL(Zd , n, k) and RTM(Zd , n, k)

Recall that EL(Zd , n, k) = 〈LP(Zd , n, k),RFA(Zd , n, k)〉 is the
subgroup of elementary Turing machines.
Question : Is EL(Zd , n, k) = RTM(Zd , n, k) ?

For n ≥ 2, α(EL(Zd , n, k)) = α(RFA(Zd , n, k)) has bounded
denominator.

In particular, this means that EL ( RTM.
Open : Is EL = 〈Kerα(RTM), Shift〉 ?

RTM is a LEF group, in particular, it is sofic.
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Computability properties

Given a finite rules : f , f ′ :

It is decidable (in any model) whether Tf = Tf ′ .
We can effectively calculate a rule for Tf ◦ Tf ′ .
It is decidable whether Tf is reversible.
If it is, we can effectively compute a rule for T−1f .

RTM(Zd , n, k) is a recursively presented group with decidable
word problem.

What can we say about the torsion (∃n such that T n = 1)
problem ?
It is undecidable in RTM(Zd , n, k) if n ≥ 2. What about RFA ?
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The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof : As Z is two-ended, any non-torsion machine must shift to
the left or right in at least a periodic configuration.

Theorem
RFA(Zd , n, k) has undecidable torsion problem for d , n ≥ 2.

Proof : Reduction to the snake tiling problem, which reduces to
the domino problem for Zd .
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The snake problem

ε

Can we tile the plane in a way which produces a bi-infinite path ?



The snake problem

Theorem (Kari)
The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T ∈ RFA which walks the path of the snake, and turns back if it
encounters a problem.
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Thank you for your attention !


