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T IxQ—>XxQx{-1,01}
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5T(.a q) = (Da r, _1)
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This defines a natural action

T:T2xQ—=%I4xQ
Such that if (x,q) € £% x Q and 67(x0,q) = (a, r, d) then :
T(Xa q) = (O-—d(;()7 q/)

where o : ¥4 — ¥4 is the shift action given by o4(x),; = x,_4,
Xo=a and )?|Z\{0} = X‘Z\{O}-
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Motivation

@ The composition of two actions T o T is not necessarily an
action generated by a Turing machine.

@ if the action T is a bijection then the inverse it not necessarily
an action generated by a Turing machine.

As in cellular automata, the class of CA with radius bounded by
some k € N is not closed under composition or inverses.



Let's get rid of these constrains. Given F, F’ finite subsets of Z9,
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Let's get rid of these constrains. Given F, F’ finite subsets of Z9,
consider instead of 1 a function :

froefxQ—xfF x Qxz9,
Let F = F' = {0,1,2}2, then fr(p, q) = (p/, ¢, d) means :

p /

e Turn state g into state ¢’
@ Move head by d.
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Moving head model

fT defines naturally an action

f(e,q1) = (o, q2,(1,1)) F ={(0,0),(1,0),(1,1)}

Let |X| =nand |Q| = k.

(TM(Z9, n, k), 0) is the monoid of all such T with the composition
operation ; (RTM(Z9, n, k),0) is the group of all such T which are
bijective .



Moving head model : As cellular automata

Let Q={1,...,k} and X ={0,...,n—1}.
):Zd:{X:Zd—>Z}
Xe={x€{0,1,....k}* | 0¢ {xg.xs} = 1=}
Let Xpx = 2% x Xi and Y = ¥Z° x {0Z°}. Then :



Moving head model : As cellular automata

Let Q={1,...,k} and X ={0,...,n—1}.

):Zd:{X:Zd—>Z}
Xk:{XE{O,l,...,k}Zd |0 ¢ {xz,x¢} = 0=V}
Let Xpx = T x Xk and Y = ¥27 x {Ozd}. Then :

TM(Z?, n, k) = {¢ € End(X,x) | 8y = id, 6~ 1(Y) = Y}

)

RTM(Z%, n, k) = {¢ € Aut(Xnx) | ¢ly = id}

)
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Moving tape model

f+ defines naturally an action

TmZdeQ

f(°3, qi) = (027 a2, (1,1))  F={(0,0),(1,0),(1,1)}

Let |X| = nand |Q| = k.

(TMgix(Z9, n, k), 0) is the monoid of all such T with the
composition operation ; (RTMgy(Z9, n, k), o) is the group of all
such T which are bijective .
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Let x,y € ¥2°. x and y are asymptotic, and write x ~ y, if they
differ in finitely many coordinates. We write x ~p, vy if x; = yy for
all |V] > m.
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Moving tape model : dynamical definition

Let x,y € ¥2°. x and y are asymptotic, and write x ~ y, if they
differ in finitely many coordinates. We write x ~p, y if x; = yy for
all [7] > m. Let T:¥%° x Q — ¥2° x Q be a function.

T is a moving tape Turing machine <= T is continuous, and for
a continuous function s : ¥Z¢ x Q — Z9 and a € N we have

d
T(X,q)1 ~a Os(x.q)(x) for all (x,q) € £%° x Q.

s: Y% % Q — Z9 is the shift indicator function
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Equivalence of the models

RT Mg, (29,1, k) = S) and Z9 < RTM(Z9, 1, k).

Proposition

If n> 2 then :

TMsx(Z9, n, k) = TM(Z9, n, k)
RTMg, (29, n, k) = RTM(Z, n, k).




Properties of RTM

Let T € TMg,(Z9, n, k). Then the following are equivalent :
© T is injective.
@ T is surjective.
@ T € RTMjg, (29, n, k).
@ T preserves the uniform measure (u(T~1(A)) = u(A) for all
Borel sets A).

@ u(T(A)) = u(A) for all Borel sets A.
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Properties of RTM

Proposition
If n>2 RTM(Z9, n, k) is not finitely generated.

Proof : We find an epimorphism from RTM to a non-finitely

generated group.
Let T € RTMﬁX(Zd, n, k), therefore, it has a shift indicator

s Y2 Q — Z9. Define

o(T)i=Ep(s) = [, slx.a)dn

One can check that a(Ty 0 T3) = a(T1) + a( T?).
Therefore o : RTM(Z9, n, k) — Q9 is an homomorphism



Properties of RTM

Now consider the machine Tgyrr,m Where for allac ¥ and g€ Q :

| [ [ [ | foJofojofojofofa] | | | | |

l Tsurr,m

| [ [ I | falofoJofofofofof | | | [ |

f(0™Ma, q) = (a0™, q,1). Otherwise f(u, q) = (u, q,0).
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Properties of RTM

Now consider the machine Tgyrr,m Where for allac ¥ and g€ Q :

| [ [ [ | foJofojofojofofa] | | | | |

l Tsurr,m

| [ [ I | falofoJofofofofof | | | [ |

f(0™Ma, q) = (a0™, q,1). Otherwise f(u, q) = (u, q,0).
Tsurr,m € RTM(Z, n, k) and o Tsyrr,m) = 1/n™

((1/n™)men) C a(RTM(Z, n, k)) which is thus a non-finitely
generated subgroup of Q.



Interesting subgroups of RTM

> LP(Z9, n, k) — Local permutations.
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Interesting subgroups of RTM

> LP(Z9, n, k) — Local permutations.
> RFA(Z?, n, k) — Reversible finite-state automata.
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Interesting subgroups of RTM

> LP(Z9, n, k) — Local permutations.

> RFA(Z, n, k) — Reversible finite-state automata.
> OB(Z, n, k) — Oblivous machines (LP, Shift).

> EL(Z9, n, k) — Elementary machines (LP, RFA).



Small group theory roadmap

Residually Finite —— LEF

—

Abelian Sofic — Surjunctive

™~ —

Amenable — LEA

@ Res. finite groups are those where every non-identity element
can be mapped to a non-identity element by a homomorphism
to a finite group

@ Amenable groups admit left invariant finitely additive
measures.

o LEF and LEA stand for locally embeddable into
(finite/amenable) groups.

@ Sofic groups are generalizations of LEF and LEA.

@ Surjunctive groups satisfy that all injective CA are surjective.



Small group theory roadmap

Residually Finite —— LEF

—

Abelian Sofic — Surjunctive

™~ —

Amenable — LEA

Vn > 2, RTM(Z9, n, k) is LEF but neither amenable nor residually
finite.
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For n > 2, we have S, < LP(Z9, n, k).
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all finite groups.
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In particular, for n > 2 LP(Z9, n, k) is not finitely generated.
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Some properties : OB(Z9, n, k)

Now let's add the shift. Recall that OB(Z9, n, k) = (LP, Shift).
OB(Z9, n, k) is amenable.
Proof : « gives a short exact sequence
1 — LP(Z9 n, k) — OB(Z% n, k) — 29 — 1.

OB(Z9, n, k) contains all generalized lamplighter groups G Z9.

OB(Z9, n, k) is finitely generated.




OB(Z7, n, k) is finitely generated.

This proof is based on the existence of strongly universal reversible
gates for permutations of ¥.

A controlled swap is a transposition (s, t) where s, t have
Hamming distance 1 in @ x X™.

The group generated by the applications of controlled swaps of

Q x X* at arbitrary positions generates Sym(Q x ¥™) if || is odd
and Alt(Q x ™) if it's even.

Corollary : [Sym(Q x T™)]m+1 C ([Sym(Q x )] m+1).




OB(Z7, n, k) is finitely generated.

Using this result, a generating set can be constructed :
e A; = Shifts T, for {ej}i<q a base of z9.
o Ay =All T, € LP(Z9, n, k) of fixed support E C Z9 of size 4.

@ A3z = The swaps of symbols in positions (6, e).



Some properties : RFA(Z9, n, k)

Recall that RFA(Z9, n, k) is the subgroup of machines which do
not modify the tape.

For n > 2, RFA(Z9, n, k) contains all countable free groups.
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Recall that RFA(Z9, n, k) is the subgroup of machines which do
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For n > 2, RFA(Z9, n, k) contains all countable free groups.

In particular, this means that RFA and RTM are not amenable.

RFA(Z9, n, k) is residually finite but not finitely generated.
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Some properties : EL(Z?, n, k) and RTM(Z¢, n, k)

Recall that EL(Z9, n, k) = (LP(Z9, n, k), RFA(Z?, n, k)) is the
subgroup of elementary Turing machines.
Question : Is EL(Z9, n, k) = RTM(Z9, n, k) ?

For n > 2, a(EL(Z9, n, k)) = a(RFA(Z?, n, k)) has bounded
denominator.

In particular, this means that EL C RTM.
Open : Is EL = (Ker,(RTM), Shift) ?

RTM is a LEF group, in particular, it is sofic.
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Given a finite rules : f,f’ :

o It is decidable (in any model) whether T¢ = T¢.
@ We can effectively calculate a rule for Tr o T¢.
o It is decidable whether T is reversible.

o If it is, we can effectively compute a rule for Tf_l.
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Computability properties

Given a finite rules : f,f’ :

o It is decidable (in any model) whether T¢ = T¢.
@ We can effectively calculate a rule for Tr o T¢.
o It is decidable whether T is reversible.

o If it is, we can effectively compute a rule for Tf_l.

RTM(Z9, n, k) is a recursively presented group with decidable
word problem.

What can we say about the torsion (3n such that T" =1)

problem ?
It is undecidable in RTM(Z9, n, k) if n > 2. What about RFA ?



The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof : As Z is two-ended, any non-torsion machine must shift to
the left or right in at least a periodic configuration.
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The torsion problem for RFA

RFA(Z, n, k) has decidable torsion problem.

Proof : As Z is two-ended, any non-torsion machine must shift to
the left or right in at least a periodic configuration.

RFA(Z9, n, k) has undecidable torsion problem for d,n > 2.

Proof : Reduction to the snake tiling problem, which reduces to
the domino problem for Z9.



The snake problem

|
KD B XL

Can we tile the plane in a way which produces a bi-infinite path ?




The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.



The snake problem

Theorem (Kari)

The snake tiling problem is undecidable.

The proof uses a plane filling curve generated by a substitution.

For every instance of the snake tiling problem, one can construct
T € RFA which walks the path of the snake, and turns back if it
encounters a problem.



Thank you for your attention !



