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G-subshifts
Consider a group G .
I A is a finite alphabet. Ex : A = {0, 1}.
I AG is the set of functions x : G → A.
I σ : G ×AG → AG is the shift action given by :

σg(x)h = xg−1h.

Definition : G-subshift
X ⊂ AG is a G-subshift if it is invariant under the action of σ and
closed for the product topology on AG .

Alternative definition : G-subshift
X is a G-subshift if it can be defined as the set of configurations
which avoid a set forbidden patterns : ∃F ⊂

⋃
F⊂G,|F |<∞AF such

that :
X = XF := {x ∈ AG | ∀p ∈ F : p 6@ x}.
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Example in Z2 : Fibonacci shift
Example : Fibonacci shift. XFib is the set of assignments of Z2

to {0, 1} such that there are no two adjacent ones.
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Example : one-or-less subshift
Example : one-or-less subshift.

X≤1 := {x ∈ {0, 1}Zd | |{z ∈ Zd : xz = 1}| ≤ 1}.
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Fibonacci in F2.
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Subshifts of finite type.

I What about if we only consider local rules ?

Definition : subshift of finite type.
A G-subshift is of finite type (SFT) if it can be defined by a finite
set F of forbidden patterns.

Example : Both Fibonacci subshifts shown before are of finite
type. X≤1 isn’t.

I Given a finite set of forbidden patterns, can we decide if the
G-subshift produced by them is non-empty ?
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The domino problem.

I Every finite alphabet can be identified as a finite subset of N.

Domino problem.

DP(G) = {F ⊂ N∗G | |F| <∞,XF 6= ∅}.

I if G is finitely generated by the set S, we can codify each
pattern as a function from a finite set of words in (S ∪ S−1)∗ to N.
I Therefore, DP(G) can be written as a formal language. We say
G has decidable domino problem if DP(G) is Turing-decidable.
Question : Which groups have decidable domino problem ?
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The easy case G = Z.

Theorem :
The set of configurations of a Z-SFT can be characterized as the
set of bi-infinite walks in a finite graph.

Example : Consider the Fibonacci shift given by F = {11}.

0 100

01

10

As the graph is finite, a Z-SFT is non-empty if and only if its
Rauzy graph contains a cycle, thus DP(Z) is decidable.
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The not so easy case : G = Z2

The name "Domino problem" comes from the G = Z2 case.

Wang tiles are unit squares with colored edges, the forbidden
patterns are implicit in the alphabet.
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Wang’s conjecture

Wang’s conjecture (1961)
If a set of Wang tiles can tile the plane, then they can always be
arranged to do so periodically.

If Wang’s conjecture is true, we can decide if a set of Wang tiles
can tile the plane !

Semi-algorithm 1 :
1 Accept if there is a periodic configuration.
2 loops otherwise

Semi-algorithm 2 :
1 Accept if a block [0, n]2 cannot be tiled without breaking local

rules.
2 loops otherwise
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Wang’s conjecture

Theorem[Berger 1966]
Wang’s conjecture is FALSE

His construction encodes a Turing machine using an alphabet of
size 20426.

His proof was later simplified by Robinson[1971]. A proof with a
different approach was also presented by Kari[1996].
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Robinson tileset

The Robinson tileset, where tiles can be rotated.
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General structure of the Robinson tiling
Macro-tiles of level 1.

They behave like large .
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From macro-tiles of level 1 to macro-tiles of level 2
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From macro-tiles of level n to macro-tiles of level n + 1

⇒
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Some recent results and facts in f.g. groups

I If a group G has undecidable word problem ⇒ DP(G) is
undecidable.

I Virtually free groups have decidable domino problem.
I For virtually nilpotent groups : DP(G) is decidable if and only

if it has two or more ends (2013 Ballier, Stein).
I Every virtually polycyclic group which is not virtually Z has

undecidable domino problem (work in progress by Jeandel).
I The domino problem is a quasi-isometry invariant for finitely

presented groups (2015 Cohen).
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Going between Z and Z2 (Joint work with M. Sablik)

So far we have :
I DP(Z) is decidable.
I DP(Z2) is undecidable.

And if H ≤ Z2, then either H ∼= 1,H ∼= Z or H ∼= Z2.

We need to lose the group structure if we want to study
intermediate structures.
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Toy case : Sierpiński triangle
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Coding subsets of Z2 as configurations.

Let F ⊂ Z2 and define the configuration xF ∈ {0, 1}Z
2 :

(xF )z =
{
1 if z ∈ F
0 if not.

And let Y =
⋃

z∈Z2 {σz(xF )}.

Given a set of forbidden patterns F we can define colorings of F as
the configurations of XF over an alphabet A 3 0 such that the
application π : AZ2 → {0, 1}Z2 :

π(x)z =
{
1 if xz 6= 0
0 if xz = 0

yields an element of Y .

18/29



Coding subsets of Z2 as configurations.

Let F ⊂ Z2 and define the configuration xF ∈ {0, 1}Z
2 :

(xF )z =
{
1 if z ∈ F
0 if not.

And let Y =
⋃

z∈Z2 {σz(xF )}.
Given a set of forbidden patterns F we can define colorings of F as
the configurations of XF over an alphabet A 3 0 such that the
application π : AZ2 → {0, 1}Z2 :

π(x)z =
{
1 if xz 6= 0
0 if xz = 0

yields an element of Y .

18/29



Formally...

I Let Y 3 0Z2 be a Z2-subshift over the alphabet {0, 1}.
I Let F be a set of forbidden patterns over an alphabet A 3 0

which does not forbid any pattern consisting only of 0.

Definition : Y -based subshift
The Y -based subshift defined by F is the set :

XY ,F := π−1(Y ) ∩ XF .

Definition : Y -based domino problem

DP(Y ) := {F ⊂ N∗Z2 | |F| <∞ and XY ,F 6= {0Z2}}.
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Back to the fractal structures...

We focus on subshifts Y with a self-similar structure generated by
substitutions.

I If Y contains a strongly periodic point which is not 0Z2 then
DP(Y ) is undecidable.

I It is easy to calculate a Hausdorff dimension (in this case
box-counting dimension). Is there a threshold in the dimension
which enforces undecidability ?

I These subshifts can be defined by local rules (sofic subshifts)
according to Mozes Theorem.

In particular we consider : substitutions over {0, 1} such that the
image of 0 is a rectangle of zeros.
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Example 1 : Sierpiński triangle

Consider the alphabet A = { , } and the self-similar substitution
s such that :

and
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Example 2 : Sierpiński carpet
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Example 3 : The Bridge.
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Toy case 1 : Sierpiński triangle.

Theorem :
The domino problem is decidable in the Sierpiński triangle.

Proof strategy :

I Consider a rectangle containing the union of the support of all
forbidden patterns.

I Suppose we can tile locally an iteration n of the substitution
without producing forbidden patterns.

I To construct a tiling of the next level, it suffices to "paste"
three tilings of the iteration n without producing forbidden
patterns.
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Toy case 1 : Sierpiński triangle.

Theorem :
The domino problem is decidable in the Sierpiński triangle.

Proof strategy (continued) :

I Keep the information about the pasting places (finite tuples)
and build pasting rules (T1,T2,T3)→ T4.

I For each iteration n, construct the set of tuples observed in
the pasting places. Construct the next set using this one.

I This process either cycles (arbitrary iterations can be tiled) or
ends up producing the empty set (the only valid tiling is 0Z2).

This technique can be extended to a big class of self-similar
substitutions !
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Toy case 2 : Sierpiński carpet.

Theorem :
The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

I Suppose we can simulate substitutions over the Sierpiński
carpet (using a bigger alphabet).
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Toy case 2 : Sierpiński carpet.

• s′→
• ↔ •
l 0 l
• ↔ •

, l s′→
l • l
l 0 l
l • l

, ↔ s′→
↔ ↔ ↔
• 0 •
↔ ↔ ↔

.
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Toy case 2 : Sierpiński carpet.

• ↔ • ↔ ↔ ↔ • ↔ •
l l • • l l
• ↔ • ↔ ↔ ↔ • ↔ •
l • l l • l
l l l l
l • l l • l
• ↔ • ↔ ↔ ↔ • ↔ •
l l • • l l
• ↔ • ↔ ↔ ↔ • ↔ •
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Toy case 2 : Sierpiński carpet.

a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4

←→

• ↔ • ↔ ↔ ↔ • ↔ •
l l • • l l
• ↔ • ↔ ↔ ↔ • ↔ •
l • l l • l
l l l l
l • l l • l
• ↔ • ↔ ↔ ↔ • ↔ •
l l • • l l
• ↔ • ↔ ↔ ↔ • ↔ •

a1 a2 a2 a3 a3 a3 a3 a4 a4
b1 b2 ? ? b3 b4
b1 b2 b2 b3 b3 b3 b3 b4 b4
c1 ? c2 c3 ? c4
c1 c2 c3 c4
c1 ? c2 c3 ? c4
c1 c2 c2 c3 c3 c3 c3 c4 c4
d1 d2 ? ? d3 d4
d1 d2 d2 d3 d3 d3 d3 d4 d4
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Toy case 2 : Sierpiński carpet.

Theorem :
The domino problem is undecidable in the Sierpiński carpet.

Proof strategy :

I Suppose we can simulate substitutions over the Sierpiński
carpet (using a bigger alphabet).
Use the substitution shown above to simulate arbitrarily big
patterns of a Z2-subshift

DP(Z2) is reduced to the domino problem in the carpet.

It only remains to show that we can simulate substitutions with
local rules.
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Toy case 2 : Sierpiński carpet and Mozes

We need to prove a modified version of Mozes’ theorem :

Theorem : Mozes.
The subshifts generated by Z2-substitutions are sofic (are the
image of an SFT under a cellular automaton)

We can prove a similar version for some Y -based subshifts. Among
them the Sierpiński carpet.
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Toy case 2 : Sierpiński carpet and Mozes

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 3)

(3, 1) (3, 2) (3, 3)

(1, 1)
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Conclusion
We can generalize the ideas in the previous toy problems to attack
classes of substitutions :
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Conclusion
And separate the substitutions which we cannot classify into two
groups :
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Weak grid

We got some ideas of how it might be...
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Isthmus

We don’t know anything about this one.
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Conclusion

And about the Hausdorff dimension ?...

sn : n s ′n : n

There is no threshold.
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Thank you for your attention !
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