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» G is a (finitely generated) group.

» A is a finite alphabet.

» AC is the set of functions from G to A

> 0: G x A® — AC is the left shift action given by :

(Tg(X)h = Xg-1p

Definition : G-subshift

X C AC is a G-subshift if it invariant under the action of o and
closed for the product topology on A€.

Equivalently, X is a G-subshift if it can be defined by a set of
forbidden patterns : 37 C Urcg,|F|<oo AF such that

X=Xr={xcA®|VYPEcF:PI x}
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Background
Z-Subshift examples

Example : full shift. Let A = {0,1} and F = (). Then Xz = A%
is the set of all bi-infinite words.

Example : Fibonacci shift. Let A = {0,1} and F = {11}. Then
Xr is the set of all bi-infinite words which have no pairs of
consecutive 1's.

x =...010100010100100100100- - - € XFr
Example : one-or-less subshift
Xapi={xe{0,1}2 |{neZ x, =1} <1}
Is a Z-subshift as it is defined by the set F = {10"1|n € No}.

x = ...00000000000100000000- - - € X<1
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Example : Fibonacci shift. Xy, is the set of assignments of Z? to
{0, 1} such that there are no two adjacent ones.
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Background

Example : one-or-less subshift

Example : one-or-less subshift.

Xap = {xe{0,1}% | {z €79 : x, =1} < 1}.
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Example : S-Fibonacci shift for G = F;
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A G-subshift X is said to be of finite type (G-SFT) if there exists a
finite set of patterns F such that X = Xr.

Example : S-Fibonacci shift. For every group G generated by a
finite set S the S-Fibonacci shift is a G-SFT.

A G-subshift Y over A is said to be a sofic G-subshift if there
exists a G-SFT X and a surjective cellular automaton ¢ : X — Y.
That is, we have a G-SFT where we allow to delete some
information.

Example : X<; is a sofic G-subshift if G is Z9 or a finitely
generated free group Fy.
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Remark : These classes are interesting from a computational
perspective because they can be defined with a finite amount of
data. How far can we take this idea?

6/26



Background

Interesting classes

Remark : These classes are interesting from a computational
perspective because they can be defined with a finite amount of
data. How far can we take this idea?

Definition : Effectiveness in Z

A Z-subshift X C AZ is said to be effective if there is a
recognizable set & C A* such that X = Xr.

6/26



Background

Interesting classes

Remark : These classes are interesting from a computational
perspective because they can be defined with a finite amount of
data. How far can we take this idea?

Definition : Effectiveness in Z

A Z-subshift X C AZ is said to be effective if there is a
recognizable set & C A* such that X = Xr.

Question : How can the idea of effectiveness be translated into
general groups ?
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First approach : Z-effectiveness

Let G be a finitely generated group and S C G a finite generator.
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Effectiveness in groups

First approach : Z-effectiveness

Let G be a finitely generated group and S C G a finite generator.

Definition : Z-effectiveness

A G-subshift X C AC is Z-effective if there is a Turing machine
which enumerates a set of pattern codings such that the set of
consistent pattern codings defines a set F such that X = Xr.

Question : ls it always possible to recognize if a pattern coding is
inconsistent ?
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Example : the Baumslag-Solitar group BS(1,2)

Consider the group BS(1,2) = (a, b | ab = ba?).
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(6,0) (b,1) (a,1)
(ab,0) (ba?,0) (ba, 1)

is consistent and defines the pattern

My=0 : M,=1
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Effectiveness in groups

Example : the Baumslag-Solitar group BS(1,2)

Consider the group BS(1,2) = (a, b | ab = ba?).
» The pattern coding

(6,0) (b,1) (a,1)
(ab,0) (ba?,0) (ba, 1)

is consistent and defines the pattern

My=0 : M,=1

Mp=1 Mp=1 Mpe=M,,=0
» The pattern coding
(.0)  (a%1)  (bab'a1)
(a,1) (ba,1) (abab™1,0)
is inconsistent since abab™! and bab~la represent the same
element.

abab™! = bab~! = ba(b 1b)a’b ™! = bab~labb~! = babla ;.



Effectiveness in groups

Limitations of Z-effectiveness

Definition : Word problem

Let S C G be a finite generator of G. The word problem of G asks
whether two words on S U S~! are equivalent in G. Formally :

wpP(G) ={we (SUS?) |w=c1c}.
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Effectiveness in groups

Limitations of Z-effectiveness

Definition : Word problem

Let S C G be a finite generator of G. The word problem of G asks
whether two words on S U S~! are equivalent in G. Formally :

wpP(G) ={we (SUS?) |w=c1c}.

Example : Decidable word problem. The word problem for
72 ~ (a, blab = ba) is :

WP(Z%) = {w € {a,b,a ", b }* | |wla = |w|,-1 Alw|p = [w|p1}
Example : Undecidable word problem. If f: N — {0,1} is
non-computable the group G = (a, b,c,d | ab" = c"d,n € f~1(1))
has undecidable word problem.
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Limitations of Z-effectiveness

Remark : If G is not recursively presented, It is not possible to
recognize whether a pattern coding is consistent !

10/26



Effectiveness in groups

Limitations of Z-effectiveness

Remark : If G is not recursively presented, It is not possible to

recognize whether a pattern coding is consistent !
Remark : Even if G is finitely presented, there are simple subshifts

which are not Z-effective!

10/26



Effectiveness in groups

Limitations of Z-effectiveness

Remark : If G is not recursively presented, It is not possible to
recognize whether a pattern coding is consistent !

Remark : Even if G is finitely presented, there are simple subshifts
which are not Z-effective !

Remark [Theorem : Novikov(55), Boone(58)]
There are finitely presented groups with undecidable word problem !

For a recursively presented group the one-or-less subshift :

X<1:={x€{0,1}° | |[{g € G: x, = 1}| < 1}.

is not Z-effective if WP(G) is undecidable.
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G-effectiveness

Another approach : Don’t codify anything!
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G-effectiveness

Another approach : Don’t codify anything!

Definition : G-machine

A G-machine is a Turing machine whose tape has been replaced by
the group G. The transition function is

QXX = Q@xXx(SUSTuU{lg)) where S is a finite set of
generators of G.
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G-effectiveness

Another approach : Don’t codify anything!

Definition : G-machine

A G-machine is a Turing machine whose tape has been replaced by
the group G. The transition function is

QXX = Q@xXx(SUSTuU{lg)) where S is a finite set of
generators of G.

Remark : Computation is over patterns instead of words.
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Effectiveness in groups

Example : Transition in a Fo-machine

Ch, _(q2vo S]_
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Effectiveness in groups

G-effectiveness

Definition :

@ A set of patterns P is said to be recognizable if there is a
G-machine which accepts if and only if P € P.

@ A set of patterns P is said to be decidable if there is a
G-machine which accepts if P € P and rejects otherwise.
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Effectiveness in groups

G-effectiveness

@ A set of patterns P is said to be recognizable if there is a
G-machine which accepts if and only if P € P.

@ A set of patterns P is said to be decidable if there is a
G-machine which accepts if P € P and rejects otherwise.

.

G-effectiveness

A G-subshift X ¢ AC is G-effective if there exists a set of
forbidden patterns F such that X = Xz and F is G-recognizable.

v
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Effectiveness in groups

What can we say about G-effectiveness ?

Remark : The one-or-less subshift X< is G-effective for every
finitely generated group G.
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Remark : The one-or-less subshift X< is G-effective for every
finitely generated group G.

Let G be an infinite, finitely generated group, then every
Z-effective subshift is G-effective.
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Effectiveness in groups

What can we say about G-effectiveness ?

Remark : The one-or-less subshift X< is G-effective for every
finitely generated group G.

Theorem

Let G be an infinite, finitely generated group, then every
Z-effective subshift is G-effective.

Theorem

| \

Let G be finitely generated group with decidable word problem
then every G-effective subshift is Z-effective.
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Effectiveness in groups

Some results about G-effectiveness ?

A subshift is G-effective if and only if it satisfies the conditions of
Z-effectiveness with a Turing machine which has access to an
oracle of WP(G).
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Effectiveness in groups

Some results about G-effectiveness ?

A subshift is G-effective if and only if it satisfies the conditions of

Z-effectiveness with a Turing machine which has access to an
oracle of WP(G).

» We have also shown that the class of G-effective subshifts
contains every G-SFT, every sofic and every Z-effective G-subshift.
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Aperiodicity in a subshift

Definition : Strongly aperiodic

A G-subshift X is said to be strongly aperiodic if

Vx € X, stab,(x) :={g € G| gx =x} ={lg}
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Aperiodicity in a subshift

Definition : Strongly aperiodic

A G-subshift X is said to be strongly aperiodic if

Vx € X, stab,(x) :={g € G| gx =x} ={lg}

Example in G =7. Let A={0,1,2} and F = {ww | w € A*}.
Then Xr is strongly aperiodic.
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Aperiodicity
Some known facts

» 7Z-SFTs are never strongly aperiodic.

» There are strongly aperiodic Z2-SFTs. (1964 Berger, 1971
Robinson, 1996 Kari)

» There are weakly aperiodic SFTs in Baumslag Solitar groups
(2013 Aubrun-Kari)

» There are strongly aperiodic SFTs in the Heisenberg group
(2014 Sahin-Schraudner)

» The existence of a strongly aperiodic G-SFT implies G is one
ended (2014 Cohen)

» A finitely presented group which admits a strongly aperiodic
SFT has decidable word problem (2015 Jeandel)
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Aperiodicity

The Robinson tiling
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Aperiodicity

Our result

For every infinite and finitely generated group G there exists a
strongly aperiodic G-effective subshift.
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Aperiodicity

Our result

For every infinite and finitely generated group G there exists a
strongly aperiodic G-effective subshift.

Corollary :

| A\

For a recursively presented group, there exists a Z-effective
strongly aperiodic subshift if and only if WP(G) is decidable.
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Aperiodicity

An ingredient for the proof

Definition

Let (X, d) be a metric space. We say F C G is r-covering if for
each x € G there is y € F such that d(x,y) < r. We say F is
s-separating if for each x # y € F then d(x,y) > s
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Aperiodicity

An ingredient for the proof

Definition

Let (X, d) be a metric space. We say F C G is r-covering if for
each x € G there is y € F such that d(x,y) < r. We say F is
s-separating if for each x # y € F then d(x,y) > s

Proposition
If X is countable, then for any r € R there exists Y C X such that
Y is both r-separating and r-covering.
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Aperiodicity

Example : 2-covering and 2-separating set in PSL(Z, 2)
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Aperiodicity

Example : 2-covering and 2-separating set in PSL(Z, 2)
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Aperiodicity

» First we create a layer with a hierarchical structure.
» YC(SuStu{igh©
» The points y € Y codify forests with a property :

21/26



Aperiodicity

» First we create a layer with a hierarchical structure.
» YC(SuStu{igh©
» The points y € Y codify forests with a property :

Property

for every n € N, G can be partitioned in sets (C;);es such that
dgi € C; such that

B(g,-, n) cC;C B(g,-, 5”)
And for each C; there is either a single h € C; with x; = 15 and for

every other g € C; then gxg € C;j or Vg € C; xg # 1 and there is a
single h € C; such that hx;, ¢ C;.

<
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» First we create a layer with a hierarchical structure.
» YC(SuStu{igh©
» The points y € Y codify forests with a property :

Property

for every n € N, G can be partitioned in sets (C;);es such that
dgi € C; such that

B(gi,n) C C; C B(g;,5")

And for each C; there is either a single h € C; with x; = 15 and for
every other g € C; then gxg € C;j or Vg € C; xg # 1 and there is a
single h € C; such that hx;, ¢ C;.

<

Remark : This property can be easily verified with a TM with
access to WP(G).
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Aperiodicity

Cluster structure




Aperiodicity

Second layer

Remark : We are not done yet !
Example : G = Z.

y=..,+L,+1,+1,+1,41,41,--- €Y
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Second layer

Remark : We are not done yet !
Example : G = Z.

y=..,+L,+1,+1,+1,41,41,--- €Y

Consider an infinite word W without squares, such as the one
produced by ¢ : {0,1,2} — {0,1,2}* given by :

01210, if k =0
d(k) = < 12021, if k = 1
20102, if k = 2
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Aperiodicity
Second layer

Remark : We are not done yet !
Example : G = Z.

y=...,+1,+1,+1,+1,+1,+1,--- € Y

Consider an infinite word W without squares, such as the one
produced by ¢ : {0,1,2} — {0,1,2}* given by :

01210, if k =0
d(k) = < 12021, if k = 1
20102, if k = 2

We consider X C ((SUS U {1¢}) x {0,1,2})€ such that for
x € X then m1(x) € Y and every path in 71(x) contains a subword
of W in the second layer.
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Aperiodicity
Final argument

The existence of h # 1¢ such that h € stab,(x) creates a square
word.
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For a recursively presented group, there exists a Z-effective
strongly aperiodic subshift if and only if WP(G) is decidable.
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For a recursively presented group, there exists a Z-effective
strongly aperiodic subshift if and only if WP(G) is decidable.

Proof : As WP(G) is decidable, every G-effective subshift is
Z-effective and thus our construction shows the existence.
Jeandel's result gives the other direction.
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» Use simulation theorems with our construction to produce
strongly aperiodic SFTs in some classes of groups.
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» Use simulation theorems with our construction to produce
strongly aperiodic SFTs in some classes of groups.

» Apply the idea of clusters to generate entropies in amenable

groups.
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Merci beaucoup pour votre attention !

Avez-vous des questions ?
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