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Background Effectiveness in groups Aperiodicity

G-Subshifts

I G is a (finitely generated) group.
I A is a finite alphabet.
I AG is the set of functions from G to A
I σ : G ×AG → AG is the left shift action given by :

σg(x)h = xg−1h

Definition : G-subshift
X ⊂ AG is a G-subshift if it invariant under the action of σ and
closed for the product topology on AG .

Equivalently, X is a G-subshift if it can be defined by a set of
forbidden patterns : ∃F ⊂

⋃
F⊂G,|F |<∞AF such that

X = XF := {x ∈ AG | ∀P ∈ F : P 6@ x}
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Z-Subshift examples

Example : full shift. Let A = {0, 1} and F = ∅. Then XF = AZ
is the set of all bi-infinite words.

Example : Fibonacci shift. Let A = {0, 1} and F = {11}. Then
XF is the set of all bi-infinite words which have no pairs of
consecutive 1’s.

x = . . . 010100010100100100100 · · · ∈ XF

Example : one-or-less subshift

X≤1 := {x ∈ {0, 1}Z | |{n ∈ Z : xn = 1}| ≤ 1}.

Is a Z-subshift as it is defined by the set F = {10n1|n ∈ N0}.

x = . . . 00000000000100000000 · · · ∈ X≤1
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Example in Z2 : Fibonacci shift
Example : Fibonacci shift. Xfib is the set of assignments of Z2 to
{0, 1} such that there are no two adjacent ones.
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Example : one-or-less subshift
Example : one-or-less subshift.

X≤1 := {x ∈ {0, 1}Zd | |{z ∈ Zd : xz = 1}| ≤ 1}.
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Example : S-Fibonacci shift for G = F2
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Interesting classes

G-SFTs
A G-subshift X is said to be of finite type (G-SFT) if there exists a
finite set of patterns F such that X = XF .

Example : S-Fibonacci shift. For every group G generated by a
finite set S the S-Fibonacci shift is a G-SFT.
Sofic G-subshifts
A G-subshift Y over A is said to be a sofic G-subshift if there
exists a G-SFT X and a surjective cellular automaton φ : X → Y .
That is, we have a G-SFT where we allow to delete some
information.

Example : X≤1 is a sofic G-subshift if G is Zd or a finitely
generated free group Fk .
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Interesting classes

Remark : These classes are interesting from a computational
perspective because they can be defined with a finite amount of
data. How far can we take this idea ?

Definition : Effectiveness in Z
A Z-subshift X ⊂ AZ is said to be effective if there is a
recognizable set F ⊂ A∗ such that X = XF .

Question : How can the idea of effectiveness be translated into
general groups ?
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First approach : Z-effectiveness

Let G be a finitely generated group and S ⊂ G a finite generator.

Definition : Z-effectiveness
A G-subshift X ⊂ AG is Z-effective if there is a Turing machine
which enumerates a set of pattern codings such that the set of
consistent pattern codings defines a set F such that X = XF .

Question : Is it always possible to recognize if a pattern coding is
inconsistent ?
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Example : the Baumslag-Solitar group BS(1, 2)
Consider the group BS(1, 2) = 〈a, b | ab = ba2〉.

I The pattern coding
(ε, 0) (b, 1) (a, 1)

(ab, 0) (ba2, 0) (ba, 1)
is consistent and defines the pattern

Π1G=0 Πa=1

Πb=1 Πba=1 Πba2=Πab=0

I The pattern coding
(ε, 0) (a2, 1) (bab−1a, 1)
(a, 1) (ba, 1) (abab−1, 0)

is inconsistent since abab−1 and bab−1a represent the same
element.
abab−1 = ba3b−1 = ba(b−1b)a2b−1 = bab−1abb−1 = bab−1a
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Limitations of Z-effectiveness

Definition : Word problem
Let S ⊂ G be a finite generator of G . The word problem of G asks
whether two words on S ∪ S−1 are equivalent in G . Formally :

WP(G) =
{
w ∈

(
S ∪ S−1

)∗
| w =G 1G

}
.

Example : Decidable word problem. The word problem for
Z
2 ' 〈a, b|ab = ba〉 is :

WP(Z2) = {w ∈ {a, b, a−1, b−1}∗ | |w |a = |w |a−1∧|w |b = |w |b−1}

Example : Undecidable word problem. If f : N→ {0, 1} is
non-computable the group G = 〈a, b, c, d | abn = cnd , n ∈ f −1(1)〉
has undecidable word problem.
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Limitations of Z-effectiveness

Remark : If G is not recursively presented, It is not possible to
recognize whether a pattern coding is consistent !

Remark : Even if G is finitely presented, there are simple subshifts
which are not Z-effective !

Remark [Theorem : Novikov(55), Boone(58)]
There are finitely presented groups with undecidable word problem !

Theorem
For a recursively presented group the one-or-less subshift :

X≤1 := {x ∈ {0, 1}G | |{g ∈ G : xg = 1}| ≤ 1}.

is not Z-effective if WP(G) is undecidable.
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G-effectiveness

Another approach : Don’t codify anything !

Definition : G-machine
A G-machine is a Turing machine whose tape has been replaced by
the group G . The transition function is
δ : Q × Σ→ Q × Σ× (S ∪ S−1 ∪ {1G}) where S is a finite set of
generators of G .

Remark : Computation is over patterns instead of words.

11/26



Background Effectiveness in groups Aperiodicity

G-effectiveness

Another approach : Don’t codify anything !

Definition : G-machine
A G-machine is a Turing machine whose tape has been replaced by
the group G . The transition function is
δ : Q × Σ→ Q × Σ× (S ∪ S−1 ∪ {1G}) where S is a finite set of
generators of G .

Remark : Computation is over patterns instead of words.

11/26



Background Effectiveness in groups Aperiodicity

G-effectiveness

Another approach : Don’t codify anything !

Definition : G-machine
A G-machine is a Turing machine whose tape has been replaced by
the group G . The transition function is
δ : Q × Σ→ Q × Σ× (S ∪ S−1 ∪ {1G}) where S is a finite set of
generators of G .

Remark : Computation is over patterns instead of words.

11/26



Background Effectiveness in groups Aperiodicity

Example : Transition in a F2-machine

s1

s2

q1

s1

s2

q2

δ(q1, ) = (q2, , s1)
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G-effectiveness

Definition :
A set of patterns P is said to be recognizable if there is a
G-machine which accepts if and only if P ∈ P.
A set of patterns P is said to be decidable if there is a
G-machine which accepts if P ∈ P and rejects otherwise.

G-effectiveness
A G-subshift X ⊂ AG is G-effective if there exists a set of
forbidden patterns F such that X = XF and F is G-recognizable.
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What can we say about G-effectiveness ?

Remark : The one-or-less subshift X≤1 is G-effective for every
finitely generated group G .

Theorem
Let G be an infinite, finitely generated group, then every
Z-effective subshift is G-effective.

Theorem
Let G be finitely generated group with decidable word problem
then every G-effective subshift is Z-effective.
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Some results about G-effectiveness ?

Theorem
A subshift is G-effective if and only if it satisfies the conditions of
Z-effectiveness with a Turing machine which has access to an
oracle of WP(G).

I We have also shown that the class of G-effective subshifts
contains every G-SFT, every sofic and every Z-effective G-subshift.
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Aperiodicity in a subshift

Definition : Strongly aperiodic
A G-subshift X is said to be strongly aperiodic if

∀x ∈ X , stabσ(x) := {g ∈ G | gx = x} = {1G}

Example in G = Z. Let A = {0, 1, 2} and F = {ww | w ∈ A∗}.
Then XF is strongly aperiodic.
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Some known facts

I Z-SFTs are never strongly aperiodic.
I There are strongly aperiodic Z2-SFTs. (1964 Berger, 1971

Robinson, 1996 Kari)
I There are weakly aperiodic SFTs in Baumslag Solitar groups

(2013 Aubrun-Kari)
I There are strongly aperiodic SFTs in the Heisenberg group

(2014 Sahin-Schraudner)
I The existence of a strongly aperiodic G-SFT implies G is one

ended (2014 Cohen)
I A finitely presented group which admits a strongly aperiodic

SFT has decidable word problem (2015 Jeandel)
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The Robinson tiling
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Our result

Theorem :
For every infinite and finitely generated group G there exists a
strongly aperiodic G-effective subshift.

Corollary :
For a recursively presented group, there exists a Z-effective
strongly aperiodic subshift if and only if WP(G) is decidable.
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An ingredient for the proof

Definition
Let (X , d) be a metric space. We say F ⊂ G is r -covering if for
each x ∈ G there is y ∈ F such that d(x , y) ≤ r . We say F is
s-separating if for each x 6= y ∈ F then d(x , y) > s

Proposition
If X is countable, then for any r ∈ R there exists Y ⊂ X such that
Y is both r -separating and r -covering.

19/26
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Example : 2-covering and 2-separating set in PSL(Z, 2)
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Proof

I First we create a layer with a hierarchical structure.
I Y ⊂ (S ∪ S−1 ∪ {1G})G
I The points y ∈ Y codify forests with a property :

Property
for every n ∈ N, G can be partitioned in sets (Ci)i∈I such that
∃gi ∈ Ci such that

B(gi , n) ⊂ Ci ⊂ B(gi , 5n)

And for each Ci there is either a single h ∈ Ci with xh = 1G and for
every other g ∈ Ci then gxg ∈ Ci or ∀g ∈ Ci xg 6= 1G and there is a
single h ∈ Ci such that hxh /∈ Ci .

Remark : This property can be easily verified with a TM with
access to WP(G).
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Cluster structure
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Second layer
Remark : We are not done yet !
Example : G = Z.

y = . . . ,+1,+1,+1,+1,+1,+1, · · · ∈ Y

Consider an infinite word W without squares, such as the one
produced by φ : {0, 1, 2} → {0, 1, 2}∗ given by :

φ(k) =


01210, if k = 0
12021, if k = 1
20102, if k = 2

We consider X ⊂ ((S ∪ S−1 ∪ {1G})× {0, 1, 2})G such that for
x ∈ X then π1(x) ∈ Y and every path in π1(x) contains a subword
of W in the second layer.
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Final argument
The existence of h 6= 1G such that h ∈ stabσ(x) creates a square
word.

C

h̄

w

h · C

hh̄

h−1h̄

w
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Corollary :
For a recursively presented group, there exists a Z-effective
strongly aperiodic subshift if and only if WP(G) is decidable.

Proof : As WP(G) is decidable, every G-effective subshift is
Z-effective and thus our construction shows the existence.
Jeandel’s result gives the other direction.
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Current work
I Use simulation theorems with our construction to produce

strongly aperiodic SFTs in some classes of groups.

I Apply the idea of clusters to generate entropies in amenable
groups.
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Merci beaucoup pour votre attention !

Avez-vous des questions ?
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