# Effectiveness in finitely generated groups

#### Author: Sebastián Barbieri Joint work with Nathalie Aubrun and Mathieu Sablik.

# LIP, ENS de Lyon – CNRS – INRIA – UCBL – Université de Lyon

# Outline



- 2 Effectiveness in groups
- 3 Relation with Soficness
- 4 Conclusions and perspectives

- $\blacktriangleright$  *A* is a finite alphabet of symbols.
- $\mathcal{A}^{\mathbb{Z}}$  is the set of bi-infinite words on  $\mathcal{A}$ .

- $\mathcal{A}$  is a finite alphabet of symbols.
- $\mathcal{A}^{\mathbb{Z}}$  is the set of bi-infinite words on  $\mathcal{A}$ .

#### Definition

A Z-subshift is a subset of bi-infinite words  $X \subset \mathcal{A}^{\mathbb{Z}}$  that avoids some forbidden words  $\mathcal{F} \subset \mathcal{A}^*$ 

$$X = X_{\mathcal{F}} := \left\{ x \in \mathcal{A}^{\mathbb{Z}} \mid \forall n \in \mathbb{Z}, k \in \mathbb{N}_0, x_n \dots x_{n+k} \notin \mathcal{F} \right\}$$

- $\mathcal{A}$  is a finite alphabet of symbols.
- $\mathcal{A}^{\mathbb{Z}}$  is the set of bi-infinite words on  $\mathcal{A}$ .

#### Definition

A  $\mathbb{Z}$ -subshift is a subset of bi-infinite words  $X \subset \mathcal{A}^{\mathbb{Z}}$  that avoids some forbidden words  $\mathcal{F} \subset \mathcal{A}^*$ 

$$X = X_{\mathcal{F}} := \left\{ x \in \mathcal{A}^{\mathbb{Z}} \mid \forall n \in \mathbb{Z}, k \in \mathbb{N}_0, x_n \dots x_{n+k} \notin \mathcal{F} \right\}$$

**Example : full shift.** Let  $\mathcal{A} = \{0, 1\}$  and  $\mathcal{F} = \emptyset$ . Then  $X_{\mathcal{F}} = \mathcal{A}^{\mathbb{Z}}$  is the set of all bi-infinite words.

- $\mathcal{A}$  is a finite alphabet of symbols.
- $\mathcal{A}^{\mathbb{Z}}$  is the set of bi-infinite words on  $\mathcal{A}$ .

#### Definition

A  $\mathbb{Z}$ -subshift is a subset of bi-infinite words  $X \subset \mathcal{A}^{\mathbb{Z}}$  that avoids some forbidden words  $\mathcal{F} \subset \mathcal{A}^*$ 

$$X = X_{\mathcal{F}} := \left\{ x \in \mathcal{A}^{\mathbb{Z}} \mid \forall n \in \mathbb{Z}, k \in \mathbb{N}_0, x_n \dots x_{n+k} \notin \mathcal{F} \right\}$$

**Example : full shift.** Let  $\mathcal{A} = \{0, 1\}$  and  $\mathcal{F} = \emptyset$ . Then  $X_{\mathcal{F}} = \mathcal{A}^{\mathbb{Z}}$  is the set of all bi-infinite words.

**Example : Fibonacci shift.** Let  $\mathcal{A} = \{0, 1\}$  and  $\mathcal{F} = \{11\}$ . Then  $X_{\mathcal{F}}$  is the set of all bi-infinite words which have no pairs of consecutive 1's.

 $x = \ldots 010100010100100100 \cdots \in X_{\mathcal{F}}$ 

#### Example : one-or-less subshift

$$X_{\leq 1} := \{ x \in \{0,1\}^{\mathbb{Z}} \mid |\{ n \in \mathbb{Z} : x_n = 1\}| \leq 1 \}.$$

Is a  $\mathbb{Z}$ -subshift as it is defined by the set  $\mathcal{F} = \{10^n 1 | n \in \mathbb{N}_0\}$ .

 $x = \dots 0000000000000000 \dots \in X_{<1}$ 

#### Example : one-or-less subshift

$$X_{\leq 1} := \{x \in \{0,1\}^{\mathbb{Z}} \mid |\{n \in \mathbb{Z} : x_n = 1\}| \leq 1\}.$$

Is a  $\mathbb{Z}$ -subshift as it is defined by the set  $\mathcal{F} = \{10^n 1 | n \in \mathbb{N}_0\}$ .

 $x = \dots 0000000000000000 \dots \in X_{<1}$ 

*Question :* What if we want to consider patterns in a plane instead of just words ?

#### Example : one-or-less subshift

$$X_{\leq 1} := \{ x \in \{0,1\}^{\mathbb{Z}} \mid | \{ n \in \mathbb{Z} : x_n = 1 \} | \leq 1 \}.$$

Is a  $\mathbb{Z}$ -subshift as it is defined by the set  $\mathcal{F} = \{10^n 1 | n \in \mathbb{N}_0\}$ .

 $x = \dots 0000000000000000 \dots \in X_{<1}$ 

*Question* : What if we want to consider patterns in a plane instead of just words ?

Generalize the notion to  $\mathbb{Z}^d$ 

# $\mathbb{Z}^d$ -subshift

#### Definition

A  $\mathbb{Z}^d$ -subshift is a set  $X \subset \mathcal{A}^{\mathbb{Z}^d}$  such that there exists a set of forbidden patterns  $\mathcal{F} \subset \mathcal{A}^*_{\mathbb{Z}^d}$  where  $\mathcal{A}^*_{\mathbb{Z}^d} := \bigcup_{F \subset \mathbb{Z}^d, |F| < \infty} \mathcal{A}^F$  such that :

$$X = X_{\mathcal{F}} := \{ x \in \mathcal{A}^{\mathbb{Z}^d} | \forall z \in \mathbb{Z}^d, P \in \mathcal{F} : x_{z+supp(P)} \notin \mathcal{F} \}.$$

# $\mathbb{Z}^d$ -subshift

#### Definition

A  $\mathbb{Z}^d$ -subshift is a set  $X \subset \mathcal{A}^{\mathbb{Z}^d}$  such that there exists a set of forbidden patterns  $\mathcal{F} \subset \mathcal{A}^*_{\mathbb{Z}^d}$  where  $\mathcal{A}^*_{\mathbb{Z}^d} := \bigcup_{F \subset \mathbb{Z}^d, |F| < \infty} \mathcal{A}^F$  such that :

$$X = X_{\mathcal{F}} := \{ x \in \mathcal{A}^{\mathbb{Z}^d} | \forall z \in \mathbb{Z}^d, P \in \mathcal{F} : x_{z+supp(P)} \notin \mathcal{F} \}$$

**Example : Fibonacci shift.**  $X_{fib}$  is the set of assignments of  $\mathbb{Z}^2$  to  $\{0,1\}$  such that there are no two adjacent ones.

# $\mathbb{Z}^d$ -subshift

#### Definition

A  $\mathbb{Z}^d$ -subshift is a set  $X \subset \mathcal{A}^{\mathbb{Z}^d}$  such that there exists a set of forbidden patterns  $\mathcal{F} \subset \mathcal{A}^*_{\mathbb{Z}^d}$  where  $\mathcal{A}^*_{\mathbb{Z}^d} := \bigcup_{F \subset \mathbb{Z}^d, |F| < \infty} \mathcal{A}^F$  such that :

$$X = X_{\mathcal{F}} := \{ x \in \mathcal{A}^{\mathbb{Z}^d} | \forall z \in \mathbb{Z}^d, P \in \mathcal{F} : x_{z+supp(P)} \notin \mathcal{F} \}$$

**Example : Fibonacci shift.**  $X_{fib}$  is the set of assignments of  $\mathbb{Z}^2$  to  $\{0,1\}$  such that there are no two adjacent ones. **Example : one-or-less subshift.** 

$$X_{\leq 1} := \{x \in \{0,1\}^{\mathbb{Z}^d} \mid |\{z \in \mathbb{Z}^d : x_z = 1\}| \leq 1\}.$$

# Example : Fibonacci shift



### Example : one-or-less subshift



Conclusions and perspectives

### Example : one-or-less subshift



*Question :* What if we want to go further? What is a good base structure?

## G-subshifts

#### Definition

Let G be a group. A G-subshift is a set  $X \subset \mathcal{A}^G$  such that there exists a set of forbidden patterns  $\mathcal{F} \subset \mathcal{A}^*_G$  where  $\mathcal{A}^*_G := \bigcup_{F \subset G, |F| < \infty} \mathcal{A}^F$  such that :

$$X = X_{\mathcal{F}} := \{x \in \mathcal{A}^{\mathcal{G}} | \forall g \in \mathcal{G}, P \in \mathcal{F} : \sigma_g(x) | supp(P) \notin \mathcal{F} \}.$$

Where the shift action  $\sigma: \mathcal{G} \times \mathcal{A}^{\mathcal{G}} \to \mathcal{A}^{\mathcal{G}}$  is such that

$$(\sigma_g(x))_h = x_{g^{-1}h}.$$

## G-subshifts

#### Definition

Let G be a group. A G-subshift is a set  $X \subset \mathcal{A}^G$  such that there exists a set of forbidden patterns  $\mathcal{F} \subset \mathcal{A}^*_G$  where  $\mathcal{A}^*_G := \bigcup_{F \subset G, |F| < \infty} \mathcal{A}^F$  such that :

$$X = X_{\mathcal{F}} := \{x \in \mathcal{A}^{\mathcal{G}} | \forall g \in \mathcal{G}, P \in \mathcal{F} : \sigma_g(x) | supp(P) \notin \mathcal{F} \}.$$

Where the shift action  $\sigma: \mathcal{G} \times \mathcal{A}^{\mathcal{G}} \to \mathcal{A}^{\mathcal{G}}$  is such that

$$(\sigma_g(x))_h = x_{g^{-1}h}.$$

**Example :** *S*-**Fibonacci shift.** Let  $\mathcal{A} = \{0, 1\}$ ,  $S \subset G$  a finite generator of *G* and  $\mathcal{F} = \{1^{\{1_G, s\}}, s \in S\}$  then  $X_{fib,S} = X_{\mathcal{F}}$  is the *S*-Fibonacci shift.

### Example : S-Fibonacci shift for $G = F_2$



#### G-SFTs

A *G*-subshift *X* over A is said to be a *G*-subshift of finite type (*G*-SFT) if there exists a finite set of patterns F such that  $X = X_{F}$ .

#### G-SFTs

A *G*-subshift *X* over A is said to be a *G*-subshift of finite type (*G*-SFT) if there exists a finite set of patterns F such that  $X = X_F$ .

#### Sofic G-subshifts

A *G*-subshift *Y* over *A* is said to be a sofic *G*-subshift if there exists a *G*-SFT *X* and a local surjective sliding block code. That is :  $\Phi : \mathcal{A}_X^F \to \mathcal{A}_Y$  such that  $\phi : X \to Y$  defined by  $\phi(x)_g = \Phi(\sigma_{g^{-1}}(x)|_F)$  is surjective.

**Example :** S-**Fibonacci shift.** For every group G generated by a finite set S the S-Fibonacci shift is a G-SFT.

# $X_{<1}$ is a sofic $F_2$ -subshift.



*Remark :* These classes are interesting from a computational perspective because they can be defined with a finite amount of data. How far can we take this idea?

*Remark :* These classes are interesting from a computational perspective because they can be defined with a finite amount of data. How far can we take this idea ?

#### Definition : Effectiveness in $\mathbb{Z}$

A  $\mathbb{Z}$ -subshift  $X \subset \mathcal{A}^{\mathbb{Z}}$  is said to be effective if there is a recognizable set  $\mathcal{F} \subset \mathcal{A}^*$  such that  $X = X_{\mathcal{F}}$ .

*Remark :* These classes are interesting from a computational perspective because they can be defined with a finite amount of data. How far can we take this idea ?

#### Definition : Effectiveness in $\mathbb{Z}$

A  $\mathbb{Z}$ -subshift  $X \subset \mathcal{A}^{\mathbb{Z}}$  is said to be effective if there is a recognizable set  $\mathcal{F} \subset \mathcal{A}^*$  such that  $X = X_{\mathcal{F}}$ .

**Example : Context-free subshift.** Consider  $\mathcal{A} = \{a, b, c\}$ ,  $\mathcal{F} = \{ab^k c^l a | k, l \in \mathbb{N}_0, k \neq l\}$ . The subshift  $X = X_{\mathcal{F}}$  is the context free subshift. It is not a sofic  $\mathbb{Z}$ -subshift but it is effective.

# Outline



- 2 Effectiveness in groups
- 3 Relation with Soficness
- 4 Conclusions and perspectives

# Effectiveness in $\mathbb{Z}^d$

*Question :* How can the idea of effectiveness be translated into general groups ?

# Effectiveness in $\mathbb{Z}^d$

Question : How can the idea of effectiveness be translated into general groups? Remark : In  $\mathbb{Z}^d$  it is easy : Code patterns as a sequence of triples (i, j, a) where i, j code the position in  $\mathbb{Z}^2$  and  $a \in \mathcal{A}$  is the symbol at position (i, j).

# Effectiveness in $\mathbb{Z}^d$

Question : How can the idea of effectiveness be translated into general groups? Remark : In  $\mathbb{Z}^d$  it is easy : Code patterns as a sequence of triples (i, j, a) where i, j code the position in  $\mathbb{Z}^2$  and  $a \in \mathcal{A}$  is the symbol at position (i, j).

#### Definition :

A  $\mathbb{Z}^d$ -subshift  $X \subset \mathcal{A}^{\mathbb{Z}^d}$  is said to be effective if there is a set  $\mathcal{F} \subset \mathcal{A}^*_{\mathbb{Z}^d}$  such that  $X = X_{\mathcal{F}}$  and a Turing machine which accepts a coding if and only if it is both consistent and the pattern it codes belongs to  $\mathcal{F}$ .

# Pattern codings

*Question* : How can one generalize such a coding for an arbitrary finitely generated group G?

# Pattern codings

*Question* : How can one generalize such a coding for an arbitrary finitely generated group G?

#### Definition : Pattern Coding

Let  $S \subset G$  be a finite generator. A pattern coding c is a finite set of tuples  $c = (w_i, a_i)_{1 \le i \le n}$  where  $w_i \in (S \cup S^{-1})^*$  and  $a_i \in A$ . c is consistent if for every pair of tuples  $w_i, w_j$  which represent the same element in G then  $a_i = a_j$ . For a consistent pattern coding c we associate the pattern  $\Pi(c) \in \mathcal{A}_G^*$  such that  $supp(\Pi(c)) = \bigcup_{i \in I} w_i$  and  $\Pi(c)_{w_i} = a_i$ .

Consider the group  $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$ .

Consider the group  $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$ .

The pattern coding

$$(\epsilon, 0)$$
  $(b, 1)$   $(a, 1)$   
 $(ab, 0)$   $(ba^2, 0)$   $(ba, 1)$ 

Consider the group  $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$ .

The pattern coding

$$(\epsilon, 0)$$
  $(b, 1)$   $(a, 1)$   
 $(ab, 0)$   $(ba^2, 0)$   $(ba, 1)$ 

is *consistent* and defines the pattern



Consider the group  $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$ .

The pattern coding

$$(\epsilon, 0)$$
  $(b, 1)$   $(a, 1)$   
 $(ab, 0)$   $(ba^2, 0)$   $(ba, 1)$ 

is consistent and defines the pattern



The pattern coding

$$\begin{array}{ll} (\epsilon,0) & (a^2,1) & (bab^{-1}a,1) \\ (a,1) & (ba,1) & (abab^{-1},0) \end{array}$$

Consider the group  $BS(1,2) = \langle a, b \mid ab = ba^2 \rangle$ .

The pattern coding

$$(\epsilon, 0)$$
  $(b, 1)$   $(a, 1)$   
 $(ab, 0)$   $(ba^2, 0)$   $(ba, 1)$ 

is consistent and defines the pattern



#### The pattern coding

$$\begin{array}{ll} (\epsilon,0) & (a^2,1) & (bab^{-1}a,1) \\ (a,1) & (ba,1) & (abab^{-1},0) \end{array}$$

is *inconsistent* since  $abab^{-1}$  and  $bab^{-1}a$  represent the same element.

# First approach : $\mathbb{Z}$ -effectiveness

### Let G be a finitely generated group and $S \subset G$ a finite generator.
## First approach : $\mathbb{Z}$ -effectiveness

## Let G be a finitely generated group and $S \subset G$ a finite generator.

#### Definition : $\mathbb{Z}$ -effectiveness

A *G*-subshift  $X \subset \mathcal{A}^G$  is  $\mathbb{Z}$ -effective if there is  $\mathcal{F} \subset \mathcal{A}_G^*$  such that  $X = X_F$  and a Turing machine *T* that accepts a pattern coding *c* if and only if it is either inconsistent or  $\Pi(c) \in \mathcal{F}$ .

## First approach : $\mathbb{Z}$ -effectiveness

## Let G be a finitely generated group and $S \subset G$ a finite generator.

#### Definition : $\mathbb{Z}$ -effectiveness

A *G*-subshift  $X \subset \mathcal{A}^G$  is  $\mathbb{Z}$ -effective if there is  $\mathcal{F} \subset \mathcal{A}_G^*$  such that  $X = X_F$  and a Turing machine *T* that accepts a pattern coding *c* if and only if it is either inconsistent or  $\Pi(c) \in \mathcal{F}$ .

*Question :* Is it always possible to recognize if a pattern coding is inconsistent ?

## Definition : Word problem

Let  $S \subset G$  be a finite generator of G. The word problem of G asks whether two words on  $S \cup S^{-1}$  are equivalent in G. Formally :

$$WP(G) = \left\{ w \in \left( S \cup S^{-1} \right)^* \mid w =_G 1_G \right\}.$$

## Definition : Word problem

Let  $S \subset G$  be a finite generator of G. The word problem of G asks whether two words on  $S \cup S^{-1}$  are equivalent in G. Formally :

$$WP(G) = \left\{ w \in \left( S \cup S^{-1} \right)^* \mid w =_G \mathbb{1}_G \right\}.$$

**Example : Decidable word problem.** The word problem for  $\mathbb{Z}^2 \simeq \langle a, b | ab = ba \rangle$  is :

 $WP(\mathbb{Z}^2) = \{ w \in \{a, b, a^{-1}, b^{-1}\}^* \mid |w|_a = |w|_{a^{-1}} \land |w|_b = |w|_{b^{-1}} \}$ 

## Definition : Word problem

Let  $S \subset G$  be a finite generator of G. The word problem of G asks whether two words on  $S \cup S^{-1}$  are equivalent in G. Formally :

$$WP(G) = \left\{ w \in \left( S \cup S^{-1} \right)^* \mid w =_G \mathbb{1}_G \right\}.$$

**Example : Decidable word problem.** The word problem for  $\mathbb{Z}^2 \simeq \langle a, b | ab = ba \rangle$  is :

$$WP(\mathbb{Z}^2) = \{ w \in \{a, b, a^{-1}, b^{-1}\}^* \mid |w|_a = |w|_{a^{-1}} \land |w|_b = |w|_{b^{-1}} \}$$

**Example : Undecidable word problem.** If  $f : \mathbb{N} \to \{0, 1\}$  is non-computable the group  $G = \langle a, b, c, d \mid ab^n = c^n d, n \in f^{-1}(1) \rangle$  has undecidable word problem.

## Finitely generated groups

A finitely generated group G is said to be :

- Finitely presented if there is a presentation  $G \simeq \langle S, R \rangle$  where both S and R are finite.
- Recursively presented if there is a presentation G \approx \langle S, R \rangle where S is finite and R is recognizable.

## Finitely generated groups

A finitely generated group G is said to be :

- Finitely presented if there is a presentation  $G \simeq \langle S, R \rangle$  where both S and R are finite.
- Recursively presented if there is a presentation G ≃ (S, R) where S is finite and R is recognizable.

## Remark [Theorem : Novikov(55), Boone(58)]

There are finitely presented groups with undecidable word problem !

## Finitely generated groups

A finitely generated group G is said to be :

- Finitely presented if there is a presentation  $G \simeq \langle S, R \rangle$  where both S and R are finite.
- Recursively presented if there is a presentation G ≃ (S, R) where S is finite and R is recognizable.

### Theorem

Let  $|\mathcal{A}| \geq 2$  then the following are equivalent :

- G is recursively presented.
- The WP(G) is recognizable.
- The set of inconsistent patterns codings is recognizable.

*Remark* : If *G* is not recursively presented, the only  $\mathbb{Z}$ -effective *G*-subshifts are the ones defined over alphabets with one symbol and the empty subshift !

**Remark** : If G is not recursively presented, the only  $\mathbb{Z}$ -effective G-subshifts are the ones defined over alphabets with one symbol and the empty subshift ! **Remark** : Even if G is finitely presented, there are simple subshifts

which are not  $\mathbb{Z}$ -effective!

*Remark* : If *G* is not recursively presented, the only  $\mathbb{Z}$ -effective *G*-subshifts are the ones defined over alphabets with one symbol and the empty subshift ! *Remark* : Even if *G* is finitely presented, there are simple subshifts

which are not  $\mathbb{Z}$ -effective!

#### Theorem

The one-or-less subshift :

$$X_{\leq 1} := \{x \in \{0,1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1\}.$$

is not  $\mathbb{Z}$ -effective if WP(G) is undecidable.

## New idea : Don't codify anything !

## New idea : Don't codify anything !

#### Definition : G-machine

A *G*-machine is a Turing machine whose tape has been replaced by the group *G*. The transition function is  $\delta: Q \times \Sigma \to Q \times \Sigma \times (S \cup S^{-1} \cup \{1_G\})$  where *S* is a finite set of generators of *G*.

## New idea : Don't codify anything !

### Definition : G-machine

A *G*-machine is a Turing machine whose tape has been replaced by the group *G*. The transition function is  $\delta: Q \times \Sigma \to Q \times \Sigma \times (S \cup S^{-1} \cup \{1_G\})$  where *S* is a finite set of generators of *G*.

*Remark* : Computation is over patterns of  $\Sigma_G^*$  instead of  $\Sigma^*$ .

Conclusions and perspectives

## Example : Transition in a $F_2$ -machine



#### Definition :

- A set of patterns *P* ⊆ *A*<sup>\*</sup><sub>G</sub> is said to be recognizable if there is a *G*-machine which accepts if and only if *P* ∈ *P*.
- A set of patterns *P* ⊆ *A*<sup>\*</sup><sub>G</sub> is said to be decidable if there is a *G*-machine which accepts if *P* ∈ *P* and rejects otherwise.

#### Definition :

- A set of patterns *P* ⊆ *A*<sup>\*</sup><sub>G</sub> is said to be recognizable if there is a *G*-machine which accepts if and only if *P* ∈ *P*.
- A set of patterns *P* ⊆ *A*<sup>\*</sup><sub>G</sub> is said to be decidable if there is a *G*-machine which accepts if *P* ∈ *P* and rejects otherwise.

#### G-effectiveness

A *G*-subshift  $X \subset \mathcal{A}^G$  is *G*-effective if there exists a set of forbidden patterns  $\mathcal{F}$  such that  $X = X_{\mathcal{F}}$  and  $\mathcal{F}$  is *G*-recognizable.

*Remark :* The set of forbidden patterns  $\mathcal{F}$  can be chosen to be maximal.

#### Theorem

The one-or-less subshift  $X_{\leq 1}$  is G-effective for every finitely generated group G.

#### Theorem

The one-or-less subshift  $X_{\leq 1}$  is G-effective for every finitely generated group G.

#### Theorem

Let G be an infinite, finitely generated group, then every  $\mathbb{Z}$ -effective subshift is G-effective.

#### Theorem

The one-or-less subshift  $X_{\leq 1}$  is G-effective for every finitely generated group G.

#### Theorem

Let G be an infinite, finitely generated group, then every  $\mathbb{Z}$ -effective subshift is G-effective.

- Initiate a backtracking over G in order to mark a one sided-infinite path.
- Use the path to simulate one-sided Turing machines.

Conclusions and perspectives

## The construction for the previous theorem.



#### Theorem

• Let G be finitely generated group with decidable word problem then every G-effective subshift is Z-effective.

- Let G be finitely generated group with decidable word problem then every G-effective subshift is Z-effective.
- The class of G-effective subshifts is closed under factors.

- Let G be finitely generated group with decidable word problem then every G-effective subshift is Z-effective.
- The class of G-effective subshifts is closed under factors.
- Every G-SFT is G-effective.

- Let G be finitely generated group with decidable word problem then every G-effective subshift is Z-effective.
- The class of G-effective subshifts is closed under factors.
- Every G-SFT is G-effective.
- Every Sofic G-subshift is G-effective.

- Let G be finitely generated group with decidable word problem then every G-effective subshift is Z-effective.
- The class of G-effective subshifts is closed under factors.
- Every G-SFT is G-effective.
- Every Sofic G-subshift is G-effective.



# Outline



- 2 Effectiveness in groups
- 3 Relation with Soficness
- 4 Conclusions and perspectives

# For which groups are there *G*-effective subshifts which are not sofic?

#### First Case

If G is a recursively presented group with undecidable word problem there exists G-effective subshifts which are not sofic.

# For which groups are there *G*-effective subshifts which are not sofic?

#### First Case

If G is a recursively presented group with undecidable word problem there exists G-effective subshifts which are not sofic.

Proof :  $X_{\leq 1}$ .

# For which groups are there *G*-effective subshifts which are not sofic?

#### First Case

If G is a recursively presented group with undecidable word problem there exists G-effective subshifts which are not sofic.

Proof :  $X_{\leq 1}$ . *Question :* Is it possible to construct *G*-effective subshifts which are not sofic in big classes of groups ?

## Definition of amenability

 A group G is called amenable if there exists a left-invariant finitely additive probability measure μ : P(G) → [0, 1] on G.

## Definition of amenability

- A group G is called amenable if there exists a left-invariant finitely additive probability measure μ : P(G) → [0, 1] on G.
- A group G is called amenable if it admits a net (F<sub>α</sub>)<sub>α∈J</sub> of non-empty finite sets F<sub>α</sub> ⊂ G such that ∀g ∈ G :

$$\lim_{\alpha} \frac{|F_{\alpha} \setminus F_{\alpha}g|}{|F_{\alpha}|} = 0.$$

## Definition of amenability

- A group G is called amenable if there exists a left-invariant finitely additive probability measure μ : P(G) → [0, 1] on G.
- A group G is called amenable if it admits a net (F<sub>α</sub>)<sub>α∈J</sub> of non-empty finite sets F<sub>α</sub> ⊂ G such that ∀g ∈ G :

$$\lim_{\alpha} \frac{|F_{\alpha} \setminus F_{\alpha}g|}{|F_{\alpha}|} = 0.$$

• If G is finitely generated, the net can just be seen as a sequence.

## Definition of amenability

- A group G is called amenable if there exists a left-invariant finitely additive probability measure μ : P(G) → [0, 1] on G.
- A group G is called amenable if it admits a net (F<sub>α</sub>)<sub>α∈J</sub> of non-empty finite sets F<sub>α</sub> ⊂ G such that ∀g ∈ G :

$$\lim_{\alpha} \frac{|F_{\alpha} \setminus F_{\alpha}g|}{|F_{\alpha}|} = 0.$$

- If G is finitely generated, the net can just be seen as a sequence.
- If G is generated by a finite set S ⊂ G, amenability reduces to :

$$\inf_{F \subset G, |F| < \infty} |\partial F| / |F| = 0.$$

# Amenability

## Examples of amenable groups

- Finite groups.
- Abelian groups  $(\mathbb{Z}^d)$ .
- Nilpotent groups (Heisenberg group).
- Groups of sub-exponential growth (Grigorchuk group).
- Solvable groups  $(BS(1,2), \text{ lamplighter group } \mathbb{Z}_2 \wr \mathbb{Z}).$

# Amenability

## Examples of amenable groups

- Finite groups.
- Abelian groups  $(\mathbb{Z}^d)$ .
- Nilpotent groups (Heisenberg group).
- Groups of sub-exponential growth (Grigorchuk group).
- Solvable groups  $(BS(1,2), \text{ lamplighter group } \mathbb{Z}_2 \wr \mathbb{Z}).$

## Examples of non-amenable groups

- Free groups.
- Groups containing  $F_2$  as a subgroup.
- Tarksi monsters (counterexamples to Von Neumann's conjecture).
## Amenability

#### Second case :

For every infinite, amenable and finitely generated group G there are G-effective subshifts which are not sofic.

## Amenability

#### Second case :

For every infinite, amenable and finitely generated group G there are G-effective subshifts which are not sofic.

Proof : Similar to the one for the mirror shift.

## Mirror shift

Let  $\mathcal{A} = \{ \Box, \blacksquare, \blacksquare \}$  and consider the following set of forbidden patterns  $F_{mirror}$ :

$$\left\{ \boxed{\phantom{a}}, \boxed{\phantom{a}}, \boxed{\phantom{a}}, \boxed{\phantom{a}}, \boxed{\phantom{a}}, \boxed{\phantom{a}} \right\} \cup \bigcup_{w \in \mathcal{A}^*} \left\{ \boxed{\phantom{a}} w \boxed{\phantom{a}}, \boxed{\phantom{a}} w \boxed{\phantom{a}} w \boxed{\phantom{a}}, \boxed{\phantom{a}} w \boxed{\phantom{a}}, \boxed{\phantom{a}} w \boxed{\phantom{a}} w \boxed{\phantom{a}}, \boxed{\phantom{a}} w \boxed{\phantom{a}} w \boxed{\phantom{a}} w \boxed{\phantom{a}}, \boxed{\phantom{a}} w \boxed{\phantom{a}} w$$

where  $\tilde{w}$  denotes the mirror image of the word w, which is the word of length |w| defined by  $(\tilde{w})_i = w_{|w|-i+1}$  for all  $1 \le i \le |w|$ .

# Mirror shift



Conclusions and perspectives

### Proof that the mirror shift is not sofic



## Amenable case : Ball mimic subshift

 $\mathcal{G}=(g_i)_{i\in\mathbb{N}}\subset G$  and  $\mathcal{H}=(h_i)_{i\in\mathbb{N}}\subset G$  be two sequences such that :

- The sets  $(g_iB_i)_{i\in\mathbb{N}}$  and  $(h_iB_i)_{i\in\mathbb{N}}$  are pairwise disjoint.
- They don't contain 1<sub>G</sub>.

### Amenable case : Ball mimic subshift

 $\mathcal{G}=(g_i)_{i\in\mathbb{N}}\subset G$  and  $\mathcal{H}=(h_i)_{i\in\mathbb{N}}\subset G$  be two sequences such that :

- The sets  $(g_iB_i)_{i\in\mathbb{N}}$  and  $(h_iB_i)_{i\in\mathbb{N}}$  are pairwise disjoint.
- They don't contain  $1_G$ .

#### Definition :

The ball mimic subshift  $X_B(\mathcal{G}, \mathcal{H}) \subset \{0, 1, \boxtimes\}^G$  is *G*-subshift such that in every configuration  $x \in X_B(\mathcal{G}, \mathcal{H})$  the symbol  $\boxtimes$  appears at most once, and if for  $\overline{g} \in G \ x_{\overline{g}} = \boxtimes$  then  $\forall i \in \mathbb{N}$ :

$$\sigma_{(\bar{g}g_i)^{-1}}(x)|_{B_i} = \sigma_{(\bar{g}h_i)^{-1}}(x)|_{B_i}$$

## Amenable case : Ball mimic subshift

 $\mathcal{G}=(g_i)_{i\in\mathbb{N}}\subset G$  and  $\mathcal{H}=(h_i)_{i\in\mathbb{N}}\subset G$  be two sequences such that :



#### Ends in a group

Let *G* be a group generated by a finite set  $S \subset G$ . The number of ends e(G) of the group *G* is the limit as *n* tends to infinity of the number of infinite connected components of  $\Gamma(G, S) \setminus B_n$ .

#### Ends in a group

Let G be a group generated by a finite set  $S \subset G$ . The number of ends e(G) of the group G is the limit as n tends to infinity of the number of infinite connected components of  $\Gamma(G, S) \setminus B_n$ .

### List of remarks :

• The number of ends does not depend on the choice of S and is a group invariant.

### Ends in a group

Let *G* be a group generated by a finite set  $S \subset G$ . The number of ends e(G) of the group *G* is the limit as *n* tends to infinity of the number of infinite connected components of  $\Gamma(G, S) \setminus B_n$ .

- The number of ends does not depend on the choice of S and is a group invariant.
- $e(G) \in \{0, 1, 2, \infty\}.$

#### Ends in a group

Let *G* be a group generated by a finite set  $S \subset G$ . The number of ends e(G) of the group *G* is the limit as *n* tends to infinity of the number of infinite connected components of  $\Gamma(G, S) \setminus B_n$ .

- The number of ends does not depend on the choice of S and is a group invariant.
- $e(G) \in \{0, 1, 2, \infty\}.$
- e(G) = 2 if and only if G is infinite and virtually cyclic.

### Ends in a group

Let *G* be a group generated by a finite set  $S \subset G$ . The number of ends e(G) of the group *G* is the limit as *n* tends to infinity of the number of infinite connected components of  $\Gamma(G, S) \setminus B_n$ .

- The number of ends does not depend on the choice of S and is a group invariant.
- $e(G) \in \{0, 1, 2, \infty\}.$
- e(G) = 2 if and only if G is infinite and virtually cyclic.
- If e(G) = ∞ Stallings theorem implies that G contains a non-abelian free group.

### Ends in a group

Let *G* be a group generated by a finite set  $S \subset G$ . The number of ends e(G) of the group *G* is the limit as *n* tends to infinity of the number of infinite connected components of  $\Gamma(G, S) \setminus B_n$ .

- The number of ends does not depend on the choice of S and is a group invariant.
- $e(G) \in \{0, 1, 2, \infty\}.$
- e(G) = 2 if and only if G is infinite and virtually cyclic.
- If e(G) = ∞ Stallings theorem implies that G contains a non-abelian free group.
- Every virtually free group satisfies  $e(G) \ge 2$ .

#### Third case :

For every finitely generated group G such that  $e(G) \ge 2$  there are G-effective subshifts which are not sofic.

## The mimic subshift



# Outline

## Background

- 2 Effectiveness in groups
- 3 Relation with Soficness
- 4 Conclusions and perspectives

► A natural notion for effectiveness in finitely generated groups.

- ► A natural notion for effectiveness in finitely generated groups.
- ▶ Examples of *G*-effective but not sofic subshifts in :
  - Recursively presented groups with undecidable word problem.
  - Infinite amenable groups.
  - Groups which have two or more ends.

- ► A natural notion for effectiveness in finitely generated groups.
- ▶ Examples of *G*-effective but not sofic subshifts in :
  - **1** Recursively presented groups with undecidable word problem.
  - Infinite amenable groups.
  - I Groups which have two or more ends.

*Remark* : The three classes do not cover every finitely generated group.

Examples : Tarski monsters.

- ► A natural notion for effectiveness in finitely generated groups.
- ▶ Examples of *G*-effective but not sofic subshifts in :
  - **1** Recursively presented groups with undecidable word problem.
  - Infinite amenable groups.
  - I Groups which have two or more ends.

*Remark* : The three classes do not cover every finitely generated group.

#### Examples : Tarski monsters.

*Question* : Is it true that for every infinite and finitely generated group G the class of G-effective subshifts is strictly larger than the class of sofic G-subshifts.

# Merci beaucoup pour votre attention !

Avez-vous des questions?