Background

Let G be a finitely generated group. A G-machine is a Turing machine whose tape has been replaced by the group G. The transition function is $\delta: Q \times \Sigma \rightarrow$ $Q \times \Sigma \times (S \cup S^{-1} \cup \{1_G\})$ where S is a finite set of generators of G.

Let \mathcal{A} be a finite alphabet. A set of patterns $\mathcal{F} \subset$ $\mathcal{A}_G^* := \bigcup_{F \subset G, |F| < \infty} \mathcal{A}^F$ is said to be *G*-recognizable if there exists a G machine which reaches an accepting state for a pattern P if and only if $P \in \mathcal{F}$.

Definition: *G***-effectiveness**

A G-subshift $X \subset \mathcal{A}^G$ is said to be G-effective if there exists a G-recognizable set $\mathcal{F} \subset \mathcal{A}_G^*$ such that $X = X_{\mathcal{F}} := \{ x \in \mathcal{A}^G \mid \forall P \in \mathcal{F}, P \not\sqsubset x \}$

Facts about G-effectiveness

- The class of *G*-effective subshifts is closed under factor codes.
- Every G-SFT and sofic G-subshift is G-effective.

Sofic

→ Z-effective G-effective decidable WP

Effectiveness in finitely generated groups.

Sebastián Barbieri, joint work with Nathalie Aubrun and Mathieu Sablik. MC2, LIP, ENS Lyon, CNRS, INRIA, Université Lyon 1, Université de Lyon.

Abstract

A general notion of effectiveness for finitely generated groups is presented by using a Turing machine which has a finitely generated group as a tape, giving thus a natural formulation of Turing machines which have access to an oracle of the word problem of that group. The class of G-effective subshifts is invariant under factors and is strictly larger than the one of G-sofic subshifts for some classes of groups.

What about the classical approach?

A pattern coding is a set of tuples $c = (w_i, a_i)_{1 \le i \le n}$ such that w_i is a word over a set of generators S of G and $a_i \in \mathcal{A}$. It is said to be consistent if words which represent the same element have the same symbol associated. A subshift $X \subset \mathcal{A}^G$ is said to be \mathbb{Z} -effective if there exists $\mathcal{F} \subseteq \mathcal{A}_G^*$ such that $X = X_{\mathcal{F}}$ and a Turing machine which enumerates a set of pattern codings such that the consistent ones codify \mathcal{F} .

Theorem

The class of G-effective subshifts is equal to the class of G-subshifts for which there is a Turing machine with oracle the word problem of G which satisfies the conditions of \mathbb{Z} -effectiveness.

Construction showing that \mathbb{Z} -effective subshifts are G-effective.

Reference

[1] N. Aubrun, S. Barbieri and M. Sablik. A notion of effectiveness for subshifts on finitely generated groups, arXiv:1412.2582.

Properties of Z-effectiveness

- If G is infinite and finitely generated every \mathbb{Z} -effective subshift is G-effective. • If G has decidable word problem every G-effective
- subshift is \mathbb{Z} -effective.
- If G has undecidable word problem, there are
- G-effective subshifts which are not \mathbb{Z} -effective. One such example is the *one-or-less subshift*:
 - $X_{\leq 1} = \left\{ x \in \{0, 1\}^G \mid |\{g \in G : x_g = 1\}| \leq 1 \right\}.$

The ball mimic subshift is given by two sequences $(g_i)_{i\in\mathbb{N}}$ and $(h_i)_{i\in\mathbb{N}}$. If \boxtimes appears in position \bar{g} , then $\forall i \in \mathbb{N}, x_{\bar{q}q_iB_i}$ and $x_{\bar{q}h_iB_i}$ coincide.

Third case: G has two or more ends.

If S generates G it is possible to disconnect $\Gamma(G,S)$ in two or more infinite connected components. One can force non-local constrains between the components to produce a counterexample.

Solutions to the Von Neumann conjecture provide nonamenable groups which do not contain a free group on two generators, thus one ended. The Tarski monster groups provide a continuum of non-isomorphic cases which don't fall in the categories above.

For which G are there G-effective but non-sofic *G*-subshifts?

First case: G recursively presented with undecidable word problem.

 $X_{<1}$ is G-effective but not sofic in this case.

Second case: G is amenable.

Using that $\inf_{F \subset G, |F| < \infty} |\partial F| / |F| = 0$ it is possible to adapt the proof that the mirror shift is non-sofic for the *ball mimic subshift*.

Examples of groups where the answer is not known