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Resumen

Definimos una noción bien portada de cuasi-isometŕıa computable entre espacios métricos
computables y damos tres resultados. Primero, mostramos la existencia de dos espacios métricos
computables X e Y tales que hay una incrustación cuasi-isométrica de X en Y pero no hay nin-
guna incrustación cuasi-isométrica computable. Segundo, demostramos que los grupos Fuchsianos
cocompactos son todos computablemente cuasi-isométricos. Tercero, como corolario, obtenemos
que los subshifts de tipo finito sobre grupos Fuchsianos cocompactos comparten la misma clase de
grados de Medvedev.

Palabras clave: Análisis computable, grupos Fuchsianos, dinámica simbólica.

Abstract

We define a well-behaved notion of computable quasi-isometry between computable metric
spaces and then give three results. First, we show the existence of two computable metric spaces
X and Y such that there is a quasi-isometric embedding of X into Y but there is no computable
quasi-isometric embedding. Second, we prove that all cocompact Fuchsian groups are computably
quasi-isometric. Third, we get as a corollary that the subshifts of finite type over cocompact
Fuchsian groups share the same class of Medvedev degrees.

Keywords: Computable analysis, Fuchsian groups, symbolic dynamics.
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por introducirme a la teoŕıa geométrica de grupos. Cada uno ha sido un pilar fundamental en mi
formación.

Agradezco a todos los amigos y colegas que me han acompañado en estos 6 años. A los distinguidos
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Introduction

The notion of an effective procedure has been intuitively understood since at least the time of the
ancient Greeks. For instance, circa 300 BC Euclid described in the Elements his well-known algo-
rithm to compute the greatest common divisor of two integers. However, this notion was formalized
only recently in the 1930s with the work of Alonzo Church, Kurt Gödel, Stephen Kleene and Alan
Turing. The famous paper that Turing published in 1936 [29] is considered to be the cornerstone of
computability theory.

Algorithms are ubiquituous in mathematics, so it is no surprise that computability theory has
found applications in many of its branches. One instance is computable structure theory (also known
as computable algebra), which is the study of algebraic structures whose operations and relations are
computable (see [9], [24] or [1] for an introduction). More precisely, it studies computable presentations
of structures, rather than the abstract structures by themselves. An important fact is that a particular
structure, say a group, may have multiple different computable presentations or even none at all. That
is to say, one can have two presentations which are isomorphic but not computably isomorphic.

Another application is computable analysis, which examines the computability properties of objects
from classical analysis, such as the real numbers, continuous functions, integrable functions, etc. (see
[5] and [30]). The fundamental concept in this theory are again computable presentations, but of
metric spaces. One can observe a clear analogy between computable structures and computable metric
spaces. Melnikov in his article [23] systematically studied this analogy and gave various examples of
computably categorical metric spaces, i.e., metric spaces which have a computably unique computable
presentation. In addition, he showed that the space of continuous functions on the unit interval is not
computably categorical.

Relevant to this thesis is geometric group theory. This is a vast subject of mathematics greatly
influenced by Gromov [13], who studied the large-scale geometry of groups, that is, the geometry
preserved under quasi-isometries. Intuitively, two metric spaces are quasi-isometric if they resemble
each other when looking from far away. For example Z and R are quasi-isometric. It turns out that
each finitely generated group has a unique well-defined large-scale geometry, so we may speak of quasi-
isometric groups. From here, one analyzes how the properties of a group are related with its large-scale
geometry.

This thesis aims at exploring the applications of computable analysis to geometric group theory and
more generally to large-scale geometry. Not much work seems to have beeen done in this respect. Mel-
nikov’s article [23] mentions at the very last line the possibility of studying computable quasi-isometries
between computable metric spaces. The work of Khoussainov and Takisaka [17] studies the large-scale
geometry of infinite strings and in particular it analyzes the computability of quasi-isometries between
computable infinite strings. They asked if there exists a pair of quasi-isometric computable strings
with no computable quasi-isometry between them. This was later solved in the positive in [7]. Lastly,
the main inspiration for this work is the preprint [3] by Barbieri and Carrasco-Vargas, where they in-
troduce computable quasi-isometries between groups while studying the Medvedev degrees of symbolic
dynamical systems over groups.

The main contribution of this thesis is setting the foundation for this study by defining a well-
behaved notion of computable quasi-isometry between computable metric spaces, where well-behaved
means that it induces an equivalence relation in the class of computable metric spaces. Once this
definition is in place, we give three results.

• The first result is showing that this notion does not coincide with standard quasi-isometries. More
precisely, we construct a computable metric space which admits a quasi-isometric embedding
of the naturals N but does not admit a computable quasi-isometric embedding of N. This is
analogous to the result in [7] but in a slightly different context.

• The second result is giving a non-trivial instance of computably quasi-isometric groups. We prove
that all cocompact Fuchsian groups are computably quasi-isometric to the hyperbolic plane. This
solves a question posed in [3].

• The last result is an application of the previous one to symbolic dynamics. By using a result
from [3] we show that subshifts of finite type over cocompact Fuchsian groups share the same
class of Medvedev degrees.
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This dissertation is divided into four chapters. In the first one we set out the necessary background
from computability theory, geometric group theory and Fuchsian groups.

The second chapter is the main one and it is divided in three sections. In the first section we
introduce computable metric spaces and some basic properties. Our first two results are contained in
the second and third section respectively.

The third chapter describes the application to symbolic dynamics. We introduce some basic def-
initions from symbolic dynamics and see how computability is applied. We then describe Medvedev
reducibility and prove our last result.

Lastly, in the fourth chapter we briefly discuss further possible work and some questions which
were left open.

2



1 Preliminaries

We start by fixing some notation. We denote by N = {0, 1, 2, . . . } the set of natural numbers. We
identify each n ∈ N with the set of its predecessors {0, 1, . . . , n − 1}. Given sets A,B, we write BA

for the set of all functions f : A → B. Thus, 2N is the set of binary sequences and Nn is the set of
n−tuples of natural numbers. We implicitly identify subsets A ⊆ N with their characteristic functions
χA ∈ 2N. We write f :⊆ A → B to denote a partial function from A to B, that is, a function whose
domain is a subset of A.

The set of strings or words over a set A is the set A<N =
⋃∞

n=0A
n. The length l(σ) of a word

σ ∈ A<N is the number n for which σ ∈ An. Thus, a word is a partial function σ :⊆ N → A with
dom(σ) = l(σ) = {0, 1, . . . , l(σ) − 1}. When l(σ) = 0 we have the empty word which we denote by ε.
A partial ordering ⪯ on A<N is defined by

σ ⪯ τ ⇐⇒ l(σ) ≤ l(τ) and σ(i) = τ(i) for all 0 ≤ i < l(σ),

and we say that σ is a prefix of τ . Similarly, if σ ∈ A<N and x ∈ AN, we define

σ ≺ x ⇐⇒ σ(i) = x(i) for all 0 ≤ i < l(σ).

The Baire space is the set NN equipped with the prodiscrete topology. A natural basis for this
topology are the sets Uσ = {x ∈ NN : σ ≺ x} where σ ∈ N<N. The Cantor space is the subspace 2N of
NN.

1.1 Computability theory

In this section we present the fundamental concepts of computability theory that we will use throughout
this thesis. Computability theory is the study of functions of the natural numbers that can be computed
through a mechanical procedure. In modern terms, this means one can write (at least theoretically)
a computer program that computes the function. There are many equivalent formalizations of this
notion, from which the simplest and most intuitive one is probably the one given by Alan Turing in
1936 [29], where he defines what are now called Turing machines. Once this formalization is done, a
rich and highly versatile theory develops. We will describe the basic definitions and how they can be
translated to sets other than the natural numbers. Then, we show some fundamental properties of the
computably enumerable sets. Finally, we define oracle Turing machines, a concept which formalizes the
notion of relative computability. The interested reader may consult [28] for more information about
this topic.

1.1.1 Turing machines and codings

Informally, a Turing machine consists of: (1) a two-way infinite tape divided into cells, (2) a head
which can read and write symbols one cell of the tape at a time, and (3) a finite set of internal states
Q = {q0, q1, . . . , qn}. Each cell of the tape may be blank (B) or have the symbol 1 on it. The machine
starts on the state q1 reading some cell. Based on the current state and the scanned symbol, the
machine does three things in a single step: change from one state to another, change the scanned
symbol to another one from S = {1, B}, and move the head one cell to the right (R) or left (L). The
behavior of the machine is determined by a partial function δ :⊆ Q × S → Q × S × {R,L} called its
program. We interpret this function as follows: if δ(qi, s) = (qj , s

′, X) then, when the machine is in
state qi reading the symbol s, in the next step it will change to the state qj , replace the symbol s by
s′ and lastly move one cell to the right if X = R (left if X = L). The machine keeps going in this way
until it reaches the state q0 called the halting state.

As we can see, a Turing machine is completely determined by its program, so formally we define a
Turing machine as just a program.

Definition 1.1.1. A Turing machine (or Turing program) is a partial function δ :⊆ Q × S → Q ×
S × {R,L} where Q = {q0, q1, . . . , qn} is a finite set called the states of the machine and S = {1, B}
is called the alphabet.

In order to compute with a Turing machine we need to set up some input and output conventions.
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Figure 1: Turing machine

Input convention: To input n ∈ N, place n+ 1 consecutive 1’s on the tape with the rest of the cells
blank. Then set the head in the starting state q1 reading the leftmost 1.
Output convention: If the machine ever reaches the halting state q0, we say that the machine halts
and the output is the total number of 1’s left on the tape.

If the machine reaches a position (qi, s) which is not in the domain of δ, or it never reaches the
halting state, we say that the machine does not halt and we have no output.

Observe that a machine may halt in some inputs and not halt in others. So, Turing machines
compute partial functions of the natural numbers.

Definition 1.1.2. We say that a Turing machine computes the partial function ψ :⊆ N → N when
ψ(x) = y if and only if the machine with input x eventually halts and yields output y. In that case, ψ
is said to be a partial computable (p.c.) function.

For example, the following machine computes the function f(x) = 0 for all x ∈ N.

δ(q1, 1) = (q1, B,R)

δ(q1, B) = (q0, B,R).

This next one computes the function f(x) = x+ 3.

δ(q1, 1) = (q1, 1, R)

δ(q1, B) = (q2, 1, R)

δ(q2, B) = (q0, 1, R).

A Turing machine may also compute functions of k variables with the folowing input convention:
The vector (n1, . . . , nk) gets coded on the tape as

1 . . . 1︸ ︷︷ ︸
n1+1 times

B 1 . . . 1︸ ︷︷ ︸
n2+1 times

B . . . B 1 . . . 1︸ ︷︷ ︸
nk+1 times

For example, the following machine computes the function f(x, y) = x+ y.

δ(q1, 1) = (q2, B,R)

δ(q2, 1) = (q2, 1, R)

δ(q2, B) = (q3, B,R)

δ(q3, 1) = (q0, B,R).

Turing machines try to capture the notion of an “effective process”, or what we call now an
algorithm. One may ask if Turing machines really achieve this, maybe there is a function which we
consider intuitively computable but cannot be computed by a Turing machine. Over time, many
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people have come up with different attempts to formalize the notion of algorithm but they all turned
to be equivalent to Turing’s definition. Moreover, Turing in his original paper gives a philosophical
argument for why his machines capture all mechanical processes. Simultaneously, his advisor Alonzo
Church made a similar argument for his own formalization, the lambda calculus. This way, they
formulated their famous thesis.

Church-Turing’s thesis. Every “intuitively” computable function is computable by a Turing ma-
chine.

Of course, this claim cannot be formally proven but it is widely accepted as true. We will implic-
itly use Church-Turing’s thesis to prove that a certain function is computable by giving an informal
algorithm that computes it instead of the full Turing program.

Now that we have formalized computability on the natural numbers, we can extend this formaliza-
tion to other countable sets by means of codings. This is the fundamental technique that Gödel used
in the proofs of his famous incompleteness theorems, where he assigned a so called Gödel number to
each logical formula.

Definition 1.1.3. A coding for a set A is a surjection ν : N ↠ A. If a ∈ A and n ∈ N are such that
ν(n) = a, we say that n is a ν-code of a.

Let ν and µ be codings for the sets A and B respectively. A function f : A → B is said to be
(ν, µ)-computable (or simply computable) if there exists a computable function F : N → N such that
for all n ∈ N, f ◦ ν(n) = µ ◦ F (n). That is, the following diagram commutes:

A B

N N

f

F

ν µ

Example 1.1.4 (Basic codings). The following codings and notations will be used extensively through-
out this thesis.

• A coding for Z is given by its standard bijection with N,

ν(n) =

{
n/2 if n is even,

−(n+ 1)/2 if n is odd.

• Given n,m ∈ N, we denote

⟨n,m⟩ = 1

2
(n+m)(n+m+ 1) +m.

This defines a bijection from N2 to N called the standard pairing function. Its inverse is a bijective
coding for N2. Moreover, it is computable, so N and N2 are essentially the same from the point
of view of computability.

• Continuing inductively, we have computable bijections from Nk to N for any k ≥ 1,

⟨n0, . . . , nk−1⟩ = ⟨⟨n0, . . . , nk−2⟩, nk−1⟩.

• Let ν and µ be codings for the sets A and B respectively, we define a coding ν × µ for the set
A×B in the following way. For each u ∈ N, let ⟨(u)0, (u)1⟩ = u, then define

(ν × µ)(u) = (ν((u)0), µ((u)1)).

• The rational numbers Q may be coded as

ν(n) = (−1)(n)0
(n)1

(n)2 + 1
, where ⟨(n)0, (n)1, (n)2⟩ = n.

It is not hard to see that addition (q, r) 7→ q + r and multiplication (q, r) 7→ q · r are (ν × ν, ν)-
computable functions. Note that this coding is not bijective, but we can easily make it so and
preserve the computability of the operations. (See example 2.1.2)
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• A coding for the set N<N of finite strings of natural numbers will be very useful to have. Given
σ ∈ N<N, we denote

⟨σ⟩ =

{
0 if σ is the empty word ε,

⟨l(σ)− 1, ⟨σ(0), σ(1), . . . , σ(l(σ)− 1)⟩⟩+ 1 otherwise.

where l(σ) is the length of σ. This is a bijection between N<N and N, so its inverse is a bijective
coding called the standard coding for N<N. One has to be careful since ⟨.⟩ denotes a different
function depending if the argument is a tuple or a string, so ⟨a, b, c⟩ ̸= ⟨abc⟩ for example.

One easily checks the following functions and relations are computable under the standard coding:

– The length function σ 7→ l(σ).

– The evaluation function (σ, i) 7→ σ(i), i < l(σ).

– Concatenation (σ, τ) 7→ στ .

– The prefix relation ⪯.

A very important coding is one for the set of partial computable functions. Recall that a Turing
program is a partial function δ :⊆ Q × {B, 1} → Q × {B, 1} × {R,L} where Q is a finite set. In
other words, δ is a finite set of quintuples of the form (qi, s, qj , s

′, r), where, i, j ∈ N, s, s′ ∈ {B, 1} and
r ∈ {R,L}. Moreover, this set is consistent in the sense that if (qi, s, qj , t, r) ∈ δ and (qi, s, qk, t

′, r′) ∈ δ
then qj = qk, t = t′ and r = r′.

We define a coding for the set of all quintuples in the following way. Denote s0 = B, s1 = 1, r0 = R
and r1 = L, then a quintuple of numbers ⟨i, k, j, l,m⟩ corresponds to the quintuple (qi, sk, qj , sl, rm).
More precisely, for each t ∈ N, let ⟨i, k, j, l,m⟩ = t and define

ν(t) =

{
(qi, sk, qj , sl, rm) if 0 ≤ k, l,m ≤ 1,

(q0, s0, q0, s0, r0) otherwise.

Now we code all programs. For each e ∈ N, let σ ∈ N<N be the string coded by e and write

Pe = {ν(σ(0)), ν(σ(1)), . . . , ν(σ(l(σ)− 1))},

only if this is a consistent set of quintuples, otherwise we set Pe = ∅ the empty program.

We say that Pe is the e-th Turing program. We denote by φ
(n)
e the partial function of n variables

computed by Pe. We abbreviate φ
(1)
e as φe.

Now that we have coded the partial computable functions, consider the function Ψ :⊆ N2 → N,
defined by Ψ(e, x) = φe(x). One can see that, in the spirit of Church-Turing’s thesis, Ψ is computable:
Take e, find the string σ that it encodes, decode each component of σ into a quintuple and thus recover
the list of quintuples. Then, follow the instructions from this list with x as input until it halts, in that
case, output the result. This is the fundamental result of computability.

Theorem 1.1.5 (Enumeration Theorem). The partial function Ψ :⊆ N2 → N defined by Ψ(e, x) =

φe(x) is computable. Thus, there exists z such that φ
(2)
z (e, x) = φe(x).

Formal proofs of the enumeration theorem may be found in elementary computability theory text-
books such as [28] and [19].

1.1.2 Computably enumerable sets

As usual in computability theory, we now forget about Turing machines and start to build the theory
upon the enumeration theorem and Church-Turing’s thesis.

Definition 1.1.6. Let A ⊆ Nn be a n-ary relation of natural numbers. Notice that, when n = 1, A is
just a set.

• A is said to be computable (or decidable) if its characteristic function χA : Nn → {0, 1} is
computable.
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• A is said to be computably enumerable (c.e.) if it is the domain of some partial computable
function φ : A ⊆ Nn → N.

• A is said to be co-computably enumerable (co-c.e.) if its complement Ac = {x ∈ Nn : x /∈ A} is
c.e.

Proposition 1.1.7. If A is a computable set, then it is c.e.

Proof. Let ψ be the restriction of χA to A, that is,

ψ(x) =

{
1 if x ∈ A,

∅ if x /∈ A,

where ∅ means the function is undefined. Since χA is computable, ψ is computed by the following
algorithm: Given x, evaluate χA(x). If χA(x) = 1 output 1. If χA(x) = 0 enter in an infinite loop so
that we never halt. Therefore ψ is a p.c. function with domain A.

Intuitively speaking, a set A is computable if we have an effective procedure that always halts on
every input n and answers whether n ∈ A or not. A set A is computably enumerable if we have an
effective procedure that halts and gives an answer when n ∈ A, but goes on forever when n /∈ A.
Because of this, computably enumerable sets are also known as semidecidable sets.

The natural question arises: Are there non-computable sets? The answer is yes. The proof of this
is a classical diagonalization argument.

Definition 1.1.8. Given a partial function ψ, if x ∈ dom ψ we say that ψ(x) converges, which we
write as ψ(x) ↓, otherwise, we say that ψ(x) diverges (ψ(x) ↑).

Theorem 1.1.9. The set K = {x : φx(x) ↓} is c.e. but not computable.

Proof. K is the domain of the partial computable function ψ(x) = Ψ(x, x) = φx(x) from the enu-
meration theorem, so it is c.e. (This can also be seen by the Church-Turing’s thesis, since we have a
procedure to semidecide K). Now suppose that K had a computable characteristic function. Then
the following function would be computable

f(x) =

{
φx(x) + 1 if x ∈ K,

0 if x /∈ K.

However, f ̸= φe for any e. Indeed, if e ∈ K, then f(e) = φe(e) + 1 ̸= φe(e). If e /∈ K, then f(e) = 0
and φe(e) ↑.

Thus, there is no algorithm that decides for any x whether x ∈ K or not. This is what is known as
an unsolvable problem. The halting problem is to decide for any x and y whether φx(y) converges, that
is, whether program Px with input y halts. The unsolvability of K lets us establish the unsolvability
of the halting problem.

Corollary 1.1.10. The relation K0 = {(x, y) : φx(y) ↓} is not computable.

Proof. Observe that x ∈ K iff (x, x) ∈ K0. So, if K0 had a computable characteristic function, so
would K, contrary to theorem 1.1.9.

We now turn to some additional properties of c.e. sets and more generally c.e. relations. We
have seen that they are not necessarily computable, but we will see that they are approximated by
computable relations in some sense.

Definition 1.1.11. Let n ≥ 1. We write φ
(n)
e,s (x1, . . . , xn) = y if max(x1, . . . , xn, y, e) < s and y is the

output of φ
(n)
e (x1, . . . , xn) in less than s steps of the Turing program Pe. If such a y exists we say that

φ
(n)
e,s (x1, . . . , xn) converges, which we denote by φ

(n)
e,s (x1, . . . , xn) ↓, otherwise, φ(n)

e,s (x1, . . . , xn) diverges

(φ
(n)
e,s (x1, . . . , xn) ↑). Again, when n = 1 we abbreviate φ

(1)
e,s(x) to φe,s(x).

To reduce notation we abbreviate x⃗ = (x1, . . . , xn) ∈ Nn.
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Proposition 1.1.12. Let n ≥ 1. The following relations are computable:

• {(e, x⃗, s) : φ(n)
e,s (x⃗) ↓},

• {(e, x⃗, y, s) : φ(n)
e,s (x⃗) = y}.

Proof. We give an informal proof with Church-Turing’s thesis. Given e, x⃗, s, we can decide φ
(n)
e,s (x⃗) ↓

by retrieving the program Pe and following s instructions with x⃗ as input. This procedure always
terminates because we have a bound on the number of steps. The second relation is similar.

Notice that since every c.e. relation is the domain of some partial computable function, we have a
coding of the c.e. relations for each n ≥ 1.

Definition 1.1.13. We denote the e-th c.e. n-ary relation by

W (n)
e = dom φ(n)

e = {x⃗ : φ(n)
e (x⃗) ↓},

and
W (n)

e,s = dom φ(n)
e,s = {x⃗ : φ(n)

e,s (x⃗) ↓}.

We abbreviate W
(1)
e =We and W

(1)
e,s =We,s.

Note that φe(x) = y iff φe,s(x) = y for some s and x ∈ We iff x ∈ We,s for some s. Thus,
We =

⋃
s≥0We,s.

Definition 1.1.14. Let A ⊆ Nn be a n-ary relation.

• A is said to be a Σ1 relation if for all x⃗ ∈ Nn we have x⃗ ∈ A ⇐⇒ (∃y)R(x⃗, y), for some
computable relation R ⊆ Nn+1.

• A is said to be a Π1 relation if for all x⃗ ∈ Nn we have x⃗ ∈ A ⇐⇒ (∀y)R(x⃗, y), for some
computable relation R ⊆ Nn+1.

• A is said to be a ∆1 relation if it is both Σ1 and Π1.

This definition is part of a more general concept called the arithmetical hierarchy which we will
not use so we omit its description, see [28, Chapter IV].

Theorem 1.1.15 (Normal Form Theorem). A relation A is c.e. iff A is Σ1.

Proof. We will assume that A is a 1-ary relation, the general case follows the same proof. Let A be
c.e., then, A =We for some e. Hence,

x ∈We ⇐⇒ (∃s)[x ∈We,s] ⇐⇒ (∃s)[φe,s(x) ↓].

By proposition 1.1.12 the relation {(e, x, s) : φe,s ↓} is computable, therefore, A is Σ1.
Let A = {x : (∃y)R(x, y)}, with R computable. We define ψ the following partial function,

ψ(x) =

{
min{y : R(x, y)} if (∃y)R(x, y),
∅ otherwise.

Clearly, dom ψ = A. Now, ψ is computed by the following algorithm: Given x, check R(x, 0), R(x, 1),
R(x, 2), . . . until we find the first y such that R(x, y) = 1 and set it as output. Note that this always
terminates for x in the domain since R is computable. Therefore, A is c.e.

Corollary 1.1.16. A relation A is co-c.e. iff A is Π1.

Proof. Observe that A is Π1 iff its complement Ac is Σ1 since [x⃗ ∈ A ⇐⇒ (∀y)R(x⃗, y)] is equivalent
to [x⃗ /∈ A ⇐⇒ (∃y)¬R(x⃗, y)] and ¬R is still a computable relation.

Corollary 1.1.17. Let A ⊆ Nn+1 be a c.e. relation, then the relation B ⊆ Nn defined by

x⃗ ∈ B ⇐⇒ (∃y)A(x⃗, y),

is c.e. We say that c.e. relations are closed by existential quantification.
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Proof. By the normal form theorem, there is a computable relation R ⊆ Nn+2 such that A(x⃗, y) ⇐⇒
(∃z)R(x⃗, y, z). So,

B(x⃗) ⇐⇒ (∃y)(∃z)R(x⃗, y, z).

Define S ⊆ Nn+1 by
S(x⃗, y) ⇐⇒ (y = ⟨(y)0, (y)1⟩) and R(x⃗, (y)0, (y)1),

where ⟨.⟩ denotes the standard pairing function from example 1.1.4. Since this function and R are
computable, it is easy to see that S is computable, moreover, B(x⃗) ⇐⇒ (∃y)S(x⃗, y). Therefore, B is
Σ1 and thus, c.e.

Now we can prove a more intuitive characterization of the computably enumerable sets which
justifies their name.

Theorem 1.1.18 (Listing Theorem). A set A is c.e. iff A = ∅ or A is the range of a total computable
function f .

Proof. The case A = ∅ is trivial. Suppose that A is the range of a total computable function f , then,

x ∈ A ⇐⇒ (∃s)[f(s) = x].

Since f is total computable, the relation {(s, x) : f(s) = x} is clearly computable. Therefore A is Σ1

and thus c.e. by the normal form theorem.
Now, let A be non-empty c.e., that is, A = We ̸= ∅ for some e. Let a ∈ A, and define the total

function f ,

f(⟨x, s⟩) =

{
x if φe,s(x) ↓,
a otherwise.

Here, we are using the standard pairing function ⟨., .⟩ : N2 → N which is bijective and computable, so
f is well defined and it is clearly computable: Given u, decompose it into a pair ⟨x, s⟩ with the inverse
of the pairing function and then check φe,s(x) ↓ which is a computable relation. Furthermore,

x ∈ A ⇐⇒ φe(x) ↓ ⇐⇒ (∃s)[φe,s(x) ↓] ⇐⇒ (∃s)[f(⟨x, s⟩) = x],

so that A = range(f).

Corollary 1.1.19. An infinite c.e. set A is the range of an injective total computable function f .

Proof. Let g be a total computable function with range(g) = A. Define f recursively in the following
way:

f(0) = g(0),

f(n+ 1) = g(min{y : g(y) ̸= f(i)∀i ≤ n}).

Since A is infinite, f is total and clearly computable. By construction, if i < j, then f(i) ̸= f(j), so f
is injective.

This last theorem relates c.e. sets to computable sets.

Theorem 1.1.20 (Complementation Theorem). Let A ⊆ N be a set. A is computable iff both A and
its complement Ac are c.e.

Proof. If A is computable then Ac is also computable so both A and Ac are computable.
Let A and Ac be c.e. By the listing theorem, there are computable functions f, g such that

A = range(f) and Ac = range(g). We now describe an algorithm for deciding x ∈ A or not: Compute
f(0), g(0), f(1), g(1), . . . , until we find a s such that f(s) = x or g(s) = x, then, x ∈ A if f(s) = x and
x /∈ A if g(s) = x. Notice that s always exists because A∪Ac = N so this procedure always halts.

By the normal form theorem, this means that the computable sets are exactly the ∆1 sets.

9



1.1.3 Oracle Turing machines

From theorem 1.1.9 we have an example of a non-computable set. We may think of this set as containing
information not accesible to a Turing machine. An oracle Turing machine is a more powerful machine
which can access this information via an “oracle”. It is very similar to a standard Turing machine, but
it has an extra read only tape, called the oracle tape, over which the characteristic function of some
set A (called the oracle) is encoded. The old tape is called the work tape and operates just as before.
The reading head moves along both tapes simultaneously.

Definition 1.1.21. An oracle Turing machine (or oracle Turing program) is a partial function δ :⊆
Q × S1 × S2 → Q × S2 × {R,L}, where Q = {q0, q1, . . . , qn} is a finite set of states, S1 = {B, 0, 1}
is the oracle tape alphabet, S2 = {B, 1} is the work tape alphabet and {R,L} are the head moving
operations.

Figure 2: Oracle Turing machine

We interpret δ(qi, a, b) = (qj , c,X) as follows: when the machine is in state qi reading the symbol
a on the oracle tape and symbol b on the working tape, then in the next step, it will pass to the state
qj , replace the symbol b by c on the work tape and move one cell to the right on both tapes if X = R
(left if X = L).

Notice that now we are working with two inputs: a set A ⊆ N and a natural number n. The input
and output conventions are the same as for standard Turing machines, except that the reading head
also starts on the cell of the oracle tape which codes χA(0).

Of course, these new oracle Turing programs are just finite sets of sixtuples, so we can code them as
we did with normal Turing programs. From now on, we fix some coding of all oracle Turing programs
and we denote P̂e the e-th such program.

Definition 1.1.22. A partial function ψ is computable relative to A, if there is a program P̂e such
that if the machine has χA written on the oracle tape, then for all x and y, ψ(x) = y iff P̂e on input
x halts and yields output y. In this case we write ψ = ΦA

e .

A program P̂e is independent of the oracle A. In effect, a program computes a functional which
takes as input a set A and outputs a partial function ψ. We denote Φe the functional computed by P̂e.

The intuitive notion behind oracle Turing machines is the one of relative computability: Let A ⊆ N
and assume we have a magic 8-ball which instantly answers any question of the form “is n ∈ A?”,
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then, one asks what else can one compute with this additional ability? By analogy, most results from
standard computability relativize, for example the Church-Turing’s thesis.

Relativized Church-Turing’s thesis. Every “intuitively” computable function relative to A is
computable by a Turing machine with an oracle to A.

In this next definition, binary strings σ ∈ 2<N are to be viewed as finite initial segments of char-
acteristic functions. We identify sets with their characteristic functions, so, σ ≺ A means that σ is a
prefix of χA. Also, recall from example 1.1.4 the bijective coding for strings N<N, so we may speak for
example of computable sets of strings by just identifying them with their respective code numbers.

Definition 1.1.23. We write ΦA
e,s(x) = y if max(x, y, e) < s, s > 0, ΦA

e (x) = y in less than s steps of

the program P̂e, and only the first s cells from the oracle tape are used in the computation.
Let σ ∈ 2<N. We write Φσ

e,s(x) = y, if ΦA
e,s(x) = y for some A ≻ σ, and only elements z < l(σ)

from the oracle tape are used in the computation.
We write Φσ

e (x) = y if (∃s)[Φσ
e,s(x) = y].

Theorem 1.1.24. The relation {(e, σ, x, y, s) : Φσ
e,s(x) = y} is computable.

Proof. As in the enumeration theorem, we give an informal proof with the Church-Turing’s thesis:
Retrieve the program P̂e, write σ on the oracle tape and x on the work tape. Do the computation until
an output occurs or the first s steps have been completed or the head steps outside of σ. If an output
has occured, check if it is equal to y. This procedure always terminates because there is a bound on
the numbers of steps.

Theorem 1.1.25 (Use Principle).

1. ΦA
e (x) = y =⇒ (∃s)(∃σ ≺ A)[Φσ

e,s(x) = y].

2. Φσ
e,s(x) = y =⇒ (∀t ≥ s)(∀τ ⪰ σ)[Φτ

e,t(x) = y].

3. Φσ
e (x) = y =⇒ (∀A ≻ σ)[ΦA

e (x) = y].

Proof. The proof follows directly from the definition of oracle computation. For (1) any computation
that halts does so after finitely many steps and having used only finitely many elements from the oracle
tape. (2) and (3) follow at once.

What makes relative computability useful is that it allows us to compare the complexity of sets of
numbers.

Definition 1.1.26. Let A,B ∈ 2N. We say that A is Turing reducible to B (written A ≤T B) if χA

is computable relative to B.

We may think of the set B containing more information, or being more complex, than A. Clearly,
the relation ≤T on 2N is reflexive and transitive, so it induces a equivalence relation ≡T defined by
A ≡T B iff A ≤T B and B ≤T A. The equivalence class of A under ≡T is called the Turing degree of
A.

For example, from the definitions it is direct that A ≤T ∅ if and only if A is computable. Moreover,
∅ is reducible to any set. This means that the computable sets form a single Turing degree which is the
minimum under ≤T . We interpret this as computable sets containing no information. On the other
hand, the set K from theorem 1.1.9 is not reducible to ∅ so it contains strictly more information than
the computable sets. In an intuitive sense, K can look ahead into infinite time and predict when a
computation will halt, whereas computable sets cannot.

Importantly for this work, oracle Turing machines also allow us to extend notions of computability
to other sets which are not necessarily countable. The starting point is computability on the Cantor
and Baire spaces, afterwards in chapter 2, we will speak of computability on metric spaces.

Definition 1.1.27. Let F :⊆ 2N → 2N be a partial functional. We say that F is computable if there
exists a Turing functional Φe such that ΦA

e = F (A) for every A ∈ dom(F ).

11



In this way, definition 1.1.26 may be rephrased asA ≤T B iff there exists a computable F :⊆ 2N → 2N

such that B ∈ dom(F ) and A = F (B).
To define computability on the Baire space NN we need a way to code its elements into the oracle

tape. This is straightforward: Given f ∈ NN, let

f̂ = 1f(0)01f(1)01f(2) · · · ∈ 2N,

where 1n is the string of n consecutive 1’s. It is easy to see that the map f 7→ f̂ is injective and even
a topological embedding of NN into 2N. We write similarly for strings: Given σ ∈ N<N, let

σ̂ = 1σ(0)01σ(1)0 . . . 01σ(l(σ)−1)0 ∈ 2<N.

The map σ 7→ σ̂ is a computable injection from N<N to 2<N. Finally, notice that if σ ≺ f then σ̂ ≺ f̂ .

Definition 1.1.28. Let f ∈ NN. A partial function ψ is computable relative to f if there is a program
P̂e such that if the machine has f̂ written on the oracle tape, then for all x and y, ψ(x) = y iff P̂e on
input x halts and yields output y. In this case we write ψ = Φf

e .

As in the Cantor space, we say that F :⊆ NN → NN is computable if there exists Φe such that
Φf

e = F (f) for all f ∈ dom(F ).
When doing computability on NN, topological considerations become very important. Recall that

the Baire space comes with a topology generated by open sets of the form Uσ = {x ∈ NN : σ ≺ x},
where σ ∈ N<N.

Definition 1.1.29. A set V ⊆ NN is called effectively open or Σ0
1 if there is a c.e. set I ⊆ N<N such

that
V =

⋃
σ∈I

Uσ.

A set C ⊆ NN is called effectively closed or Π0
1 if its complement NN \ C is effectively open, i.e, there

exists a c.e. set I ⊆ N<N such that

C = NN \

(⋃
σ∈I

Uσ

)
=
⋂
σ∈I

(NN \ Uσ).

By the listing theorem 1.1.18, a non-empty set U is effectively open if and only if there is a
computable function f : N → N<N such that U =

⋃
n∈N Uf(n). We can think of this as being able to

effectively approximate U from the inside. Similarly, effectively closed sets are closed sets that we can
approximate from the outside with an algorithm.

In contrast to regular open sets, effectively open sets are not closed under arbitrary unions. We
need stronger computability hypotheses in order to have a closure property.

Definition 1.1.30. A sequence of sets {Vn}n∈N of NN are said to be uniformly open or uniformly Σ0
1

if there is a c.e. relation I ⊆ N× N<N such that

Vn =
⋃

{Uσ : (n, σ) ∈ I}, for all n ∈ N.

A sequence of sets {Cn}n∈N of NN are said to be uniformly closed or uniformly Π0
1 if there is a c.e.

relation I ⊆ N× N<N such that

Cn =
⋂

{(NN \ Uσ) : (n, σ) ∈ I}, for all n ∈ N.

Proposition 1.1.31. If {Vn}n∈N are uniformly open, then
⋃

n∈N Vn is effectively open. Similarly, if
{Cn}n∈N are uniformly closed, then

⋂
n∈N Cn is effectively closed.

Proof. Let I ⊆ N×N<N be c.e. such that Vn =
⋃
{Uσ : (n, σ) ∈ I} for all n ∈ N. Let J ⊆ N<N be the set

defined by σ ∈ J ⇐⇒ (∃n)I(n, σ), then by corollary 1.1.17, J is c.e. Moreover,
⋃

n∈N Vn =
⋃

σ∈J Uσ,
so it is effectively open. The second part is analogous.

We say that effective unions of effectively open sets are effectively open and effective intersections
of effectively closed sets are effectively closed.
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Definition 1.1.32. A partial function F :⊆ NN → NN is said to be effectively continuous if there is a
sequence {Vσ}σ∈N<N of uniformly open sets such that F−1(Uσ) = dom(F ) ∩ Vσ for all σ ∈ N<N.

Thus, an effectively continuous function not only pullbacks open sets to open sets, we also have an
effective procedure to uniformly approximate them. The following theorem shows the close relationship
between computability and topology. One may argue that computability is a refinement of topology.

Theorem 1.1.33. A partial functional F :⊆ NN → NN is computable if and only if it is effectively
continuous.

Proof. Suppose F is computable. Let Φe be such that Φx
e = F (x) for all x ∈ dom(F ). Let I ⊆

N<N × N<N be the relation defined by

I(σ, τ) ⇐⇒ (∃s ∈ N)(∀m < l(σ))[Φτ̂
e (m) = σ(m)],

where τ̂ ∈ 2<N denotes the computable coding described just before definition 1.1.28. One can see that
theorem 1.1.24 implies that I is c.e. Let Vσ =

⋃
{Uτ : (σ, τ) ∈ I} for each σ ∈ N<N, then by definition

{Vσ}σ∈N<N are uniformly open.
Let σ ∈ N<N, we check that F−1(Uσ) = dom(F ) ∩ Vσ. If x ∈ dom(F ) is such that F (x) ≻ σ,

then by the use principle (theorem 1.1.25), there exists s and τ ≺ x such that Φτ̂
e,s(m) = σ(m) for all

m < l(σ), therefore, I(σ, τ) is satisfied and x ∈ Uτ . Conversely, if x ∈ dom(F ) ∩ Vσ, then x ∈ Uτ for
some τ ∈ N<N which satisfies I(σ, τ). This means that there is a s such that Φτ̂

e,s(m) = σ(m) for all
m < l(σ). By the use principle, this implies that Φx

e (m) = σ(m) for all m < l(σ), that is, F (x) ≻ σ.
Conversely, suppose F is effectively continuous. Let I ⊆ N<N × N<N be the c.e. relation such that

for all σ ∈ N<N, Vσ =
⋃
{Uτ : (σ, τ) ∈ I} and F−1(Uσ) = dom(F )∩ Vσ. By the listing theorem 1.1.18,

there is a computable f : N → N<N × N<N with range(f) = I. Given x ∈ NN and m ∈ N, we compute
F (x)(m) in the following way: Keep computing f(s) for each s = 0, 1, 2, . . . until we find a pair (σ, τ)
such that σ is a string of length at least m+1 and τ ≺ x. This means that σ ≺ F (x), so output σ(m).
This procedure always terminates when x ∈ dom(F ).

Definition 1.1.34. Let A,B ⊆ NN. A functional F : A → B is called a computable homeomorphism
if it is computable and has a computable inverse F−1 : B → A.

Example 1.1.35. Let φ : N → N be a computable bijection, its inverse is easily seen to be computable.
Define F : NN → NN where F (x)(n) = x(φ(n)) for all n ∈ N. This is clearly computable and has the
computable inverse given by F−1(x)(n) = x(φ−1(n)). Therefore, F is a computable homeomorphism.

Example 1.1.36. For another example, let A ⊂ N be a finite set of naturals, then AN is computably
homeomorphic to 2N. Indeed, we may assume that A = {0, 1, . . . , n − 1}. Define f : A → 2<N the
following substitution

f(m) =

{
0m1 if m < n− 1,

0m if m = n− 1,

where 0m means the string of m consecutive 0’s. Then, define F : AN → 2N by

F (x) = f(x(0))f(x(1))f(x(2)) . . .

for all x ∈ AN. We are just replacing each component x(i) of x by the corresponding word according
to f . Since f is a finite function, it is easy to see that F is computable. Its inverse is also computable:
Given x ∈ 2N, F−1(x)(0) is the number of zeros before finding a 1, maximum n − 1, continue in this
way for F−1(x)(1) and so on.

1.2 Geometric group theory

Geometric group theory studies groups under the lenses of geometry. It does so by associating geometric
objects to groups and deducing algebraic data from them. The fundamental example of this is the
Cayley graph of a finitely generated group, on which we can use the theory of metric spaces. However,
we will quickly see that the exact geometry of the graph is not that useful and it is best to study the
large scale geometry of it, i.e., the geometry preserved by quasi-isometries. After introducing quasi-
isometries we will present the fundamental Schwarz-Milnor lemma. One may consult [21] for more
information.
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1.2.1 Group presentations and the word problem

We start with some basic definitions from combinatorial group theory, a reference for this topic is [22].
Afterwards we relate this concepts to computability and formalize the word problem.

Let S be a set and let S−1 = {s−1 : s ∈ S} be a disjoint copy of it. Take the set of words over
elements of S ∪ S−1

W (S) = (S ∪ S−1)<N = {sε11 s
ε2
2 · · · sεnn : si ∈ S, εi ∈ {+1,−1}, for each 1 ≤ i ≤ n},

and equip it with the operation of concatenation. This operation is associative and the empty word ε
is the identity element. Define an equivalence relation ∼ over W (S) as follows: w ∼ v iff we can reach
v from w by adding or removing pairs of symbols of the form ss−1 or s−1s with s ∈ S. For example,
if S = {a, b} then abb ∼ abaa−1bb−1b. We denote by [w] the equivalence class of w under ∼.

Definition 1.2.1. Let S be a set. The free group F (S) with basis S is the group W (S)/∼ equipped
with the operation [w] · [v] = [wv] for each w, v ∈W (S).

A free group is determined up to isomorphism by the cardinality of its basis, so we may speak of
Fn the free group with n generators.

Definition 1.2.2. Let G be a group, let S be a set and let R ⊂ F (S). We say that the pair (S | R)
is a presentation for G if G ∼= F (S)/N where N is the normal closure of R in F (S), i.e., the smallest
normal subgroup of F (S) containing R.

We denote G ∼= ⟨S | R⟩. The image of S in G is a generating set, so we call the elements of S the
generators of G. We will most of the time regard S as a subset of G itself. The elements of R end up
at the identity of G, so they define relations in G.

Example 1.2.3.

• The cyclic group of order n has the presentation Z/nZ ∼= ⟨a | an⟩.

• The free group of n generators has the presentation Fn
∼= ⟨a0, a1, . . . , an−1 | ⟩.

• We have Z× Z ∼= ⟨x, y | xyx−1y−1⟩.

• The dihedral group of order 2n is the group Dn = ⟨r, s | rn, s2, srs−1 = r−1⟩.

A presentation ⟨S | R⟩ is finitely generated if the set S is finite. If additionally R is finite, we say
that the presentation is finite. A group is finitely generated if it has a finitely generated presentation,
and is finitely presented if it has a finite presentation.

Group presentations are a very compact way of defining groups, however it is not simple to extract
information from them. An apparently simple question is the word problem, which asks for an algorithm
for deciding when two words w, v ∈ F (S) are equal in G, or equivalently, and algorithm for deciding
when a word w ∈ F (S) is equal to the identity in G. We now formalize the word problem for the case
of finitely generated groups.

Let G be a group generated by the finite set S = {s0, . . . , sn−1}. We will construct a coding (as in
definition 1.1.3) for G. First, we assign a number to each si and s

−1
i : 0 7→ s0, 1 7→ s−1

0 , 2 7→ s1, etc.
More precisely, let µS : N → G be such that

µS(i) =


si/2 if i is even and < 2n,

s−1
(i−1)/2 if i is odd and < 2n,

e otherwise.

Then, for each u ∈ N, let σ ∈ N<N be such that ⟨σ⟩ = u and define the coding νS : N → G as

νS(u) = µS(σ(0)) · µS(σ(1)) · · ·µS(σ(l(σ)− 1)).

Essentially, we are just representing each element of G as a word over S. When we do computations
we are just manipulating words over S without really knowing the elements they represent.
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Proposition 1.2.4. The group operation (g, h) 7→ gh is a (νS × νS , νS)-computable function. Taking
inverses g 7→ g−1 is a (νS , νS)-computable function.

Proof. Let g, h ∈ G and n,m ∈ N be such that νS(n) = g and νS(m) = h. We have to compute u such
that νS(u) = gh, this is straightforward from the construction of νS : Retrieve the strings σ, τ ∈ N<N

that are coded by n and m respectively and compute their concatenation στ , output u = ⟨στ⟩.
For the inverse, let n and g be such that νS(n) = g. Then g−1 = µS(σ(l(σ)− 1))−1 · · ·µS(σ(0))

−1,
where σ is the string in N<N coded by n. So, to compute a code for g−1, invert σ and change each
component so that they code their respective inverses according to the definition of µS , more concretely
let τ be the string of length l(σ) defined by:

τ(i) =

{
σ(l(σ)− 1− i) + 1 if σ(l(σ)− 1− i) is even,

σ(l(σ)− 1− i)− 1 if σ(l(σ)− 1− i) is odd,

for each i < l(σ). Output u = ⟨τ⟩.

We have defined νS by fixing a finite generating set S. The following proposition shows that this
choice is not important.

Proposition 1.2.5. Let G be a finitely generated group and let S and T be two finite generating sets.
The identity id : G→ G is (νS , νT )-computable.

Proof. The idea is that since S is finite, we may computably rewrite any word over S as a word over
T . More formally, let S = {s0, . . . , sn−1}, then for each i < 2n there is a string τi ∈ N<N such that
µS(i) = νT (⟨τi⟩), the following function f : N → N<N is trivially computable,

f(i) =

{
τi if i < 2n,

ε otherwise.

Let g ∈ G and n be a νS-code for g, we compute a νT -code from n in the following way: Take σ the
string coded by n and replace each σ(i) by the string f(σ(i)). We end up with the concatenation

τ = f(σ(0))f(σ(1)) · · · f(σ(l(σ)− 1))

so output ⟨τ⟩. By the construction of νT and f , we have

νT (⟨τ⟩) = νT (⟨f(σ(0))⟩) · · · νT (⟨f(σ(l(σ)− 1))⟩) = µS(σ(0)) · · ·µS(σ(l(σ − 1))) = νS(⟨σ⟩) = g,

thus ⟨τ⟩ is indeed a νT -code for g.

By switching S and T in the previous proposition, we have that the identity is (νT , νS)-computable.
Intuitively this means we may computably translate a code under S into a code under T and viceversa.
We say that νS and νT are equivalent codings. From this we get the following corollary.

Corollary 1.2.6. Let G be a finitely generated group and let S and T be two finite generating sets.
Then, the set {n ∈ N : νS(n) = e} is computable if and only if {n ∈ N : νT (n) = e} is computable.

Proof. Suppose {n ∈ N : νT (n) = e} is computable. By the previous proposition, there exists a
computable f : N → N such that νT (f(n)) = νS(n) for all n. Then, we can check νS(n) = e by
computing f(n) and checking if νT (f(n)) = e. The reciprocal is exactly the same.

Definition 1.2.7. A finitely generated group G has solvable word problem if for some (and hence
every) finite generating set S of G, the set {n ∈ N : νS(n) = e} is computable.

Theorem 1.2.8. Let G be an infinite finitely generated group with solvable word problem. There
exists a bijective coding ν : N → G that makes the group operation computable. Moreover this coding is
unique in the following sense: if µ : N → G is another bijective coding that makes the group operation
computable, then µ is equivalent to ν, i.e., ν−1 ◦ µ and µ−1 ◦ ν are computable.
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Proof. Let S be a finite generating set of G and let νS be the associated coding. Define an equivalence
relation on N by n ∼ m iff νS(n) = νS(m). Since the word problem is solvable and the group
operations are computable, we may computably check if n ∼ m in the following way: Compute u such
that νS(u) = νS(n) · νS(m)−1 and check if νS(u) = e.

Now, choose an element from each class by taking the minimum of each, that is, let D = {n ∈ N :
n = min[n]}, where [n] denotes the equivalence class of n. Then, D is computable: Given n, check
if n ∼ m for each m < n. Moreover, νS restricted to D is a bijection with G which is infinite by
hypothesis. Thus, D is an infinite c.e. set, so by corollary 1.1.19 there exists a computable bijection
f : N → D. Define the bijective coding ν = νS ◦ f , then the group operation is computable: Given
n and m, we can compute u such that νS(u) = νS(f(n)) · νS(f(m)), then, find s with f(s) ∼ u and
output it. We have ν(s) = ν(n) · ν(m).

For the uniqueness, let µ : N → G be another bijective coding that makes the group operation
computable. Then, there is a computable function F : N2 → N such that µ(F (n,m)) = µ(n) · µ(m)
for all n,m. In this way, the set N with the operation F becomes a group isomorphic to G. Let
H : N2 → N be the computable function that ν(H(n,m)) = ν(n) · ν(m) for all n,m, similarly, N with
H become a group isomorphic to G. Let K = µ−1(S ∪S−1) be the µ-codes of the finite set (S ∪S−1).
By construction, ν−1 ◦µ is an isomorphism from (N, F ) to (N, H) and so it is determined by its values
on the finite generating set K, let f : K → N be the finite function defined by f(k) = (ν−1 ◦µ)(k). We
compute ν−1 ◦ µ in the following way: Given m ∈ N, computably enumerate all the strings σ ∈ K<N

and find one that F (σ(0), σ(1), . . . , σ(l(σ) − 1)) = m, this must happen since S generates G. Then
compute and output H(f(σ(0)), . . . , f(σ(l(σ)− 1))). The computability of µ−1 ◦ ν is analogous.

Corollary 1.2.9. Let G and H be infinite finitely generated groups with solvable word problem and let
φ : G → H be a group isomorphism. Then φ is computable (with respect to any bijective codings that
make the operations computable).

Proof. Let ν : N → G and µ : N → H be bijective codings that make the respective operations com-
putable. Then, φ◦ν is a bijective coding for H that makes its operation computable, so by the previous
theorem µ−1 ◦ φ ◦ ν is computable. That is to say, φ is computable.

The previous results show that finitely generated groups with solvable word problem have a unique
computable structure compatible with their algebraic structure. This property is known as computable
categoricity. In the non-finitely generated context it turns out that there are groups with multiple
computability structures. This kind of properties are studied by the much more general theory of
computable structures, a very interesting subject that is beyond the scope of this work. A nice
introduction is the forthcoming [9], other references are [24] and [1].

It turns out that the word problem, though simple in appearance, is unsolvable even in the finitely
presented case. This means that there are finitely presented groups that do not have a compatible
computable structure.

Theorem 1.2.10 (Boone-Novikov). There exists a finitely presented group with unsolvable word prob-
lem.

The proof is a classic reduction from the halting problem, however the details are very complicated.
One may get this result as a simple corollary from the following (also difficult to prove) theorem.

A group G is recursively presented if it has a presentation G ∼= ⟨S | R⟩, where S is finite and R is
a computably enumerable subset of F (S) (under some effective coding of F (S)).

Theorem 1.2.11 (Higman’s embedding theorem). Any recursively presented group G can be embedded
in some finitely presented group.

Proof of Theorem 1.2.10. Let K be a computably enumerable set which is not computable, as in
theorem 1.1.9. Let

G = ⟨a, b, c, d | a−kbak = c−kdck, k ∈ K⟩,
then clearly G is recursively presented. Moreover, it is not hard to check that

a−nban = c−ndcn ⇐⇒ n ∈ K,

so one could computeK if the word problem were to be solvable. Thus, G has unsolvable word problem.
By Higman’s theorem, G embeds in a finitely presented group H. Since G is finitely generated with
unsolvable word problem, H must have unsolvable word problem.
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A proof of Higman’s theorem may be found in [22, Chapter IV]. A direct proof of the Boone-Novikov
theorem may be found in [25].

1.2.2 Graphs and quasi-isometries

We turn to the geometry of groups. First, some definitions from graph theory.

Definition 1.2.12. A (simple, undirected) graph is a pair X = (V,E) where E is a relation on V
such that

1. E is irreflexive: (v, v) /∈ E ∀v ∈ V ,

2. E is symmetric: (v, v′) ∈ E =⇒ (v′, v) ∈ E ∀v, v′ ∈ V .

The elements of V are the vertices and the elements of E are the edges. We say that two vertices v, v′

are adjacent when (v, v′) ∈ E.

Definition 1.2.13. Let X = (V,E) be a graph.

1. Let n ∈ N∪ {∞}. A path in X of length n is a sequence v0, . . . , vn ∈ V of different vertices such
that (vj , vj+1) ∈ E for all j ∈ {0, . . . , n − 1}; if n < ∞ then we say that this path connects the
vertices v0 and vn.

2. The graph X is called connected if every pair of its vertices can be connected by a path.

3. Let n ∈ N with n > 2. A cycle in X of length n is a path v0, . . . , vn−1 in X with (vn−1, v0) ∈ E.

4. A tree is a connected graph with no cycles.

Example 1.2.14 (Binary tree). Let V = 2<N and put an edge between two words σ, τ ∈ V if and
only if τ = σa for some a ∈ 0, 1. The resulting graph is depicted in figure 3. It is easy to see that
this graph is a tree. Moreover, if σ0, σ1, · · · ∈ V is an infinite path, then there exists k ∈ N such that,
σi ⪯ σj for all k ≤ i ≤ j, and l(σn) → ∞ as n goes to infinity. Thus, there exists x ∈ 2N with σi ≺ x
for all i ≥ k. Therefore, every infinite path in 2<N corresponds to an element of the Cantor space 2N.

Example 1.2.15 (Infinite branching tree). Similarly, let V = N<N and put an edge between two
words σ, τ ∈ V if and only if τ = σa for some a ∈ N. Every infinite path in N<N corresponds to an
element of the Baire space NN.

ε

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 3: The binary tree 2<N

Connected graphs have a natural metric space structure.
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Definition 1.2.16. Let X = (V,E) be a connected graph. We define the metric on V associated with
the graph X as the map d : V × V → [0,∞) with

d(v, w) = min{n ∈ N : there is a path of length n connecting v and w}.

We now describe the fundamental construction in geometric group theory.

Definition 1.2.17. Let G be a group and let S ⊆ G be a subset of G. The Cayley graph of G with
respect to S is the graph Cay(G,S) whose

• set of vertices is G, and whose

• set of edges is {(g, g · s) : g ∈ G, s ∈ (S ∪ S−1) \ {e}}.

So, two elements of G are adjacent when you can reach one from the other by a single multiplication
of (the inverse of) an element of the set S. If we furthermore assume that S is a generating set of G,
it easy to see that the resulting graph is connected. As an example, figure 4 depicts the Cayley graphs
of the groups Z/5Z and D3 described in example 1.2.3 with respect to the generating sets {[1]} and
{r, s} respectively. Figure 5 shows the Cayley graph of F2 with respect to a free generating set {a, b}.

[0]

[1]

[2] [3]

[4]

Cay(Z/5Z, {[1]})

id

r rr

s

rs rrs

Cay(D3, {r, s})

Figure 4: Examples of Cayley graphs

ε a

ab

ab−1

a2a−1

a−1b

(ba)−1

a−2

b baba−1

b2

b−1 b−1a

(ab)−1

b−2

Figure 5: Cayley graph of the free group F2 generated by {a, b}

Definition 1.2.18. Let G be a group and S ⊆ G be a generating set. The word metric dS on G with
respect to S is the metric on G associated with the Cayley graph Cay(G,S). In other words,

dS(g, h) = min{n ∈ N : (∃s1, . . . , sn ∈ S ∪ S−1) [h = g · s1 · · · sn]}

for all g, h ∈ G.
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As we have seen with the examples above, this metric depends on the generating set, that is,
different generating sets yield non isometric metric spaces. We would like to study the geometry of
the group itself independent from a particular generating set, so we turn to quasi-isometries.

Definition 1.2.19. Let f : X → Y be a function between metric spaces (X, dX) and (Y, dY ).

• The function f is a quasi-isometric embedding if there are constants a, b ∈ (0,∞) such that

∀x, x′ ∈ X
1

a
· dX(x, x′)− b ≤ dY (f(x), f(x

′)) ≤ a · dX(x, x′) + b.

We may also say that f is a (a, b)-quasi-isometric embedding.

• The function f has quasi-dense image if there is a constant c ∈ [0,∞) such that

∀y ∈ Y ∃x ∈ X dY (f(x), y) ≤ c.

• The function f is a quasi-isometry if it is a quasi-isometric embedding with quasi-dense image.

Intuitively, a quasi-isometry forgets about the local information but preserves the geometry seen
from far away. The canonical example is the inclusion ι : Z → R where Z and R have their standard
euclidean metrics. ι is a (1, 0)-quasi-isometric embedding, also known as an isometric embedding, and
has a quasi-dense image since every real number is at most 1/2 from an integer. Let h : R → Z be the
floor function, i.e.,

h(x) = max{k ∈ Z : k ≤ x} ∀x ∈ R.

It is not hard to see that h is a (0, 1)-quasi-isometric embedding and surjective. Roughly speaking,
we are “compressing” the bounded sets [k, k + 1), k ∈ Z into points, which is the main idea of coarse
geometry, in some sense we identify things by “boundedness”. Another example of this is the following
definition.

Definition 1.2.20. Two functions f, f ′ : X → Y between metric spaces (X, dX) and (Y, dY ) are said
to be at finite distance from each other if

sup
x∈X

dY (f(x), f
′(x)) <∞.

A function g : Y → X is a quasi-inverse of f is g ◦ f is at finite distance from the identity in X and
f ◦ g is at finite distance from the identity in Y .

Coming back to our example above, h ◦ ι is the identity in Z and (ι ◦ h)(x) is at most 1 from x for
every x ∈ R, so h is a quasi-inverse of ι. More generally, every quasi-isometry has a quasi-inverse.

Proposition 1.2.21. A function f : X → Y between metric spaces (X, dX) and (Y, dY ) is a quasi-
isometry if and only if it is a quasi-isometric embedding and there exists a quasi-isometric embedding
g : Y → X which is a quasi-inverse of f .

Proof. Let f : X → Y be a quasi-isometry, then there exists a constant c > 0 such that

(∀x, x′ ∈ X)
1

c
dX(x, x′)− c ≤ dY (f(x), f(x

′)) ≤ cdX(x, x′) + c,

(∀y ∈ Y )(∃x ∈ X) dY (f(x), y) ≤ c.

For each y ∈ Y , choose g(y) ∈ X such that dY (f(g(y)), y) ≤ c. This defines a function g : Y → X. We
have for all y ∈ Y ,

dY (f ◦ g(y), y) ≤ c,

and for all x ∈ X,

dX(g(f(x)), x) ≤ cdY (f(g(f(x))), f(x)) + c2 ≤ c2 + c2 = 2c2.

So f ◦g and g◦f have finite distance from the respective identity functions, therefore g is a quasi-inverse
of f .
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Moreover, g is a quasi-isometric embedding: Let y, y′ ∈ Y , then

dX(g(y), g(y′)) ≤ cdY (f(g(y)), f(g(y
′))) + c2

≤ c (dY (f(g(y)), y) + dY (y, y
′) + dY (f(g(y

′)), y′)) + c2

≤ c (c+ dY (y, y
′) + c) + c2

= cdY (y, y
′) + 3c3,

and

dX(g(y), g(y′)) ≥ 1

c
dY (f(g(y)), f(g(y

′)))− 1

≥ 1

c
(dY (y, y

′)− dY (f(g(y)), y)− dY (f(g(y
′)), y′))− 1

≥ 1

c
dY (y, y

′)− 2c

c
− 1.

Conversely, let f : X → Y be a quasi-isometric embedding and g : X → Y be a quasi-inverse
quasi-isometric embedding. Then, there exists a constant c > 0 such that

dY (f(g(y)), y) ≤ c for all y ∈ Y,

so f has quasi-dense image. Therefore f is a quasi-isometry.

Definition 1.2.22. Let (X, dX) and (Y, dY ) be metric spaces. We say that X is quasi-isometric to Y
if there is a quasi-isometry from X to Y . We write X ∼QI Y .

The previous proposition shows that ∼QI is a symmetric relation. A simple calculation shows that
the composition of two quasi-isometries is itself a quasi-isometry, so ∼QI is transitive. Finally, the
identity is a quasi-isometry. Therefore, ∼QI is an equivalence relation in the class of metric spaces.
We now come back to groups.

Proposition 1.2.23. Let G be a finitely generated group, and let S and S′ be finite generating sets of
G. Then the identity map idG is a quasi-isometry between (G, dS) and (G, dS′).

Proof. Let t = max{dS′(e, s) : s ∈ S} and g, h ∈ G with dS(g, h) = n, so that h = g · s1 · · · sn for some
s1, . . . , sn ∈ S. We have by the triangle inequality and the G-invariance of dS′

dS′(g, h) ≤ dS′(g, g · s1) + dS′(g · s1, g · s1 · s2) + · · ·+ dS′(g · s1 · · · sn−1, g · s1 · · · sn)
= dS′(e, s1) + dS′(e, s2) + · · ·+ dS′(e, sn)

≤ t · n = t · dS(g, h).

Let t′ = max{dS(e, s′) : s′ ∈ S′}, by the same calculation we have

dS(g, h) ≤ t′ · dS′(g, h) for all g, h ∈ G.

Therefore, the identity is a (c, 0)-quasi-isometry, where c = max{t, t′}.

0 1 2 3−1−2−3

Cay(Z, {1})

Cay(Z, {2, 3})

0 1 2 3−1−2−3

Figure 6: Quasi-isometric Cayley graphs of Z

In fact, from the proof it can be seen that idG is a Bilipschitz equivalence, that is to say, a bijective
(c, 0)-quasi-isometry for some c ≥ 1, which is strictly stronger than mere quasi-isometry, see [10]. So,
changing the generating set does not alter the large scale geometry of the group, see figure 6 for an
example. This means we may speak of the quasi-isometry type of a finitely generated group.
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Definition 1.2.24. Let G be a finitely generated group. The group G is quasi-isometric to a metric
space X if for some (and hence every) finite generating set S of G the metric spaces (G, dS) and X
are quasi-isometric. We write G ∼QI X.

We have seen that (Z, dS) with S = {1} is quasi-isometric to R with the euclidean metric by the
inclusion, so we now say that Z as a group is quasi-isometric to R. More generally, Zn ∼QI Rn for all
n ∈ N. Another example of quasi-isometric groups are all finite groups. Since they have finite diameter
they are all quasi-isometric to a point. Conversely, infinite groups have infinite diameter with respect
to any finite generating set, so they cannot be quasi-isometric to a point. We say that being finite is
a geometrical property or a quasi-isometry invariant of groups.

We end this section by stating the Schwarz-Milnor lemma, which is often called the fundamental
lemma of geometric group theory since it links the geometry of groups to the geometry of natural
spaces that arise in geometry and topology. It is a big source of examples of groups quasi-isometric to
nice metric spaces. First, some preliminary definitions.

Definition 1.2.25. Let (X, d) be a metric space and G a group.

• Let L ∈ [0,∞). A geodesic of length L in X is an isometric embedding γ : [0, L] → X, where the
interval [0, L] carries the standard metric from R. We say that γ connects the points γ(0) and
γ(L).

• The metric space X is called geodesic if for all x, x′ ∈ X there exists a geodesic in X that connects
them.

• X is proper if for all x ∈ X and all r > 0 the closed ball {y ∈ X : d(x, y) ≤ r} is compact.

• An action G×X → X is proper if for all compact sets B ⊂ X the set {g ∈ G : g ·B ∩B ̸= ∅} is
finite.

• An action G×X → X is cocompact if the quotient space of orbits G\X is compact.

Theorem 1.2.26 (Schwarz-Milnor lemma). Let G be a group acting by isometries on a proper and
geodesic metric space (X, d). Furthermore, suppose that this action is proper and cocompact. Then G
is finitely generated, and for all x ∈ X the map

G −→ X

g 7−→ g · x

is a quasi-isometry.

Proof. A proof may be found in [21, Corollary 5.4.2].

1.3 Fuchsian groups

In this section we briefly introduce Fuchsian groups and give an application of the Schwarz-Milnor
lemma that we will effectivize in section 2.3. We omit most proofs. The reader may consult [16] and
chapter 9 of [11] for more details.

Definition 1.3.1. The hyperbolic plane H is the open upper half-plane

H = {z ∈ C : Im(z) > 0}

endowed with the smooth structure inherited from C (as a real manifold) and the Riemannian metric

ds =

√
dx2 + dy2

y
.

A Riemannian metric is essentially just a way to define the length of curves. Let γ : [a, b] → H be
a smooth curve and denote γ(t) = x(t)+ iy(t) for all t ∈ [a, b]. The hyperbolic length of γ is defined by

L(γ) =

∫
γ

ds =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt.
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We define d : H×H → [0,∞) by

d(z, z′) = inf{L(γ) : γ is a smooth curve from z to z′},

for all z, z′ ∈ H.

Proposition 1.3.2. The function d is a metric and it induces the subspace topology of H ⊂ C. In
consequence, (H, d) is a proper metric space.

Theorem 1.3.3. Let z, z′ ∈ H with z ̸= z′. There exists precisely one geodesic in (H, d) from z to z′.
In particular, the metric space (H, d) is geodesic.

Thus, (H, d) satisfies the hypothesis of the Schwarz-Milnor lemma. This next theorem shows an
explicit formula for computing d, so intuitively speaking, d is a computable function.

Theorem 1.3.4. For all z, z′ ∈ H we have

d(z, z′) = arccosh

(
1 +

|z − z′|2

2 · Im z · Im z′

)
,

where arccosh(x) = ln(x+
√
x2 − 1) for all x ∈ R with x ≥ 1.

We now describe the isometries of H. Denote by SL2(R) the special linear group of 2× 2 matrices
with determinant 1. Let PSL2(R) be the quotient group SL2(R)/{±I2}, where I2 is the 2× 2 identity
matrix.

Definition 1.3.5. For

A = ±
(
a b
c d

)
∈ PSL2(R)

the associated Möbius transformation is the function

gA : H −→ H

z 7−→ az + b

cz + d
.

Theorem 1.3.6. Every Möbius transformation is an orientation-preserving isometry. Moreover, the
map

PSL2(R) −→ Isom+(H, d)

A 7−→ gA

is a group isomorphism, where Isom+(H, d) denotes the group of all orientation preserving isometries
of (H, d).

In particular, PSL2(R) acts by isometries on H. A subgroup Γ ≤ PSL2(R) is said to be cocompact
if its action on H is cocompact, i.e., the quotient space Γ\H is compact.

The group PSL2(R) has a natural smooth structure coming from R that makes it a connected
locally compact Lie group (see [18, Chapter 7 and 21] for an introduction to Lie groups). We will use
the following compatible norm on PSL2(R): For

A = ±
(
a11 a12
a21 a22

)
∈ PSL2(R)

define the norm of A as
∥A∥ = max

1≤i,j≤2
|aij |.

Definition 1.3.7. A Fuchsian group is a subgroup Γ ≤ PSL2(R) such that the induced topology on
Γ is the discrete topology.

Proposition 1.3.8. Let Γ ≤ PSL2(R) be a Fuchsian group, then its action on H is proper.

We have the following direct consequence of the Schwarz-Milnor lemma.

22



Corollary 1.3.9. Every cocompact Fuchsian group is quasi-isometric to H.

Each subgroup Γ ⩽ PSL2(R) also has a natural left action on PSL2(R) by left multiplication whose
orbit space we denote Γ\PSL2(R). The following well-known proposition will be useful later on.

Proposition 1.3.10. A Fuchsian group Γ is cocompact if and only if Γ\PSL2(R) is compact.

Proof. LetK = {g ∈ PSL2(R) : g·i = i} be the stabilizer subgroup of i. A straightforward computation
shows that K is the projective special orthogonal group, that is, K = PSO2(R) = SO2(R)/{±I2},
where

SO2(R) =
{(

cos θ − sin θ
sin θ cos θ

)
: θ ∈ R

}
.

It follows that we have a natural bijection φ : PSL2(R)/PSO2(R) → H given by φ(gPSO2(R)) = g · i.
Moreover, this bijection is a homeomorphism (see [26, Theorem 1.1]). Put S = PSL2(R)/PSO2(R),
again, Γ acts on S by left multiplication and we can form the double quotient

Γ\S = Γ\ (PSL2(R)/PSO2(R)) .

The homeomorphism φ preserves the respective actions of Γ, so Γ\S is homeomorphic to Γ\H. Since
PSO2(R) is compact, it follows that Γ\PSL2(R) is compact if and only if Γ\S is compact (see [26,
Proposition 1.9]) and thus the result follows.

Finally, we state the following consequence from the general theory of hyperbolic groups.

Theorem 1.3.11. Every cocompact Fuchsian group is finitely presented and has solvable word problem.

Proof. A proof may be found in [21, Section 7.4].
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2 Computable quasi-isometries

This is the main chapter of the thesis. We start by introducing computable metric spaces and some
basic definitions such as computable functions between them.

In section 2.2 we define computable quasi-isometries. We will see that the obvious way to define
them is not ideal since it does not induce an equivalence relation in the class of computable metric
spaces, so we propose another definition with does have this property and also generalizes well with
the standard notions of computablity on discrete sets. Then, we show that this definition is not trivial
by constructing a computable metric space which admits a quasi-isometric embedding of N but does
not admit a computable one.

In section 2.3 we apply this notion to finitely generated groups with solvable word problem. In
particular, we show that all cocompact Fuchsian groups are computably quasi-isometric.

2.1 Computable metric spaces

Computable metric spaces are a concept from computable analysis, an area which extends the ideas
from computability theory to the realm of analysis. They let us do computability on spaces which are
not necessarily countable, for example the real numbers. The main theme in computable analysis is
regarding computability as a refinement of continuity, so topology plays a big role. A major difference
with classical computability is that there are several non-equivalent definitions of computable function.
We choose the Type-2 Theory of Effectivity laid out in [30]. Another good reference for computable
analysis is [5]. Lastly, [4] shows how this theory can be applied to dynamical systems.

Definition 2.1.1. A computable metric space is a triple (X, d, (si)i∈N) where (X, d) is a metric space
and (si)i∈N is a dense sequence with no repetitions in X such that there is a computable function
f : N3 → Q with

|d(si, sj)− f(i, j, n)| ≤ 2−n, and

We say that (si)i∈N is a computable structure on X and refer to its elements as the special points.

In other words, we have a bijective coding for a countable dense subset of X with which we can
effectively approximate the distance between its elements.

Example 2.1.2.

• Take the real numbers R with the euclidean metric d(x, y) = |x−y| and the coding of the rational
numbers (qn)n∈N given in example 1.1.4. Since this coding makes addition and multiplication of
rationals computable, it is easy to see that the function (i, j) 7→ |si−sj | is computable, therefore,
(qn)n∈N would be a computable structure on R, except it has repetitions. We eliminate them as
follows. (Compare with theorem 1.2.8) Let

D = {n ∈ N : n = ⟨(n)0, (n)1, (n)2⟩ where (n)0 ∈ {0, 1} and (n)1, (n)2 + 1 are coprime},

then D is a computable subset of N in bijection with Q. By corollary 1.1.19 there exists a
computable bijection g : N → D. Thus, (qg(n))n∈N is an enumeration of the rationals without
repetitions. Since g is computable, addition and multiplication are still computable, so this
sequence is a computable structure on R.

• We can similarly construct a bijective coding for the set {p + iq : p, q ∈ Q, q > 0} ⊂ H, the
rational points of the hyperbolic plane. It is easy to intuitively see from its explicit formula
(theorem 1.3.4) that the hyperbolic distance is computable. Formally proving this requires more
work which we will omit.

• The Baire space NN has the compatible metric d(x, y) = 2−min{n∈N:xn ̸=yn} and the countable
dense set of eventually 0 sequences S = {x ∈ NN : (∃n ∈ N) (∀k ≥ n)(xk = 0)}. We construct a
coding for S. Let

D = {σ ∈ N<N : σ(l(σ)− 1) ̸= 0},
then, as before, D is an infinite computable subset of N<N in bijection with S, so there exists a
computable bijection g : N → D. Define for each n ∈ N, sn = g(n)0∞ ∈ S. The sequence (sn)n∈N
is a bijective coding for S and it is not hard to see that it makes the distance computable, therefore
it is a computable structure on NN.
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• The Cantor space 2N has a computable structure analogous to the Baire space.

• LetG be a finitely generated group with solvable word problem, and let S be a finite generating set
of G. The metric space (G, dS) with the word metric is discrete and countable, so a computable
structure on it is simply a coding for G that makes dS computable. Let ν : N → G be the
bijective coding given by theorem 1.2.8. We compute dS in the following way: Since ν is bijective
we identify each element of G by its ν-code. Given g, h ∈ G, computably enumerate all words
w ∈ (S ∪ S−1)<N ordered by length. Since the group operations are computable, we may check
one by one if g−1hw = e. Output l(w) for the first w that satisfies g−1hw = e.

• Define a metric d on N<N in the following way:

d(σ, τ) =


l(τ)− l(σ) if σ ⪯ τ,

l(σ)− l(τ) if τ ⪯ σ,

l(σ) + l(τ)− 2min{i : σ(i) ̸= τ(i)} otherwise.

This is just the graph metric when regarding N<N as a graph, as in example 1.2.15. Again, a
computable structure is just a coding of N<N that makes d computable. The standard coding for
N<N defined in example 1.1.4 makes the prefix relation, the length and the evaluation functions
computable, so d is clearly computable.

The requirement in definition 2.1.1 for the computable structure to have no repetitions is a technical
detail which we use in propositions 2.2.4 and 2.2.5. In fact, this requirement is superfluous since one
can computably eliminate the repetitions of a computable structure, see [12].

The following technical lemma will be used later in this section.

Lemma 2.1.3. Let (X, d, (si)) be a computable metric space, then the relation

{(i, j, q) ∈ N2 ×Q : d(si, sj) < q}

is computably enumerable.

Proof. Let f : N3 → Q be the computable function from definition 2.1.1. We have for all i, j ∈ N2 and
all q ∈ Q,

d(si, sj) < q ⇐⇒ (∃n ∈ N)
(
f(i, j, n) < q − 2−n

)
Indeed, if d(si, sj) < q, take n ∈ N such that 2−n+1 < q − d(si, sj), then |d(si, sj)− f(i, j, n)| ≤ 2−n.
We have two cases: If f(i, j, n) ≤ d(si, sj) then obviously f(i, j, n) < q − 2−n, if f(i, j, n) > d(si, sj)
then

f(i, j, n) = f(i, j, n)− d(si, sj) + d(si, sj) < 2−n + q − 2−n+1 = q − 2−n.

Conversely, if there exists n ∈ N with f(i, j, n) < q − 2−n then

d(si, sj) = d(si, sj)− f(i, j, n) + f(i, j, n) < 2−n + q − 2−n = q.

Now, the relation {(n, i, j, q) ∈ N3 × Q : f(i, j, n) < q − 2−n} is clearly computable, so by the
normal form theorem 1.1.15 we are done.

Let (X, d, (si)) be a computable metric space. For q ∈ Q and x ∈ X, we denote by B(x, q) =
{y ∈ X : d(x, y) < q} the open ball with center x and radius q. A basic open ball is an open ball
with rational radius centered on a special point. The basic open balls form a countable base for the
topology of X of which we will fix the following enumeration

Bn = B(s(n)0 , q(n)1),

where ⟨(n)0, (n)1⟩ = n and (qi)i∈N is the standard enumeration of the rationals given in example 1.1.4.
Of course, every open set is a countable union of basic open balls. Analogous to definition 1.1.29,

a set U ⊆ is called an effectively open set or a Σ0
1 set if it is an effective countable union of basic open

balls, that is, there exists a c.e. set I ⊆ N such that

U =
⋃
n∈I

Bn.
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A set F is called an effectively closed set or a Π0
1 set if its complement is an effectively open set, that

is, there exists a c.e. set I ⊆ N such that

F =
⋂
n∈I

(X \Bn).

A sequence of effectively open sets {Un}n∈N are uniformly open if there is a c.e. relation I ⊆ N2 such
that

Un =
⋃

{Bj : (n, j) ∈ I}, for all n ∈ N.

It is not hard to see that when X = NN (with the computable structure described in example 2.1.2)
these definitions coincide with definition 1.1.29, so it is indeed a generalization.

Recall from definition 1.1.3 that in order to do computability in arbitrary countable sets we use
codings, which are just surjections of the natural numbers onto the set in question. In the context
of computable metric spaces, the analogous tools are surjections of the Baire space, which are called
representations.

Definition 2.1.4. Let (X, d, (si)) be a computable metric space. A Cauchy name for x ∈ X is an
infinite sequence f ∈ NN such that (sf(n))n∈N converges rapidly to x, that is,

d(sf(n), x) < 2−n ∀n ∈ N.

The Cauchy representation of X is the partial function δX :⊆ NN → X defined by

δX(f) = x ⇐⇒ f is a Cauchy name for x.

We say that x is a computable point of X if it has a computable Cauchy name.

As implied by the name, the Cauchy representation is not the only possible representation for a
computable metric space, but we will not dive further into this theory of represented spaces which is
much more general, for example one may speak of computable topological spaces by defining suitable
representations. The interested reader may consult [30].

Example 2.1.5.

• A Cauchy name for a special point si ∈ X is the constant sequence (i i i . . . ) which is clearly
computable. Thus, every special point is a computable point.

• The number e is given by the series
∑∞

k=0
1
k! which by elementary analysis converges rapidly,

therefore the sequence (f(n))n∈N with rf(n) =
∑n

k=0
1
k! is a Cauchy name for e. It is easy to

see that f is computable, and thus e is a computable point of R with the standard computable
structure given before.

• A non computable example is the real number h =
∑

k∈K 2−k where K is the non computable
set from theorem 1.1.9. h can be seen as the real whose nth digit in its binary expansion is a 1 if
n ∈ K and a 0 otherwise. Suppose that h has a computable Cauchy name f , then we can decide
n ∈ K in the following way: Compute f(n + 1), we have |sf(n+1) − h| < 2−n−1, which means
that the binary expansions of sf(n+1) and h agree up to the nth digit, so, check the nth digit of
the rational sf(n+1), if it is 1, then n ∈ K, otherwise n /∈ K.

Definition 2.1.6. Let X and Y be computable metric spaces. A function F : X → Y is computable
(in the metric sense) if there exists a computable functional G :⊆ NN → NN such that for each point
x ∈ X and for every Cauchy name χ for x, G(χ) is a Cauchy name for F (x), i.e., the following diagram
commutes:

X Y

NN NN

F

G

δX δY

The next proposition lets us reduce to the classical computability notions when we are dealing with
a special kind of metric space. A metric space (X, d) is uniformly discrete if there exists a ∈ R such
that d(x, x′) > a for all x, x′ ∈ X with x ̸= x′. For example, any connected graph is uniformly discrete,
in particular the Cayley graph of a finitely generated group.
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Proposition 2.1.7. Let (X, dX , (si)) and (Y, dY , (ri)) be uniformly discrete computable metric spaces.
Then the maps ν : n 7→ sn and µ : n 7→ rn are codings for X and Y respectively. Furthermore, a function
F : X → Y is computable in the metric sense if and only if it is (ν, µ)-computable.

Proof. The only dense set in a discrete space is the space itself, so ν and µ are surjective.
Let F : X → Y be computable in the metric sense, then there is a computable G :⊆ NN → NN such

that for each x ∈ X and each Cauchy name χ for x, G(χ) is a Cauchy name for F (x). We must find a
computable f : N → N such that F (sn) = rf(n) for all n. Let k ∈ N be such that dY (y, y

′) > 2−k for
all y, y′ ∈ Y with y ̸= y′. Given n ∈ N, we compute f(n) in the following way: The constant sequence
(n, n, . . . ) is a computable Cauchy name for sn and so G((n, n, . . . )) is a computable Cauchy name for
F (sn). Output f(n) = G((n, n, . . . ))(k). We have that dY (rf(n), F (sn)) < 2−k so by the choice of k,
rf(n) = F (sn). Therefore, F is (ν, µ)-computable.

Conversely, let F : X → Y be (ν, µ)-computable, then there is a computable f : N → N such that
F (sn) = rf(n) for all n. We must find a computable G :⊆ NN → NN that takes any Cauchy name

for any x ∈ X and outputs a Cauchy name for F (x). Again, let l ∈ N be such that dX(x, x′) > 2−l

for all x, x′ ∈ X with x ̸= x′. Given χ a Cauchy name for x, let G(χ) be the constant sequence
(f(χ(l)), f(χ(l)), . . . ) which is a Cauchy name for rf(χ(l)). G is clearly computable and we see that by
the choice of l, sχ(l) = x and so rf(χ(l)) = F (sχ(l)) = F (x).

The main theorem of computable analysis is the fact that, analogous to theorem 1.1.33, computable
functions are continuous. In order to prove this, we first prove some basic properties of the Cauchy
representation. As in theorem 1.1.33, denote Uσ = {x ∈ NN : σ ≺ x} for σ ∈ N<N.

Lemma 2.1.8. Let (X, d, (si)) be a computable metric space, let (Bn)n∈N be the standard enumeration
of its basic open balls and let δ :⊆ NN → X be its Cauchy representation.

1. δ is effectively continuous, i.e., there is a c.e. relation I ⊆ N× N<N such that

δ−1(Bn) = dom(δ) ∩
⋃

{Uσ : (n, σ) ∈ I} for all n ∈ N.

2. δ is effectively open, i.e., there is a c.e. relation J ⊆ N<N × N such that

δ(Uσ) =
⋃

{Bn : (σ, n) ∈ J} for all σ ∈ N<N.

Proof. We prove (1) first. Let I ⊆ N× N<N be the relation defined by

I(n, σ) ⇐⇒ n = ⟨(n)0, (n)1⟩ and d(s(n)0 , sσ(l(σ)−1)) < q(n)1 − 2−l(σ)+1,

where (qj)j∈N is the standard enumeration of the rationals. Then, it is easy to see that lemma 2.1.3
implies that R is computably enumerable. Let n ∈ N, we check

δ−1(Bn) = dom(δ) ∩
⋃

{Uσ : (n, σ) ∈ I}.

If f ∈ δ−1(Bn), then (sf(i))i∈N converges rapidly to δ(f) and d(s(n)0 , δ(f)) < r(n)1 . By an elementary
metric argument, this implies that there exists m ∈ N such that

d(s(n)0 , sf(m)) < r(n)1 − 2−m,

so the string σ = f |(m+ 1) = f(0)f(1) · · · f(m) satisfies R(n, σ) and σ ≺ f .
Conversely, if f ∈ dom(δ) ∩ Uσ for some σ that satisfies I(n, σ), then

d(sσ(l(σ)−1), δ(f)) < 2−l(σ)+1 and d(s(n)0 , sσ(l(σ)−1)) < q(n)1 − 2−l(σ)+1,

which both imply that δ(f) ∈ Bn.
We now prove (2). Let J ⊆ N<N × N be the relation defined by

J(σ, n) ⇐⇒ n = ⟨(n)0, (n)1⟩ and (∀i < l(σ)) [d(sσ(i), s(n)0) < 2−i − q(n)1 ],

then again by lemma 2.1.3, J is c.e. Let σ ∈ N<N, we check

δ(Uσ) =
⋃

{Bn : (σ, n) ∈ J} for all σ ∈ N<N.
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If x ∈ δ(Uσ), then x = δ(f) for some f ≻ σ, which means

(∀i < l(σ)) [d(sσ(i), x) < 2−i],

that is to say,

x ∈ B = B(sσ(0), 2
0) ∩B(sσ(1), 2

−1) ∩ · · · ∩B(sσ(l(σ)−1), 2
−l(σ)+1),

so B is a nonempty open set. By density, there exists sj ∈ B and so there is some qk ∈ Q such that

(∀i < l(σ)) [d(sσ(i), sj) < 2−i − qk] and x ∈ B(sj , qk)

which is just R(σ, ⟨j, k⟩) and x ∈ B⟨j,k⟩.
Conversely, let x ∈ Bn such that J(σ, n) is satisfied, this means

d(x, s(n)0) < q(n)1 and (∀i < l(σ)) [d(sσ(i), s(n)0) < 2−i − q(n)1 ],

which by metric arguments implies

(∀i < l(σ)) [d(sσ(i), x) < 2−i].

From this we observe that σ is a valid prefix for a Cauchy name for x, so we can find a Cauchy name
f for x with σ ≺ f . We conclude x ∈ δ(Uσ).

Analogous to theorem 1.1.33 we have the following.

Theorem 2.1.9. Let (X, dX , (si)) and (Y, dY , (ri)) be computable metric spaces with basic open balls
{Bn}n∈N and {Vn}n∈N respectively. A function F : X → Y is computable if and only if it is effectively
continuous, i.e., the sequence of sets {F−1(Vn)}n∈N are uniformly open.

Proof. Let F : X → Y be computable, then there is a computable G :⊆ NN → NN such that (F ◦
δX)(χ) = (δY ◦G)(χ) for all χ ∈ dom(δX), where δX and δY are the respective Cauchy representations.
From this we have

F−1(Vn) = δX(G−1(δ−1
Y (Vn))) for all n ∈ N.

By lemma 2.1.8 and theorem 1.1.33, δX is effectively open and δY and G are effectively continu-
ous, so it is not hard to see that we can uniformly enumerate the basic open balls that make up
δX(G−1(δ−1

Y (Vn))). We omit the details.
Conversely, assume that F is effectively continuous. By lemma 2.1.8, δX is effectively continuous

and it is not hard to see that the composition of two effectively continuous functions is effectively
continuous, so F ◦ δX is effectively continuous. This means there is a c.e. relation I ⊆ N× N<N such
that δ−1

X (F−1(Vn)) =
⋃
{Uσ : (n, σ) ∈ I}. By the listing theorem 1.1.18, there is a computable function

f : N → N× N<N with range(f) = I.
Let G : dom(δX) → NN be the functional computed in the following way: Let χ ∈ NN be a Cauchy

name for some x ∈ X. To compute G(χ)(m), keep computing f(s) for each s = 0, 1, 2, . . . until
we find a pair (n, σ) such that Vn is a ball of radius at most 2−m and σ ≺ χ. This means that
F (x) ∈ B(r(n)0 , 2

−m), where n = ⟨(n)0, (n)1⟩, so output G(χ)(m) = (n)0. It is easy to see that G(χ)
is a Cauchy name for F (x).

2.2 Computable quasi-isometries

Recall that our goal is to come up with an adequate definition of computable quasi-isometry. One
way to do this is, as it is done in [3], simply defining them as quasi-isometries which are additionally
computable in the sense of definition 2.1.6. However, this is too strong, as theorem 2.1.9 implies that all
computable functions are continuous, and quasi-isometries are rarely continuous. For example, recall
from the discussion following definition 1.2.19 that the inclusion ι : Z → R is a quasi-isometry and it
is clearly computable in the metric sense. However, no quasi-inverse h : R → Z can be continuous,
let alone computable, since Z is discrete and R is connected. Therefore, there would be computable
quasi-isometries that have no computable quasi-inverse.

We will instead use a weaker notion of computability inspired from [23].
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Definition 2.2.1. Let X and Y be computable metric spaces and (si)i∈N the computable structure
of X. A function f : X → Y is computable on the special points if there exists a computable function
F : N2 → N such that, for every i ∈ N, (F (i, n))n∈N is a Cauchy name for f(si).

In other words, we have a procedure that enumerates a Cauchy name for f(si) for each i uniformly.

Proposition 2.2.2. Let (X, dX , (si)) and (Y, dY , (ri)) be uniformly discrete computable metric spaces
and let ν : n 7→ sn and µ : n 7→ rn be the canonical codings for X and Y respectively. A function
F : X → Y is computable on the special points if and only if it is (ν, µ)-computable.

Proof. This is analogous to the proof of proposition 2.1.7.

We are now ready to state the main definition of this thesis.

Definition 2.2.3. A quasi-isometry f : X → Y between computable metric spaces X and Y is called
a computable quasi-isometry if it is computable on the special points. In this case we say that X and
Y are computably quasi-isometric and write X ∼CQI Y .

Coming back to the example of Z and R, it is clear that the inclusion ι : Z → R is computable
on the special points, so it is a computable quasi-isometry in this sense. This time, we do have a
computable quasi-inverse, the floor function h : R → Z, given by h(x) = max{k ∈ Z : k ≤ x} for all
x ∈ R, is computable in the special points. Indeed, given a rational number q, we can computably find
the integer k such that h(q) = k.

In fact, we always have a computable quasi-inverse, as the following effective version of proposition
1.2.21 shows. Notice that the proof of proposition 1.2.21 is completely non-constructive since it uses
the axiom of choice, so we have to be more precise and give an actual construction of the quasi-inverse,
at least in the special points. This is a recurring theme when adapting proofs to the computable world.

Proposition 2.2.4. Let (X, dX , (si)) and (Y, dY , (ri)) be computable metric spaces. Every computable
quasi-isometry f : X → Y has a computable quasi-inverse quasi-isometry g : Y → X.

Proof. Let c > 0 be a constant rational number such that

(∀x, x′ ∈ X)
1

c
dX(x, x′)− c ≤ dY (f(x), f(x

′)) ≤ cdX(x, x′) + c,

(∀y ∈ Y )(∃x ∈ X)dY (f(x), y) < c.

Since (si)i∈N is dense in X we may assume that c satisfies

(∀y ∈ Y )(∃i ∈ N)dY (f(si), y) < c. (1)

Let F : N2 → N be the computable function from definition 2.2.1 that computes f . For each i, n ∈ N,
denote yni = rF (i,n) ∈ Y , so dY (f(si), y

n
i ) < 2−n. By the same metric arguments of lemma 2.1.3 we

have for every i, j ∈ N

dY (rj , f(si)) < c ⇐⇒ (∃n ∈ N)(dY (rj , yni ) < c− 2−n).

By lemma 2.1.3 the relation {(i, j, n) ∈ N3 : dY (rj , y
n
i ) < c − 2−n} is computably enumerable, so by

the normal form theorem 1.1.15 there exists a computable relation R ⊆ N4 such that

dY (rj , f(si)) < c ⇐⇒ (∃n ∈ N)(∃m ∈ N)R(i, j, n,m).

We first define g on the special points of Y . For each j ∈ N, let m be the least natural number
such that m = ⟨(m)0, (m)1, (m)2⟩ and R((m)0, j, (m)1, (m)2) (here ⟨.⟩ denotes the standard pairing
from example 1.1.4). We define g(rj) = s(m)0 . By (1) and the fact that the sequence (ri)i∈N has no
repetitions, g(rj) is well-defined for all j. For the non-special points Y we just use the axiom of choice
as in proposition 1.2.21. By the same calculation, g is a quasi-inverse quasi-isometry of f .

It is easy to see that g is computable on the special points: For each j ∈ N we can effectively compute
the least m with R((m)0, j, (m)1, (m)2) and then output the constant Cauchy name ((m)0, (m)0, . . . ).
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With this we have symmetry of ∼CQI . For transitivity we again run into problems because the
composition of two computable on the special points functions is not necessarily computable on the
special points. For example, take the functions f, g : R → R defined by

f(x) = x+
√
2 and g(x) =

{
0 if x ∈ Q,
h if x /∈ Q,

where h is a non-computable real number (such as the one given in example 2.1.5). Then, f and g are
computable on the special points, but the composition g ◦ f is constant equal to h on Q, so it cannot
be computable on the special points.

Fortunately, the notion of quasi-isometry is quite flexible and gives us a way around this issue.

Proposition 2.2.5. Let (X, dX , (si)), (Y, dY , (ri)) and (Z, dZ , (ti)) be computable metric spaces. If
f : X → Y and g : Y → Z are computable quasi-isometries then there exists a computable quasi-
isometry h : X → Z at finite distance from g ◦ f .

Proof. For each i ∈ N, we compute h(si) in the following way: Compute y0i ∈ Y the first term of the
Cauchy name for f(si) given by the algorithm of f , then dY (y

0
i , f(si)) < 1. Lastly, use the algorithm

of g for outputting a Cauchy name for g(y0i ).
This procedure well-defines h(si) = g(y0i ). For the non-special points x ∈ X we just define h(x) =

g(f(x)). Let c > 0 be a quasi-isometry constant for g. We have for every i ∈ N

dZ(h(si), g(f(si))) = dZ(g(y
0
i ), g(f(si))) ≤ c · dY (y0i , f(si)) + c < 2c,

and for x ∈ X non-special dZ(h(x), g(f(x))) = 0. Therefore, h is at finite distance from the quasi-
isometry g ◦ f . It is easy to see that this implies that h is also a quasi-isometry.

Corollary 2.2.6. The relation ∼CQI is an equivalence relation in the class of computable metric
spaces.

Now that we have established the fundamental properties of computable quasi-isometries, the
natural question arises: Do they coincide with standard quasi-isometries? More specifically, is there
a pair of computable metric spaces which are quasi-isometric but not computably quasi-isometric?
We partially answer this question by constructing a computable tree which admits quasi-isometric
embeddings of N such that none of them can be computable. This is a well-known construction in
computability theory called the Kleene tree.

Definition 2.2.7. A subtree T ⊆ N<N is a subset of strings closed under prefixes, i.e., if σ ⪯ τ and
τ ∈ T , then σ ∈ T .

A subtree T ⊆ N<N is said to be computable if it is a computable subset of N<N (under the coding
given in example 1.1.4).

As we have seen in example 2.1.2, the full tree N<N is a computable metric space under the standard
graph metric. The same is true for computable subtrees.

Proposition 2.2.8. Let T ⊆ N<N be a computable subtree and d the induced graph metric from N<N,
then (T, d) has a natural computable structure that makes it a computable metric space.

Proof. If T is finite the result is obvious. Assume T is infinite. Let ν : N → N<N be the standard
coding of N<N and A = ν−1(T ), then A is a computable subset of N. By corollary 1.1.19 there exists
a computable bijection f : N → A. Let µ = ν ◦ f , then µ is a bijective coding from N to T that makes
d computable.

Definition 2.2.9. Let x ∈ NN and n ∈ N, then x|n denotes the restriction of x to the first n
coordinates. Given a subtree T ⊆ N<N, an infinite path in T is an element x ∈ NN such that x|n ∈ T
for all n ∈ N. Moreover, if x is computable (as a function from N to N), we say it is a computable path.
We denote by [T ] the set of all infinite paths of T .

Notice that if x is an infinite path in T , then the function f : N → T defined by f(n) = x|n is an
isometric embedding, in particular a quasi-isometric embedding. The converse is also true even in the
computable setting.
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Proposition 2.2.10. Let T ⊆ N<N be a computable subtree and f : N → T a computable quasi-
isometric embedding, then T has a computable infinite path.

Proof. We will show that f(n) converges to an element of [T ] when n goes to infinity. Let a, b ∈ N be
constants such that

1

a
|i− j| − b ≤ d(f(i), f(j)) ≤ a|i− j|+ b.

Given σ, τ ∈ T , denote

ρ(σ, τ) =


l(σ) if σ ⪯ τ,

l(τ) if τ ⪯ σ,

min{i : σ(i) ̸= τ(i)} otherwise.

Then, d(σ, τ) = l(σ) + l(τ)− 2ρ(σ, τ). We have,

n

a
− b ≤ d(f(0), f(n))

= l(f(n)) + l(f(0))− 2ρ(f(0), f(n))

≤ l(f(n)) + l(f(0)),

so,

l(f(n)) ≥ n

a
− b− l(f(0)), for all n ∈ N

Thus, l(f(n)) → ∞ when n→ ∞. Moreover,

l(f(n+ 1)) + l(f(n))− 2ρ(f(n+ 1), f(n)) = d(f(n+ 1), f(n)) ≤ a+ b,

so that,

2ρ(f(n+ 1), f(n)) ≥ n+ 1

a
+
n

a
− 2l(f(0))− a− 3b.

Therefore, for each k ∈ N, we may computably find N(k) ∈ N such that f(n)k, the kth coordinate of
f(n), exists and is constant for every n ≥ N(k). Define x : N → N as x(k) = f(N(k))k. Then x ∈ [T ]
and it is computable.

Lemma 2.2.11 (König’s lemma). Let T ⊆ 2<N be an infinite subtree of the binary tree, then T has
an infinite path.

Proof. Given σ ∈ T , denote by Tσ = {τ ∈ T : σ ⪯ τ}. Since T = T0∪T1 and T is infinite, Ti is infinite
for some i ∈ {0, 1}, define x(0) = i. Continue recursively in the following way

x(n+ 1) =

{
0 if Tx(0)...x(n)0 is infinite,

1 otherwise.

Then, by induction Tx|n is infinite for all n ∈ N, in particular x|n ∈ T , thus x ∈ [T ].

Lemma 2.2.12 (Kleene tree). There exists a computable infinite subtree T ⊆ 2<N with no computable
paths.

Proof. First we prove that there exists a disjoint pair of c.e. sets A,B ⊆ N such that there is no
computable set C with A ⊆ C and C ∩B = ∅. Such a pair are said to be computably inseparable. Let

A = {n ∈ N : φn(n) = 0},
B = {n ∈ N : φn(n) = 1},

where {φe}e∈N is a computable enumeration of the p.c. functions, as in theorem 1.1.5. A,B are clearly
c.e. Suppose that C is a computable set with A ⊆ C and C ∩ B = ∅. Then there exists an index
e ∈ N such that φe is the characteristic function of C. Now, if e ∈ C, then φe(e) = 1, but this means
e ∈ B which cannot occur since C ∩B = ∅. On the other hand, if e /∈ C, then φe(e) = 0, which means
e ∈ A ⊆ C. Thus, e ∈ C iff e /∈ C, a contradiction.
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Let e, i ∈ N be indices such thatWe = A andWi = B (recall definition 1.1.13). Define a computable
subtree T ⊆ 2<N in the following way: Given σ ∈ 2<N, let s = l(σ) and put σ ∈ T if and only if

∀n < s (n ∈We,s =⇒ σ(n) = 1) and (n ∈Wi,s =⇒ σ(n) = 0).

In this way, x ∈ [T ] if and only if

∀n ∈ N (n ∈We =⇒ σ(n) = 1) and (n ∈Wi =⇒ σ(n) = 0),

that is, x separates We and Wi. Therefore, the infinite paths of T are exactly the separating sets of A
and B, of which none are computable.

Corollary 2.2.13. There exists a computable metric space T that admits a quasi-isometric embedding
of N but no computable quasi-isometric embedding of N.

Proof. Let T be the tree from the previous lemma. By König’s lemma there exists x ∈ [T ]. The map
n 7→ x|n is an isometric embedding of N into T . Since T has no computable paths, proposition 2.2.10
implies there is no computable quasi-isometric embedding of N.

2.3 Computably quasi-isometric groups

Let G be a finitely generated group with decidable word problem. By theorem 1.2.8, G has a unique
computable structure which naturally transfers to the metric space (G, dS) for any finite generating
set S, as we have seen in example 2.1.2. If S′ is another finite generating set, then we know by
proposition 1.2.23 that the identity map id : (G, dS) → (G, dS′) is a quasi-isometry. By proposition
1.2.5, the identity is also a computable function so we conclude that G has a well defined computable
quasi-isometry type.

Definition 2.3.1. Let G be a finitely generated group with decidable word problem. The group G
is computably quasi-isometric to a computable metric space X if for some (and hence every) finite
generating set S of G the computable metric spaces (G, dS) and X are computably quasi-isometric.
We write G ∼CQI X.

Theorem 2.3.2 (Effective Schwarz-Milnor lemma). Let G be a finitely generated group with decidable
word problem acting by computable isometries on a proper, geodesic and computable metric space
(X, d, (si)). Furthermore, suppose that this action is proper and cocompact. Then for all computable
x ∈ X the map

G −→ X

g 7−→ g · x

is a computable quasi-isometry.

Proof. By theorem 1.2.26 we just have to show that the map f : G→ X with f(g) = g ·x is computable
on the special points. Let S be a finite generating set of G and for each s ∈ S, let fs : X → X,x 7→ s ·x
be the computable isometry associated to s. Given g ∈ G, find s0, . . . , sn−1 ∈ S with g = s0 · · · sn−1,
then f(g) = (fs0 ◦ · · · ◦ fsn−1

)(x), so just enumerate a Cauchy name for x and use the algorithms of
each fsi to get a Cauchy name for f(g).

Recall from theorem 1.3.11 that cocompact Fuchsian groups have solvable word problem and from
example 2.1.2 that H is a computable metric space. We will use the effective Schwarz-Milnor lemma to
show that cocompact Fuchsian groups are computably quasi-isometric to H. We do this by replacing
the coefficients of the elements of the group by computable real numbers. We shall need the following
result of A. Weil [31].

Theorem 2.3.3 (Weil [31]). Let G be a connected Lie group and Γ a discrete group. Denote

R = {φ : Γ → G | φ is a group homomorphism}

and give it the induced topology from the product GΓ. Let R0 be the subset of all φ : Γ → G injective
group homomorphisms such that φ(Γ) is discrete in G with compact quotient space G/φ(Γ). Then R0

is an open subset of R.
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Applying this to our context we have the following corollary.

Corollary 2.3.4. Let Γ be a cocompact Fuchsian group generated by γ1, . . . , γn. Then, there exists
δ > 0 such that, if φ : Γ → PSL2(R) is a group homomorphism with ∥γi − φ(γi)∥ < δ for every
i = 1, . . . , n, then φ(Γ) is a cocompact Fuchsian group isomorphic to Γ.

Proof. Let G = PSL2(R) in the previous theorem. Since Γ is generated by γ1, . . . , γn, R is homeomor-
phic to (PSL2(R))n. By proposition 1.3.10, the set R0 coincides with the subset of all φ : Γ → PSL2(R)
such that φ is an injective group homomorphism and φ(Γ) is a cocompact Fuchsian group. Therefore,
our δ comes from a neighborhood of the inclusion map contained in the open set R0.

Proposition 2.3.5. Let Γ be a cocompact Fuchsian group. Then there exists a cocompact Fuchsian
group Γ′ isomorphic to Γ such that the coefficients of the elements of Γ′ are all computable real numbers.

Proof. Let Γ be a cocompact Fuchsian group generated by γ1, . . . , γn ∈ PSL2(R). By adjoining the
finite number of coefficients of each γi to Q, we may regard Γ as a subgroup of PSL2(K), where K =
Q(α1, . . . , αk, a1, . . . , al), α1, . . . , αk are algebraically independent over Q and a1, . . . , al are algebraic
over L = Q(α1, . . . , αk). For each i = 1, . . . , l, let pi ∈ L[x] be the minimal polynomial of ai over L.
L is isomorphic to Q(x1, . . . , xl) the field of rational functions of l variables, so we may regard pi as a
rational function pi(x1, . . . , xl, x) of l+1 variables with rational coefficients. Since L is of characteristic
0 and pi is irreducible over L[x],

∂pi

∂x (α1, . . . , αl, ai) ̸= 0, therefore, by the implicit function theorem, we
have an open set Ui ⊆ Rl containing the point (α1, . . . , αl) and a continuous function fi : Ui → R such
that fi(α1, . . . , αl) = ai and pi(x1, . . . , xl, fi(x1, . . . , xl)) = 0 for every (x1, . . . , xl) ∈ Ui. In this way,
for every algebraically independent k-tuple (β1, . . . , βk) sufficiently close to (α1, . . . , αk), we have by

elementary field theory an isomorphism φ : K → K ′ = Q(β1, . . . , βk, f1(β⃗), . . . , fl(β⃗)) which naturally
induces a isomorphism of groups ψ : Γ → Γ′ ⊂ PSL2(K

′).
In order to assure that Γ′ is a cocompact Fuchsian group we use corollary 2.3.4. Let a ∈ K, by

field theory, we know that φ(a) is a linear combination over Q(β1, . . . , βk) of products and powers

of f1(β⃗), . . . , fl(β⃗), therefore φ(a) is continuous relative to (β1, . . . , βk), which means that by taking
(β1, . . . , βk) sufficiently close to (α1, . . . , αk) we can make sure that a and φ(a) are arbitrarily close.
Now, by doing this with every coefficient of each γi, we can make γi and ψ(γi) arbitrarily close for all
i = 1, . . . , n. Therefore, by corollary 2.3.4, Γ′ is a cocompact Fuchsian group for (β1, . . . , βk) sufficiently
close to (α1, . . . , αn).

Finally, we just need to make β1, . . . , βk computable numbers. Let pi be the i-th prime number.
By the Lindemann-Weierstrass theorem (see [2, Theorem 1.4]), (e

√
p1 , . . . , e

√
pk) are algebraically in-

dependent and clearly computable. Then, for each i = 1, . . . , n, take βi = qie
√
pi with qi a rational

number such that qie
√
pi is sufficiently close to αi. This makes K ′ a subfield of the field of computable

real numbers, therefore, the coefficients of each element of Γ′ are computable numbers.

Corollary 2.3.6. Every cocompact Fuchsian group is computably quasi-isometric to H.

Proof. Let Γ and Γ′ be as in proposition 2.3.5, and φ : Γ → Γ′ an isomorphism. Then, the natural
action of Γ′ on H induces an action of Γ by (g, x) 7→ φ(g)(x), g ∈ Γ, x ∈ H. Since the elements of Γ′

consist of computable real numbers, the action is by computable isometries of H. Therefore, all the
hypothesis of theorem 2.3.2 are satisfied and thus, Γ is computably quasi-isometric to H.

Corollary 2.3.7. Let Γ,Γ′ be cocompact Fuchsian groups, then Γ ∼CQI Γ′.

Proof. This is a direct consequence of the previous corollary and corollary 2.2.6.
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3 Medvedev degrees of SFTs over Fuchsian groups

The Medvedev degrees are a way of measuring the computational complexity of subsets of the Baire
space NN analogous to the Turing degrees of subsets of N. This tool is easily applicable to the study
of symbolic dynamical systems, since a subshift is essentially a subspace of the Cantor space. The
preprint [3] follows this line of research and computes the Medvedev degrees of G-subshifts for various
classes of groups. In this chapter we will introduce the basic framework for this study and then we
will see how corollary 2.3.7 can be applied to it.

3.1 Symbolic dynamics

Symbolic dynamical systems originated as a way to simplify the study of continuous dynamical systems,
for example systems of differential equations modelling physical phenomena. This technique was first
used by Jacques Hadamard in 1898 while studying geodesics on surfaces of negative curvature, see his
paper [14]. The idea is to discretize time as well as the phase space, so the passage of time is modelled
by iterates of a single transformation and the phase space is divided into a finite number of pieces,
each one of them named with a “symbol”. Then, an instantaneous state of the system is given by an
infinite sequence of these symbols and the “tick” of time is just shifting this sequence one cell to the
left. A reference for the classical theory is [20].

These systems gained considerable interest of their own and found multiple applications in computer
science and other areas of mathematics. In this chapter we are interested in their relation with group
theory. We can generalize the classical context by changing the underlying group from Z to any group
G. Then the properties of these systems reflect properties of the group G and vice-versa.

Definition 3.1.1. Let A be a finite set, which we will call the alphabet, and let G be a group. The
full G-shift is the set AG = {x : G→ A} equipped with the prodiscrete topology and with the left shift
action G↷ AG by left multiplication given by

(gx)(h) = x(g−1h) for every g, h ∈ G and x ∈ AG.

The elements x ∈ AG are called configurations. For a finite set F ⊂ G, a pattern with support F
is an element p ∈ AF . We denote the cylinder generated by p by Up = {x ∈ AG : x|F = p} and note
that the cylinders are a clopen base for the prodiscrete topology on AG.

Definition 3.1.2. A G-subshift is a G-invariant and closed subset X ⊂ AG. Equivalently, X is a
G-subshift if there exists a set F of forbidden patterns such that

X = XF = {x ∈ AG : gx /∈ Up for every g ∈ G, p ∈ F}.

Let X ⊆ AG and Y ⊆ BG be two subshifts. A map ϕ : X → Y is called a morphism if it is
continuous and G-equivariant. A morphism ϕ : X → Y is a topological factor map if it is surjective
and a topological conjugacy if it is bijective.

Theorem 3.1.3 (Curtis-Hedlund-Lyndon). A map ϕ : X → Y is a morphism if and only if there is a
finite set F ⊂ G and Φ: AF → B such that ϕ(x)(g) = Φ((g−1x)|F ) for every x ∈ X, g ∈ G.

Proof. The proof may be found in [6, Theorem 1.8.1].

Definition 3.1.4. A subshift X is of finite type (SFT) if there exists a finite set F of forbidden
patterns for which X = XF . A subshift Y is sofic if there exists an SFT X and a topological factor
map ϕ : X → Y .

We now define computability notions on subshifts. From now on G will always denote an infinite
finitely generated group with decidable word problem. By theorem 1.2.8 there exists a computably
unique bijective coding ν : N → G that makes the group operation computable. This coding induces a
natural representation (as in definition 2.1.4) for the space NG:

δ : NN → NG

x 7→ (xν−1(g))g∈G,

so we may speak of computable functions on NG.
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Definition 3.1.5. A partial function F :⊆ NG → NG is said to be computable if the functional
(δ−1 ◦ F ◦ δ) :⊆ NN → NN is computable.

Particularly, if A is a finite alphabet, we may always assume that A ⊆ N, so we regard a subshift
X ⊆ AG as a compact subspace of NN.

It is easy to see that theorem 1.2.8 and example 1.1.35 imply that this definition does not depend
on the particular coding ν : N → G we fix in the beginning, as long as it is bijective and makes the
group operation computable.

We have the following important observation.

Proposition 3.1.6. Let X ⊆ AG and Y ⊆ BG be G-subshifts and ϕ : X → Y a morphism. Then ϕ is
computable. In particular, two conjugate G-subshifts are computably homeomorphic.

Proof. By the Curtis-Hedlund-Lyndon theorem 3.1.3, there is a finite set F ⊂ G and Φ: AF → B such
that ϕ(x)(g) = Φ((g−1x)|F ) for every x ∈ X, g ∈ G. Since the group operations are computable and
Φ is a finite function, this clearly makes ϕ computable.

3.2 Medvedev degrees

For comparison, Medvedev reducibility is a generalization of Turing reducibility, see the remarks
following definition 1.1.27.

Definition 3.2.1. Let P,Q ⊆ NN. P is Medvedev reducible to Q (written P ≤ Q) if there exists a
partial computable functional F :⊆ NN → NN such that Q ⊆ dom(F ) and F (Q) ⊆ P .

Intuitively, one regards P ⊆ NN as a problem and each x ∈ P as a solution to the problem. Then,
P ≤ Q means there is a uniformly computable method to get a solution to P from any solution to Q.

As in Turing reducibility, we say that P is Medvedev equivalent to Q (written P ≡ Q) if P ≤ Q
and Q ≤ P . The equivalence class of P is called the Medvedev degree of P and we denote it by m(P ).
The set of all Medvedev degrees M has a partial order well-defined by m(P ) ≤ m(Q) iff P ≤ Q.

For example, m(∅) ≥ m(Q) for all Q, since any functional F satistfies F (∅) ⊆ P . If P contains a
computable element x ∈ P , then m(P ) ≤ m(Q) for all Q, since we can take the computable functional
that always outputs x. Thus, we can see that the partial order (M,≤) has a greatest degree (denoted
by 1M) given by the empty set, and a least degree (denoted by 0M) given by any set with a computable
element. Moreover, M possesses some additional structure of a lattice, which we now describe.

Given x, y ∈ NN, denote by x⊕ y the element of NN defined by

(x⊕ y)(2n) = x(n),

(x⊕ y)(2n+ 1) = y(n),

for all n ∈ N. Similarly, for strings σ, τ ∈ N<N with l(σ) = l(τ) = s denote σ ⊕ τ the string of length
2s defined by

(σ ⊕ τ)(2n) = σ(n),

(σ ⊕ τ)(2n+ 1) = τ(n),

for all n < s. It is clear that ⊕ is a computable operation.
Given P,Q ⊆ NN, we write

P ∨Q = {x⊕ y : x ∈ P and y ∈ Q},
P ∧Q = {0x : x ∈ P} ∪ {1x : x ∈ Q},

where 0x denotes the sequence that starts with 0 and then continues as x, similarly for 1x.

Proposition 3.2.2. (M,≤) is a distributive lattice, that is to say, for every P,Q,R ⊆ NN,

1. {m(P ),m(Q)} has a least upper bound (join) given by m(P ) ∨m(Q) = m(P ∨Q),

2. {m(P ),m(Q)} has a greatest lower bound (meet) given by m(P ) ∧m(Q) = m(P ∧Q),

3. m(P ) ∨ (m(Q) ∧m(R)) = (m(P ) ∨m(Q)) ∧ (m(P ) ∨m(R)),
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4. m(P ) ∧ (m(Q) ∨m(R)) = (m(P ) ∧m(Q)) ∨ (m(P ) ∧m(R)).

Proof. It is direct from the definitions, we will prove (1) as an example.
If x ∈ P ∨ Q, then the elements y, z ∈ NN defined by y(n) = x(2n) and z(n) = x(2n + 1), for

all n ∈ N, belong to P and Q respectively. Moreover we may uniformly compute them from x, so
P ≤ P ∨Q and Q ≤ P ∨Q.

If R ⊆ NN is such that P,Q ≤ R, then there exist computable functionals F and G such that
F (R) ⊆ P and G(R) ⊆ Q. Define H : dom(F ) ∩ dom(G) → NN by H(x) = F (x)⊕G(x) for all n ∈ N,
then, clearly H(R) ⊆ P ∨Q and H is computable, so P ∨Q ≤ R.

Intuitively, m(P ) ∨m(Q) is the difficulty of solving P and Q simultaneously, and m(P ) ∧m(Q) is
the difficulty of solving at least one of them. The empty set represents the problem with no solutions,
so it has the greatest degree of difficulty. Lastly, a problem with a computable solution is solvable by
a regular Turing machine, so we regard it as “easy”.

The Medvedev degrees of Π0
1 subsets of 2N (see definition 1.1.29) will be the most relevant in this

work. We denote

P = {m(P ) : P ⊆ 2N is a nonempty Π0
1 set}.

Proposition 3.2.3. P is a sublattice of M.

Proof. Let P,Q ⊆ 2N be nonempty Π0
1 sets, then obviously P ∨Q ∈ 2N and P ∧Q ∈ 2N are nonempty.

We show that they are Π0
1. By hypothesis, there are c.e. sets I, J ⊆ N<N such that

P =
⋂
σ∈I

(NN \ Uσ) and Q =
⋂
τ∈J

(NN \ Uτ ).

Define
K = {σ ⊕ τ : σ, τ ∈ N<N, l(σ) = l(τ) and (σ ∈ I or τ ∈ J)},

then K is c.e. because I, J are c.e and ⊕ is computable. Moreover, P ∨Q =
⋂

ρ∈K(NN \ Uρ). Indeed,
if z ∈ P ∨Q, then z = x⊕ y for x ∈ P and y ∈ Q. From this we have that σ⊕ τ ≺ z implies σ ≺ x and
τ ≺ y for any σ, τ . In particular, ρ ⊀ z for any ρ ∈ K. Conversely, if z /∈ P ∨Q, then z = x⊕ y where
x /∈ P or y /∈ Q. Suppose x /∈ P , then σ ≺ x for some σ ∈ I. Take τ = y|l(σ). We have σ ⊕ τ ≺ z and
σ ⊕ τ ∈ K. Similarly if y /∈ Q. This shows that P ∨Q is Π0

1.
Define

L = {0σ : σ ∈ I} ∪ {1τ : τ ∈ J},

then L is easily seen to be c.e. and as before we have P ∧Q =
⋂

ρ∈L(NN \Uρ), which shows that P ∧Q
is Π0

1.

Of course, 0M ∈ P since a singleton {x} with x computable is a Π0
1 set. It turns out that P also

has a greatest element but this is much harder to prove and it will not be relevant for us. See [15] for
more details.

We now make the connection with subshifts. Let G be an infinite finitely generated group with
solvable word problem and let δ : NN → NG be the representation as in definition 3.1.5.

Definition 3.2.4. We define the Medvedev degree of a subshift X ⊆ AG as m(X) = m(δ−1(X)).

Again, this definition does not depend on the particular coding for G. What makes Medvedev
degrees interesting in this context is that they are a conjugacy invariant.

Proposition 3.2.5. Let X ⊆ AG and Y ⊆ BG be G-subshifts and ϕ : X → Y a morphism. Then
m(X) ≥ m(Y ). In particular, two conjugate G-subshifts have the same Medvedev degree.

Proof. By proposition 3.1.6, ϕ is computable, thus m(X) ≥ m(Y ) by definition.

Let G be an infinite finitely generated group with solvable word problem. We denote

MSFT(G) = {m(X) : X is a nonempty G-SFT}.

Proposition 3.2.6. MSFT(G) ⊆ P and it is an invariant of group isomorphism.
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Proof. Let X ⊆ AG be a nonempty G-SFT, we show that it is computably homeomorphic to a Π0
1 set

Y ⊆ 2N. By definition (see section 3.1), there exists a finite set F of patterns, such that X = XF , i.e.,

X =
⋂
g∈G

⋂
p∈F

(AG \ g−1(Up)).

Note that, identifying G with N, a pattern p ∈ F is just a function p : F ⊂ N → A, where F is
finite, so it is almost a word over A. Since A and F are finite, it is easy to construct another finite
set F ′ of patterns such that X = XF ′ and every p ∈ F ′ is a word of fixed length p : s → A. Let
C =

⋂
p∈F ′(AG \ Up), then, since every finite set is c.e., C is Π0

1. We have

X =
⋂
g∈G

g−1(C)

and it is not hard to see that, since the group operation is computable, the family {g−1(C)}g∈G is
uniformly closed. Thus, by proposition 1.1.31, X is Π0

1. Recall from example 1.1.36 that we have a
computable homeomorphism F : AN → 2N, so X is computably homeomorphic to F (X) ⊆ 2N which is
Π0

1. Therefore m(X) ∈ P.
We now prove that MSFT(G) is an invariant under group isomorphism. Let G and H be f.g. groups

with solvable word problem and φ : G→ H an isomorphism. By corollary 1.2.9, φ is computable, so it
induces a computable homeomorphism Φ: NG → NH . Thus, if X is a non-empty G-SFT, then Φ(X)
is a non-empty H-SFT computably homeomorphic to X, particularly with the same Medvedev degree.
We conclude MSFT(G) ⊆ MSFT(H). Similarly MSFT(H) ⊆ MSFT(G).

As an example, we have the following result regarding Z2, observed by Simpson in [27].

Theorem 3.2.7. MSFT(Z2) = P.

The preprint [3] studies how MSFT(G) behaves under various relations in group theory, as in sub-
groups, quotients, conmensurability, translation-like actions and quasi-isometries. The authors proved
the following theorem.

Theorem 3.2.8. Let G and H be two computably quasi-isometric finitely presented groups with solvable
word problem. Then MSFT(G) = MSFT(H).

The details of the proof are too long and cumbersome to include here. The idea is to construct an
SFTQI overG whose elements encode all quasi-isometries f : H → G, moreover, the computable points
of QI correspond to the computable quasi-isometries from H to G. Then, given any SFT X ⊆ AH ,
one can enrich QI to get a G-SFT QI[X] such that m(QI[X]) = m(QI) ∨m(X). Since G and H are
computably quasi-isometric, we have m(QI) = 0M, so m(QI[X]) = m(X). Thus MSFT(H) ⊆ MSFT(G).
See also [8].

Corollary 3.2.9. Let G,H be cocompact Fuchsian groups, then MSFT(G) = MSFT(H).

Proof. Direct from the previous theorem and corollary 2.3.7.
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4 Further questions

In section 2.2 we showed the existence of a pair of computable metric spaces N and T such that N
quasi-isometrically embeds in T but not computably. We note that this does not directly imply the
existence of a pair of computable metric spaces that are quasi-isometric but not computably, because
the image of N in T is not a computable subset of T .

Question 4.1. Does there exist a pair of computable metric spaces X,Y such that X ∼QI Y but not
X ∼CQI Y ?

We conjecture a positive answer for this question. However, more sophisticated techniques are
probably needed, such as priority constructions from computability theory. Furthermore, it should
be possible to define a space of “computable ends” for arbitrary computable metric spaces which is
invariant under computable quasi-isometries.

In the spirit of [23], we say that a computable metric space X is computably quasi-isometrically
categorical if X ∼QI Y implies X ∼CQI Y for all computable metric spaces Y .

Question 4.2. Does there exist a computably quasi-isometrically categorical metric space?

Concerning groups, recall from corollary 1.2.9 that finitely generated groups are computably cate-
gorical, it is natural to ask if the same happens with quasi-isometries.

Question 4.3. Does there exist a pair G,H of finitely generated groups with solvable word problem
such that G ∼QI H but not G ∼CQI H?

A positive answer to this question would be very interesting, since it would mean that groups have
a finer computable large-scale geometry worth studying.

The techniques used in section 2.3 seem easy to generalize to other discrete subgroups of matrix
groups, such as Kleinian groups. Moreover, it seems possible to develop a theory of computable discrete
subgroups of computable topological groups, which could possibly answer question 4.3.

Finally, in section 3.2 we showed that SFTs over cocompact Fuchsian groups share the same class
of Medvedev degrees, however this does not give any explicit description of it. We claim that, using
similar techniques to the ones used for the group Z2, it is possible to show that this class is in fact the
class of all Π0

1 Medvedev degrees. This is ongoing work with Barbieri and Carrasco-Vargas that will
appear in an upcoming article.
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