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Abstract
We show that the domino problem is undecidable on orbit graphs of non-deterministic substitutions
which satisfy a technical property. As an application, we prove that the domino problem is
undecidable for the fundamental group of any closed orientable surface of genus at least 2.
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1 Introduction

Initially studied by Wang [22], the domino problem is the algorithmic question of determining
if a finite set of unit square tiles with colored edges –called Wang tiles– can be used to tile
the plane in such a way that adjacent edges of neighbor Wang tiles have the same color.
It was originally conjectured by Wang that the domino problem was decidable. However,
Berger [5] and later Robinson [21] both combined their constructions of an aperiodic set of
Wang tiles and a reduction from the halting problem of Turing machines to show that the
domino problem was in fact undecidable.

The domino problem can be naturally extended to a much broader context. Let Γ be a
labeled directed infinite graph, A a finite set, and F = {p1, . . . , pn} a finite list of colorings pi
of vertices of finite connected subgraphs of Γ by A. The domino problem of Γ is the language
of all codings of pairs (A, F ) as above, for which there exists a coloring of the vertices of
Γ such that none of the pi ∈ F embed as a colored labeled subgraph. Naturally, Wang’s
domino problem can be reinterpreted in this setting by letting Γ be the bi-infinite square
grid, A the set of Wang tiles, and F the list of all horizontal or vertical pairs of tiles whose
colors do not match.

A particularly interesting case is when Γ is a labeled directed Cayley graph of a finitely
generated group G. In this case, there is a direct correspondence between colorings of the
vertices of Γ by A which avoid a list of forbidden colored subgraphs as described above,
and subshifts of finite type (SFT), that is, closed and translation invariant subsets of AG
which are determined by a finite list of forbidden patterns. What is more, it can be shown
that the domino problems of all such Cayley graphs of G are computationally many-one
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46:2 The Domino Problem on Surface Groups

equivalent, and thus one may speak about the domino problem of G. In the particular case
when G = Z, the domino problem is decidable: every Z-SFT can be represented by a labeled
finite graph [18], and the existence of a configuration in the SFT (i.e. a bi-infinite word)
is equivalent to the existence of a cycle in the graph. The case of Z2 coincides with the
formalism of Wang tiles, and is thus undecidable.

The domino problem on graphs other than the Cayley graphs of Z and Z2 has been
studied by several authors. The undecidability for a graph which models the hyperbolic plane
was settled by Kari [15], and can also be obtained from the construction of a hierarchical
aperiodic tiling on the hyperbolic plane by Goodman-Strauss [12] and by Margenstern [19].
There has also been research in the case of graphs which can be obtained by self-similar
substitutions [4]. For finitely generated groups, the only groups where the domino problem
is known to be decidable are virtually free groups, and it is even conjectured that they are
the only ones [3].

I Conjecture 1. A finitely generated group has decidable domino problem if and only if it is
virtually free.

An interesting take on this conjecture comes from the fact that the domino problem can be
expressed in MSO logic [22, 2]. The MSO logic over the Cayley graph of a finitely generated
group is decidable if and only if the group is context-free [17], and a group is virtually-free if
and only if it is context-free and accessible [20]. Stated differently, (using that all finitely
presented groups are accessible [11]) groups that are not virtually free have an undecidable
MSO logic. Proven true, the domino problem conjecture would show that the domino problem
fragment is “big enough” in MSO. Recent results support the conjecture: decidability of
the domino problem is a quasi-isometry invariant for finitely presented groups [10] – i.e.
a geometric property of the group – and the conjecture holds true for Baumslag-Solitar
groups [1], polycyclic groups [13] and groups of the form G1 × G2 [14]. A survey on the
domino problem for finitely generated groups can be found in [6, Chapter 9].

The results of Aubrun and Kari [15, 1] share a common factor: the domino problem is
shown to be undecidable on two specific structures that grow exponentially with integer
or rational base. But what if the structure grows with a different base? The technique
employed by those authors –reduction from the immortality problem of rational piecewise
affine maps– seems difficult to adapt in this case. A class of structures which can grow
non-regularly is given by orbit graphs of non-deterministic substitutions (Section 3). This
class of structures includes the hyperbolic plane model of [15], which can be thought of
as an orbit graph of the one-letter substitution 0 7→ 00. Using a technique involving the
superposition of two orbit graphs of substitutions, presented in [9], we show that the domino
problem is undecidable on all orbit graphs of non-deterministic substitutions that satisfy a
technical property (Section 4). As an application of the previous result we show that the
domino problem of the fundamental group of any closed orientable surface of genus at least 2
is undecidable (Section 5). Finally, we discuss the case of word-hyperbolic groups (Section 6)
and show that if a famous conjecture of Gromov –or a weaker version– holds, then the only
word-hyperbolic groups with decidable domino problem are the virtually free groups, hence
confirming the conjecture for this class of groups.

2 Subshifts on graphs and the domino problem

We define a graph Γ to be a triple (VΓ, EΓ, LΓ) where VΓ is an infinite countable set of vertices,
EΓ ⊂ V 2

Γ is the set of edges, such that | {u ∈ VΓ | (u, v) ∈ EΓ or (v, u) ∈ EΓ} | < M for every
vertex v ∈ VΓ, where M is some constant, and LΓ : EΓ → L is a labeling function which
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assigns to every edge a label in a finite set L. Important examples of such graphs are Cayley
graphs of finitely generated groups. More precisely, given a finitely generated group G and a
finite set of generators S, its Cayley graph is given by VΓ = G, EΓ = {(g, gs) | g ∈ G, s ∈ S},
LΓ((g, gs)) = s. Let Γ = (VΓ, EΓ, LΓ) be a graph as defined above. Let S, T be two finite
subsets of VΓ. A mapping φ : S → T is a label preserving graph isomorphism if φ is a bijection
and

for all u, v ∈ S, (u, v) ∈ EΓ if and only if (φ(u), φ(v)) ∈ EΓ;
for all u, v ∈ S, LΓ ((u, v)) = LΓ ((φ(u), φ(v))).

Let A be a finite alphabet and Γ a graph. The set of mappings from VΓ to A, denoted
AΓ, is the set of configurations over Γ. Endowed with the prodiscrete topology, the set AΓ is
compact and metrizable. If S ⊂ VΓ is a finite and connected set of vertices, a pattern with
support S is a mapping p : S → A. A pattern p : S → A appears in a configuration x ∈ AG
(resp. in a pattern p′ : S′ → A) if there exists a finite set of vertices T ⊂ VΓ (resp. T ⊂ S′)
and a label preserving graph isomorphism φ : S → T such that pu = xφ(u) (resp. pu = p′φ(u))
for every u ∈ S. In this case, we denote p @ x (resp. p @ p′).

A subshift XF ⊂ AΓ is a set of configurations that avoid some set of forbidden patterns
F , i.e. XF :=

{
x ∈ AΓ | no pattern of F appears in x

}
. This notion extends the classical

definition of subshift for group actions to arbitrary graphs. A subshift of finite type (SFT) is
a subshift for which F can be chosen finite – equivalently, an SFT may also be defined by a
finite set of allowed patterns. In the case where the support of all the forbidden patterns in
F consist of two vertices connected by an edge, we say XF is a nearest neighbor subshift.

Given a graph Γ and a finite alphabet A, a pattern as defined above can be encoded by a
finite graph, which is an induced finite subgraph of Γ, with labels on edges and letters from
A on vertices. This is what is meant in the sequel by coding of a pattern.

Let Γ be a graph in the previous sense. The domino problem for Γ is defined as the set
DP(Γ) of codings of finite sets of forbidden patterns F such that XF 6= ∅. If the set DP(Γ) is
recursive, we say that Γ has decidable domino problem.

3 Substitutions, orbits and tilings

Inspired by [9], we associate a tiling of R2 to the orbit of an infinite word w ∈ AZ under the
action of a substitution, in which every tile codes a production rule of the substitution.

3.1 Substitution systems
We first define parent functions, which will be used to give precise descriptions of orbits of
infinite words under the action of a substitution. A parent function P : Z → Z is an onto
and non-decreasing function. In particular, such a function P satisfies that for every i ∈ Z,
P (i+ 1)− P (i) ∈ {0, 1}.

A non-deterministic substitution is a couple (A, R) where A is a finite alphabet and
R ⊂ A × A∗ is a finite set called the relation, and whose elements are called production
rules. We say that an infinite word ω ∈ AZ produces the word ω′ ∈ AZ with respect to
the parent function P if for every i ∈ Z, one has (ωi, ω′|P−1(i)) ∈ R, where ω′|P−1(i) is the
finite subword of ω′ that appears on indices {j ∈ Z | P (j) = i}. In this case, by abuse
of notation, we denote (ω, ω′) ∈ R. An orbit of a non-deterministic substitution (A, R) is
a set

{
(ωi, Pi)

}
i∈Z ∈

(
AZ × ZZ)Z such that for every i ∈ Z, Pi is a parent function, and

the word ωi produces the word ωi+1 with respect to Pi. A deterministic substitution (or
substitution for short) is a non-deterministic substitution where the relation is a function. A
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non-deterministic substitution (A, R) has an expanding eigenvalue if there exist λ > 1 and
v : A → R>0 such that for every (a,w) ∈ R if we write w = w1w2 . . . w|w| we have,

λ · v(a) =
|w|∑
i=1

v(wi).

I Example 2. The substitution given by the production rule 0 7→ 00 has an expanding
eigenvalue. This can be verified by choosing λ = 2 and v(0) = 1.

I Example 3. The substitution σgold given by the production rules a 7→ aab, b 7→ ba has an
expanding eigenvalue. This can checked with λ = 3+

√
5

2 and v(a) = 1+
√

5
2 , v(b) = 1.

3.2 Orbits as tilings of R2

Let (A, R) be a non-deterministic substitution with an expanding eigenvalue λ > 1 and
v : A → R>0. For every production rule (a,w) ∈ R, define the (a,w)-tile in position
(x, y) ∈ R2 as the square polygon with |w|+ 3 edges pictured below, where w = w1 . . . wk
(horizontal edges are curved to be more visible, but are in fact just straight lines).

•

• •

•• • •

(a,w)-tile

(x, y)

(x, y − log(λ))

v(a) · ey

log(λ)

1
λv(w1) · ey 1

λv(w2) · ey
. . .
. . .

. . . 1
λv(wk) · ey

I Remark 4. The length of the top edge and the sum of lengths of bottom edges of this tile
are the same. Since (A, R) has an expanding eigenvalue λ > 1 with v, one has

k∑
j=1

1
λ
v(wi) · ey = ey

λ
· λ · v(a) = v(a) · ey,

so that the bottom right vertex (x + 1
λ (v(w1) + · · ·+ v(wk)) ey, y − log(λ)) is indeed (x +

v(a) · ey, y − log(λ)).

The (A, R)-tiles is the set of all (a,w)-tiles in position (x, y) for all possible (a,w) ∈ R
and (x, y) ∈ R2. A tiling of R2 with (A, R)-tiles, or (A, R)-tiling for short, is a countable
collection of (A, R)-tiles that covers R2 and have pairwise disjoint interiors, such that tiles
are edge-to-edge –the intersection of two tiles is either empty or a full edge and two vertices.
In Figure 2 we illustrate a σgold-tiling (in blue) and a 0 7→ 00-tiling (in grey).

I Proposition 5. If a substitution (A, R) with an expanding eigenvalue admits orbits, then
there exists a tiling of R2 with (A, R)-tiles.
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4 Undecidability of the domino problem on orbit graphs

Let u = (ui)i∈Z be a bi-infinite sequence of positive integers. The accumulation function of
u is the function ∆: Z→ Z given by

∆(i) =


∑i−1
k=0 uk if i ≥ 1

0 if i = 0
−
∑−1
k=i uk if i ≤ −1

.

Note that the family of discrete intervals (Ik)k∈Z where Ik = [∆(k); ∆(k+ 1)− 1] forms a
partition of Z. If P is a parent function, and if we define the sequence u by ui = |P−1(i)|
for every i ∈ Z, then we get that P (j) = i for every j ∈ [∆(i); ∆(i+ 1)− 1], where ∆ is the
accumulation function of u.

Let (A, R) be a non-deterministic substitution. Denote M = max(a,w)∈R |w|.

I Definition 6. The orbit graph associated with the orbit Ω =
{

(ωi, Pi)
}
i∈Z of (A, R) is the

graph ΓΩ with set of vertices Z2, edges EΩ and labeling function LΩ : EΩ → {next}∪[0;M−1]
given by

for every i, j ∈ Z, ((i, j), (i, j + 1)) ∈ EΩ and LΩ (((i, j), (i, j + 1))) = next;
for every i ∈ Z and every k ∈ [∆i+1(j); ∆i+1(j + 1) − 1], ((i, j), (i + 1, k)) ∈ EΩ and
LΩ (((i, j), (i+ 1, k))) = k −∆i+1(j),

where ∆i is the accumulation function associated with
(
|P−1
i (j)|

)
j∈Z for every i ∈ Z.

•

• •

•

• • • •

•

• • •

(0,−1)

(1,∆1(−1))

(1,∆1(0)− 1)

0 1

(0, 0)

(1,∆1(0))

(1,∆1(0) + 1)

(1,∆1(0) + 2)

(1,∆1(1)− 1)

0 1 2 3

(0, 1)

(1,∆1(1))

(1,∆1(1) + 1)

(1,∆1(2)− 1)

0 1 2

Figure 1 Part of an orbit graph. Dashed arrow are edges of the graph labeled with next.

In this formalism, Kari’s result for the hyperbolic plane [15] is equivalent to the statement
that all orbit graphs of the one-letter substitution 0 7→ 00 have undecidable domino problem.

I Theorem 7 (Kari [15]). For all orbit graphs of the substitution ({0}, 0 7→ 00) the domino
problem is undecidable.

The goal of this section is to show that the domino problem of any orbit graph associated
to an orbit of a non-deterministic substitution (A, R) with an expanding eigenvalue λ is
undecidable. The general idea is to show that, given any SFT over an orbit graph of 0 7→ 00, it
is possible to encode it in an orbit graph of (A, R). We do this in two steps. First (Section 4.1),
we show a variation of the “Technical Lemma” of Cohen and Goodman-Strauss [9], where we
prove that it is possible to encode the structure of orbit graphs of 0 7→ 00 in an SFT over
(A, R). Then (Section 4.2), we prove that in addition to the structure of its orbit graph, it is
also possible to encode any SFT over orbit graphs of 0 7→ 00 in an SFT over (A, R).

MFCS 2019



46:6 The Domino Problem on Surface Groups

4.1 Superposition of orbits

Let us fix a non-deterministic substitution (A, R) with an expanding eigenvalue λ > 2
– this latter assumption ensures that letters of an alphabet B described below are non-
degenerate, and will be suppressed later. Without loss of generality, we may choose the
function v : A → R>0 associated to λ such that v(a) > 4 for each a ∈ A.

Let Ω be an orbit of (A, R). We shall construct a finite alphabet B and a finite set of
forbidden patterns F such that the subshift Y ⊂ BΓΩ over orbit graph ΓΩ, defined by the set
of forbidden patterns F has the following properties:

1. Y is non-empty,

2. every configuration y ∈ Y encodes an orbit graph of the substitution ({0}, 0 7→ 00).

Consider an orbit Ω of (A, R) and Φ an orbit of ({0}, 0 7→ 00). By Proposition 5 both of
these orbits can be realized as tilings of R2. Symbols from B will encode non-empty finite
regions of the tiling with ({0}, 0 7→ 00) that are witnessed by (A, R)-tiles. These regions will
be chosen in such a way that their union recovers the whole tiling and they are pairwise
disjoint (see Figure 2).

•

• • •

•

• • •

• •

•

• • •

•

• • •

•

• •

•

• • •

•

• • •

• • • • •

• • • • • • • • • • • • • • •

Figure 2 ΓΦ (in black) superimposed over an orbit graph of (A, R) (in blue) leads to the
construction of the subshift Y ⊂ BΓΩ : letters of the alphabet B are blocks of the orbit graph ΓΦ, such
as

• •
or • • • .A careful examination shows that dimensions of blocks in B are bounded: if

(t, h) denotes the width and height of a block in B, we get that mina∈Ab v(a)
4 c ≤ t ≤ maxa∈Ab1+ v(a)

2 c
and log(λ)

log(2) − 1 < h ≤ log(λ)
log(2) + 1. Thus B is finite, and the assumption λ > 2 and v(a) > 4 ensures

that blocks have non-degenerate dimensions.

The set of forbidden patterns F is the finite set of patterns that do not correspond to a
valid encoding of the orbit graph of ({0}, 0 7→ 00). In other words, we allow only patterns in
which the finite regions of ({0}, 0 7→ 00) that are encoded are consistent from one neighbor
to one other. We thus obtain an SFT Y on ΓΩ which encodes Φ and is non-empty.

I Lemma 8. For every orbit Ω of (A, R) the subshift of finite type Y ⊂ BΓΩ is non-empty.
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4.2 Simulation of SFTs over of 0 7→ 00 on orbit graphs of (A, R)
Let Ω and Φ be orbits of (A, R) and ({0}, 0 7→ 00) respectively, and ΓΩ, ΓΦ be orbit graphs of
Ω and Φ respectively. Let Σ be a finite alphabet and FΣ a set of nearest neighbor forbidden
patterns on ΓΦ over the alphabet Σ. We denote by XΣ the SFT defined by forbidden patterns
FΣ. In order to encode XΣ into ΓΩ, we use the same method as above for Y , but enrich the
patterns of 0 7→ 00 with colors taken from Σ. We then construct forbidden patterns that
ensure that no forbidden patterns from FΣ appear.

More formally, we define BΣ as the set of pairs (b, pb) such that b ∈ B and pb : Γb → Σ
is a pattern. For a pattern p on ΓΩ with alphabet BΣ denote by πB(p) the restriction to
the first coordinate of BΣ. And denote by q(p) : ΓπB(p) → Σ the pattern over ({0}, 0 7→ 00)
whose support is the graph ΓπB(p) and is obtained by pasting together the corresponding
patterns pb on the second coordinate of BΣ.

Define FB,Σ as the set of all patterns p over the alphabet BΣ which have supports which
consist in three vertices {u, v, w} in ΓΩ such that (u, v), (u,w) are edges, L((u, v)) = next
and L((u,w)) = ` for some ` appearing in the parent matching labels of the orbit graph ΓΩ,
and that satisfy one of the following two properties:
1. The pattern πB(p) obtained by restricting p to the first coordinate of BΣ is in F ;
2. The pattern q(p) obtained by pasting the patterns of p described by the second coordinate

of BΣ contains a forbidden pattern from FΣ.

Clearly FB,Σ has finitely many patterns (up to label preserving graph isomorphism). For
any orbit Ω of (A, R) we define the subshift of finite type YΣ ⊂ (BΣ)ΓΩ as the set of all
colorings of ΓΩ by BΣ where no pattern from FB,Σ appears.

This construction leads to the following Lemma, expressing the fact that XΣ is indeed
encoded into YΣ.

I Lemma 9. Let XΣ be the subshift on ΓΦ with alphabet Σ defined by the nearest neighbor
forbidden patterns FΣ and let YΣ ⊂ (BΣ)ΓΩ be defined as above. Then YΣ = ∅ if and only if
XΣ = ∅.

I Remark 10. The alphabet BΣ and the set of forbidden patterns FB,Σ which define YΣ only
depend upon Σ, FΣ and the substitution (A, R), and not on the choice of the orbit Ω of
(A, R).

I Theorem 11. The domino problem is undecidable on any orbit graph of a non-deterministic
substitution with an expanding eigenvalue.

Proof. Let us first assume that the expanding eigenvalue λ associated to (A, R) satisfies
λ > 2. Let Σ and FΣ be respectively an alphabet and a nearest neighbor set of forbidden
patterns for an orbit graph ΓΦ of an orbit Φ of ({0}, 0 7→ 00) which define a nearest neighbor
SFT XΣ. By Lemma 9 we know that XΣ = ∅ if and only if YΣ = ∅. Furthermore, we claim
that the alphabet and set of forbidden patterns which define YΣ can be constructed effectively
from Σ and FΣ. Indeed, the subshift Y does not depend upon Σ and thus its alphabet B and
forbidden patterns F can be hard-coded in the algorithm. It is easy to see that from B one
can effectively construct the alphabet BΣ and the forbidden patterns FB,Σ which define YΣ.

These two facts together show that if DP(ΓΩ) is decidable and λ > 2, then so is DP(ΓΦ).
Using the result of Kari (Theorem 7) we have that DP(ΓΦ) is undecidable, hence DP(ΓΩ) is
also undecidable.

For the case where 1 < λ ≤ 2, we consider the relation Rm defined recursively by:
R1 = R.

MFCS 2019
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Rk+1 is the set of all pairs (a, (c11 . . . c1`1)(c21 . . . c2`2) . . . (c1k . . . c1`k
)) in A × A∗ for which

there is a pair (a, b1 . . . bk) ∈ Rk such that (bi, ci1 . . . ci`i
) ∈ R for each i ∈ {1, . . . , k}.

In other words, Rm is the set of all relations that can be obtained by starting with a symbol
a ∈ A and replacing m times each letter by the right hand side of a production rule of R. Let
n ∈ N such that λn > 2 and note that the substitution (A, Rn) has the expanding eigenvalue
λn > 2. Lemma 9 then provides an encoding of the substitution ({0}, 0 7→ 00) on orbit
graphs of (A, Rk) for any k ∈ {0, . . . , n− 1}, in the form of SFTs Y n,kΣ such that Y n,kΣ = ∅ if
and only if XΣ = ∅. Then we are able to build an SFT Z on ΓΩ which encodes a copy of
Y k,nΣ for each k ∈ {0, . . . , n− 1}. One can verify that Z = ∅ if and only if XΣ = ∅, leading
to the same reduction as in the case λ > 2. J

5 The domino problem for surface groups

A fundamental result of geometry is that up to homeomorphism, closed orientable surfaces
are completely classified by their genus g: any such surface is either homeomorphic to a
sphere or to a finite connected sum of tori. In this section we shall classify the domino
problem of their fundamental groups.

5.1 Surface groups
The surface group of genus g is the group defined by the following presentation:

Gg = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]〉,

where [a, b] = aba−1b−1 is the commutator of a and b. It is interesting to notice that
Z2 = 〈a, b | aba−1b−1〉 is the surface group of genus 1, and hence by Berger’s result [5] its
associated domino problem is undecidable.

The domino problem for a finitely generated group is known to be a commensurability
invariant [6, Corollary 9.53]. It turns out that all surface groups of genus g ≥ 2 are
commensurable [8, Proposition 6.7]. By combining these two facts, it would be enough to
prove the undecidability of the domino problem for just the surface group of genus 2. In
the sequel, we shall denote by G the surface group of genus 2, i.e. the group with finite
presentation

G = 〈a, b, c, d | [a, b][c, d]〉,

denote by S the symmetric closure of its generating set {a, b, c, d}, and by 1G its identity.

The Cayley graph of G associated with the presentation above is not an orbit graph of
some substitution with an expanding eigenvalue, but can be seen as such just by assigning
different labels to the edges. Moreover we shall see that these labels can be obtained locally,
which means that we can code the relabeling inside an SFT.

5.2 Finding a substitution in the surface group of genus 2
The goal of this section is to establish a parallel between the Cayley graph of the surface
group CG := Γ(G,S) and the orbit graph of a particular substitution.

The group G has only one relation [a, b][c, d] = 1G. Thus the only minimal cycles of the
Cayley graph are cyclic permutations of [a, b][c, d]. We call them elementary cycles. Moreover,
any edge in the Cayley graph is part of at least one elementary cycle, since all generators and
their inverses appear in the relation. Let d(g, h) be the smallest number of elementary cycles
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that must be crossed to go from g to h in CG. Let Bi = {g ∈ G | d(1G, g) ≤ i} be the ball of
radius i and Ci = {g ∈ G | d(1G, g) = i} be the sphere of radius i, so that Bi+1 \Bi = Ci+1.

Consider an element g ∈ Ci for i ≥ 1. There are exactly two elements s ∈ S such that
gs ∈ Ci. There can be either (a) one or (b) none s ∈ S so that gs ∈ Ci−1. We must
therefore have that there are 5 and 6 values s ∈ S such that gs ∈ Ci+1 for types (a) and
(b) respectively. More precisely, it can be verified that the sequence of elements of Ci+1
that is obtained by following an elementary cycle from an element of type (a) in Ci has
the type sequence ab5ab5ab5ab5ab4 and the sequence of types for an element of type (b) is
ab5ab5ab5ab5ab5ab4.

This leads us to define the substitution s : {a, b} → {a, b}∗ given by{
s(a) = (ab5)4ab4

s(b) = (ab5)5ab4.

From now on, we fix Ω =
(
ωi, Pi

)
i∈Z an orbit of the substitution s defined above, and

denote by Γ its associated orbit graph. Let us note that s admits an expanding eigenvalue
(λ = 17 + 12

√
2 and v(b)/v(a) = 1+

√
2

2 ).
The similarities between the two graphs will allow us to perform a reduction from the

domino problem on Γ (shown to be undecidable in Section 4) to the domino problem on the
surface group of genus 2. In order to do this reduction, all we need is a computable map
which sends sets of pattern codings over Γ into sets of pattern codings over CG such that the
sets defining a non-empty subshift are mapped into sets defining a non-empty subshift and
vice-versa. This is not trivial because some of the edges are lost going from Γ to CG. In order
to recover those edges, we shall construct an SFT X over G which locally recovers the lost
information and use it to build the bijection needed for the reduction. Note that technically
we do not need an SFT to do so, a computable bijection would be enough. However doing it
with an SFT provides a locally computable mapping, which is a nice bonus.

Definition of X

To define the SFT X, we introduce a notion of directions that corresponds to following edges
of the orbit graph. These directions depend on the element of the group we consider, but
can nevertheless be defined by local rules. The alphabet of X contains the correspondence
between generators and local directions. More formally, we first consider the general alphabet
A0, consisting of the tuples (c, (h1, d1), (h2, d2), . . . , (h8, d8)) such that

c ∈ {�,�} is the color of the cell,
(h1, . . . , h8) is a permutation of S ∪ S−1 = {a, a−1, b, b−1, c, c−1, d,−1 },
d1, . . . , d8 ∈ {←,→, ↑, ↓1, ↓2, ↓3, ↓4, ↓5, ↓6} the directions associated to each generator.

Let x ∈ AG0 be a configuration over A0. For every g ∈ G, if the first coordinate of xg is
c = � (resp. �), we call xg a black (resp. white) cell.

The alphabet A1 ⊆ A0 is made of three types of elements with more precise directions
imposed, depending on the color c:

(�, (h1,←), (h2,→), (h3, ↑), (h4, ↓1), (h5, ↓2), (h6, ↓3), (h7, ↓4), (h8, ↓5))

(�, (h1,←), (h2,→), (h3, ↓1), (h4, ↓2), (h5, ↓3), (h6, ↓4), (h7, ↓5), (h8, ↓6))

Black cells have directions left, right, up and down, whereas whites ones have only left, right
and down. Note that for black and white cells, up, left and right are unique. We can then
define their top, left and right neighbors.
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I Definition 12. Let x ∈ AG1 be a configuration over A1 and g ∈ G. We define:
gh1 the left neighbor of g in x, denoted by ←x(g),
gh2 is the right neighbor of g in x, denoted by →x(g),
if xg is a black cell, gh3 is the top neighbor of g in x, denoted by ↑x(g),
for i ∈ {1, ..., 5}, gh3+i (for a white cell, i ∈ {1, ..., 6}, gh2+i) is the i-th bottom neighbor
of g in x, denoted by ↓i,x(g).

Using local rules, we forbid elementary cycles that do not have the colors shown on
Figure 3. We also impose the orientations to be as drawn. For example, the right of a is g2,
its top is g−1

1 , and the other directions of a are not constrained by this cycle. Similarly, the
left of b is g−1

2 , its right g3 and other directions unconstrained. To do so, we call F1 the set
of all elementary cycles that are not of the form of Figure 3.

∗

a
g2

b
g3 g4 g5 g6 g7

g1 g8

∗
g8 ∗

a
g2

b
g3 g4 g5 g6

g1 g7

Figure 3 The two possible types of colorings of cycles. There are no color constraints on ∗ , and
the cycle g1 . . . g8 is any cyclic permutation of [a, b][c, d].

We add the constraint that directions must be consistent between adjacent cells, by
forbidding the finite set F2 , which is the set of patterns on the support {1G, h} for h ∈ G,
such that x1G

and xh are linked by mismatching directions. That is,

F2 =

pattern p of support{1G, h}

∣∣∣∣∣∣∣∣∣∣
←p(1G) = h and →p(h) 6= 1G or
→p(1G) = h and ←p(h) 6= 1G or
↑p(1G) = h and ∀i, ↓i,p(h) 6= 1G or

∃i, ↓i,p(1G) = h and ↑p(h) 6= 1G

 .

We define X as the set of all configurations over A1 where no forbidden patterns from F1∪F2
appear. By definition, X is an SFT.

The subshift of finite type X

We construct a configuration x in the SFT X ⊂ AG1 as the limit of a sequence of configurations
(yn)n∈N of another SFT X2 ⊂ (A1 ∪ {orange})G, where

orange :=
(
�, (a, ↓1), (a−1, ↓2), (b, ↓3), (b−1, ↓4), (c, ↓5), (c−1, ↓6), (d, ↓7), (d−1, ↓8)

)
,

and we extend the definition of neighbors consistently. X2 is defined by F1 ∪ F2 the same
finite set of forbidden patterns as X. Intuitively, because the letter orange has only bottom
neighbors, an orange cell can only appear once in a configuration of X2. Moreover, one can
build bigger and bigger circles around the orange cell by simply sticking elementary cycles
around, colored as on Figure 3, leading to the following lemma.

I Lemma 13. For every i, there exists a pattern pi ∈ (A1 ∪ {orange})Bi containing no
forbidden patterns of F and such that (pi)g is an orange cell if and only if g = 1G.

From Lemma 13, we can build a configuration y in X2 that contains only one orange cell
at the origin. And from it, we can deduce the non-emptiness of X.
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I Proposition 14. The subshift X is non-empty.

Proof. By compactness of (A1 ∪ {orange})G and Lemma 13, there exists a configuration
y ∈ X2 which coincides with the pattern pi on Bi for all i ∈ N. In particular, the orange cell
appears only at the origin. The SFT X consists of all configurations on X2 where the orange
tile does not appear. By definition of y, we can find arbitrarily large regions where � does
not appear at all. We can then extract a sequence of configurations (yn)n∈N of X2 such that
the orange cell does not appear in (yn)|Bn

. Any accumulation point of the sequence (yn)n∈N
does not contain the orange cell and is thus in X. J

If we carefully look at configurations in X, we observe that they are all structured with
infinite lines of → and ←. Moreover these infinite lines can be ordered with no ambiguity.
This is expressed in Lemma 15: any element g of G can be reached from the identity 1G by
first going to the appropriate infinite line, and then moving to the left or right up to g. Fix
some x ∈ X, and define →−1

x (g) :=←x(g) and ↓−1
1,x(g) :=↑x(g).

I Lemma 15. For any g ∈ G, there exists i, j such that g =→j
x◦ ↓i1,x(1G).

Proof idea. The key idea here is that we can always reorder the operations by taking another
way in the graph. Starting from any path from 1G to g, we can transform it into this “normal
form” by taking a longer path that uses only ↓1 then → operations. J

5.2.1 A bijection between Z2 and the surface group
Let x ∈ X be fixed. We define fx : Z2 → G by fx(i, j) =→j

x◦ ↓i1,x(1G) for every i, j ∈ Z.

I Lemma 16. For every x ∈ X, the function fx is a bijection.

Proof idea. It is enough to show that for any group element g ∈ G, there exist uniquely
defined i, j ∈ Z such that g =→j

x◦ ↓i1,x(1G). The key ingredient to prove the uniqueness of
this representation is to notice that any cycle in the Cayley graph of G contains as many
↑ as ↓ operations, which can be proven by induction on the size of the cycle and a careful
examination of different cases. J

We can moreover prove that fx also preserves locality, in the sense that neighborhoods
are almost preserved, as stated in the following lemma.

I Lemma 17. The following equivalences are true:

1.
{

(u, v) ∈ EΓ

LΓ(u, v) = next
⇔ fx(v) =→x(fx(u))

2.
{

(u, v) ∈ EΓ

LΓ(u, v) = k ∈ {0, . . . ,M − 1}
⇔ fx(v) =→k

x◦ ↓1,x(fx(u))

where M is the number of sons of u.

The bijection fx itself cannot be a label preserving graph isomorphism, since we lack
some edges of Γ in CG, but it nevertheless enjoys a useful property: if ϕ is a label preserving
graph isomorphism for Γ, then so is fx ◦ϕ ◦ f−1

x for CG,x, and if ϕ is a label preserving graph
isomorphism for CG,x, then so is f−1

x ◦ϕ ◦ fx for Γ, where CG,x is a relabeling of Cg according
to the configuration x. So roughly speaking, any local pattern is preserved by fx or by f−1

x .

I Corollary 18. Let A be a finite alphabet. For any configuration c ∈ AG,
p @ c⇒ f−1

x (p) @ f−1
x (c). Conversely for any d ∈ AΓ, q @ d⇒ fx(q) @ fx(d).
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5.3 The reduction
We now have everything in hand to prove the undecidability of the domino problem on the
surface group of genus 2.

I Theorem 19. The domino problem is undecidable on the surface group of genus 2.

Proof. Recall that Γ is the orbit graph of an orbit of the substitution s defined on page 9.
Let A be a finite alphabet and Y ⊆ AΓ an SFT over Γ, given by a finite set of forbidden
patterns FY . We define Z the SFT over G with set of forbidden patterns FZ := fx(FY ),
where fx is defined in Lemma 16. We prove that Z = ∅ if and only if Y = ∅.

Assume Z = ∅ and consider a configuration c ∈ AG. The configuration d := f−1(c) is
thus in AΓ. Since Z = ∅, necessarily c contains a forbidden pattern p from the set FZ . Since
p @ c, Corollary 18 implies that f−1

x (p) @ f−1
x (c) = d. So a pattern f−1

x (p) from FY appears
in any configuration c ∈ AG, i.e. the subshift Y is empty. Similar arguments show that if Y
is empty then so is Z, and the reduction is completed. J

I Corollary 20. The domino problem is undecidable for every surface group of positive genus.

Proof. The undecidability of the domino problem is a commensurability invariant [6, Corol-
lary 9.53], and all surface groups of genus g ≥ 2 are commensurable [8, Proposition 6.7]. By
combining these two facts with Theorem 19, we obtain the undecidability of domino problem
for surface groups of any genus g ≥ 2. As the domino problem on Z2 –the surface group of
genus 1– is undecidable, we obtain our result. J

6 Remarks about word-hyperbolic groups

Surface groups of genus g ≥ 2 are special cases of a larger class of groups called word-hyperbolic.
They can be characterized as the finitely presented groups for which Dehn’s algorithm solves
the word problem. An important property of the domino problem is that groups which
contain subgroups with undecidable domino problem have themselves undecidable domino
problem [6, Proposition 9.3.30]. This means that every group which contains an embedded
copy of a surface group has undecidable domino problem. This is of special relevance due to
the following conjecture by Gromov.

I Conjecture 21 (Gromov). Every one-ended word-hyperbolic group contains an embedded
copy of the surface group of genus 2.

In particular, if Gromov’s conjecture holds, every one-ended word-hyperbolic group would
automatically have undecidable domino problem. A group can have either 0, 1, 2 or infinitely
many ends. In the case when it has 0 ends it is finite and thus its domino problem is trivially
decidable, and whenever it has 2 ends it is virtually Z and thus it is also decidable. In the
case of a finitely presented group G, a fundamental result by Dunwoody [11] shows that if G
has infinitely many ends it can be expressed as the fundamental group of a finite graph of
groups such that every edge is a finite group and all vertices are either finite or 1-ended. It
can also be shown [16] that G is virtually free if and only if all of the vertex groups in its
decomposition are finite. Therefore, if G is not virtually free, it must contain a one-ended
subgroup. In the case of word-hyperbolic groups, every such group in the decomposition
must also be word-hyperbolic [7]. In other words, every word-hyperbolic group which is not
virtually free contains a one-ended word-hyperbolic group. This implies the following.
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I Proposition 22. If Gromov’s conjecture holds then the domino problem conjecture holds
for all word-hyperbolic groups.

In fact, we could obtain the same result with an even weaker version of Gromov’s
conjecture. We say a group G acts translation-like on a metric space (X, d) if the action
is free and supx∈X d(x, gx) <∞ for every g ∈ G. Clearly, if H is a subgroup of G then H
acts translation like on any Cayley graph of G by multiplication. A theorem by Jeandel [14]
shows that if a finitely presented group H acts translation like on a Cayley graph of a finitely
generated group G, then the domino problem of H is many-one reducible to the domino
problem on G, in particular, we obtain that any group on which the surface group of genus 2
acts translation-like has undecidable domino problem.

I Proposition 23. If every 1-ended word-hyperbolic group admits a translation-like action of
the surface group of genus 2, then the domino problem conjecture holds for all word-hyperbolic
groups.
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