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Abstract. Two asymptotic configurations on a full Zd-shift are indistinguishable if for every finite
pattern the associated sets of occurrences in each configuration coincide up to a finitely supported
permutation of Zd. We prove that indistinguishable asymptotic pairs satisfying a “flip condition”
are characterized by their pattern complexity on finite connected supports. Furthermore, we prove
that uniformly recurrent indistinguishable asymptotic pairs satisfying the flip condition are described
by codimension-one (dimension of the internal space) cut and project schemes, which symbolically
correspond to multidimensional Sturmian configurations. Together the two results provide a gener-
alization to Zd of the characterization of Sturmian sequences by their factor complexity n ` 1. Many
open questions are raised by the current work and are listed in the introduction.
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1. Introduction

Asymptotic pairs, also known as homoclinic pairs, are pairs of points in a dynamical system whose
orbits coalesce. These were first studied by Poincaré [2] in the context of the three body problem and
used to model chaotic behavior. Namely, two orbits which remain arbitrarily close outside a finite
window of time may be used to represent pairs of trajectories that despite having similar behavior for
an arbitrarily long time, present abrupt local differences.

In this work we consider asymptotic pairs of zero-dimensional expansive actions of Zd. Concretely,
given a finite set Σ, we consider the space of configurations ΣZd

“ tx : Zd Ñ Σu endowed with the
prodiscrete topology and the shift action Zd σ

ñ ΣZd . In this setting, two configurations x, y P ΣZd are
asymptotic if x and y differ in finitely many sites of Zd. The finite set F “ tv P Zd : xv ‰ yvu is
called the difference set of px, yq. An example of an asymptotic pair when d “ 2 is shown in Figure 1.

Given two asymptotic configurations x, y P ΣZd , we want to compare the number of occurrences
of patterns. A pattern is a function p : S Ñ Σ where S, called the support of p, is a finite subset
of Zd. The occurrences of a pattern p P ΣS in a configuration x P ΣZd is the set occppxq :“ tn P

Zd : σnpxq|S “ pu. The language of a configuration x P ΣZd over a finite support S Ă Zd is LSpxq “

tp P ΣS : occppxq ‰ ∅u. When x, y P ΣZd are asymptotic configurations, the difference occppxqzoccppyq

is finite because the occurrences of p are the same far from the difference set of x and y. We say that
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x y

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 1 0 2 1 0 2 1 0 2
2 1 0 2 1 0 2 2 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

1 0 2 2 1 0 2 1 0 2 1 1 0 2 1
0 2 1 1 0 2 1 0 2 1 0 2 2 1 0
2 1 0 2 2 1 0 2 1 0 2 1 1 0 2
1 0 2 1 1 0 2 1 0 2 1 0 2 2 1
0 2 1 0 2 2 1 0 2 1 0 2 1 1 0
2 1 0 2 1 1 0 2 1 0 2 1 0 2 2
1 0 2 1 0 2 2 1 0 2 1 0 2 1 1
0 2 1 0 2 1 0 2 2 1 0 2 1 0 2
2 1 0 2 1 0 2 1 1 0 2 1 0 2 1
1 0 2 1 0 2 1 0 2 2 1 0 2 1 0
2 2 1 0 2 1 0 2 1 1 0 2 1 0 2
1 1 0 2 1 0 2 1 0 2 2 1 0 2 1
0 2 2 1 0 2 1 0 2 1 1 0 2 1 0
2 1 1 0 2 1 0 2 1 0 2 2 1 0 2
1 0 2 2 1 0 2 1 0 2 1 1 0 2 1

Figure 1. The indistinguishable asymptotic configurations x, y P t0, 1, 2uZ
2 are

shown on the support J´7, 7K ˆ J´7, 7K. The two configurations are equal except
on their difference set F “ t0,´e1,´e2u shown in red.

px, yq is an indistinguishable asymptotic pair if px, yq is asymptotic and the following equality
holds

(1) # poccppxqzoccppyqq “ # poccppyqzoccppxqq

for every pattern p of finite support.
In other words, an asymptotic pair px, yq is indistinguishable if every pattern appears the same

number of times in x and in y while overlapping the difference set. The pair of configurations x and y
shown in Figure 1 is an example of an indistinguishable asymptotic pair: we may check by hand that
Equation (1) holds for patterns with small supports such as symbols (patterns of shape t0u), dominoes
(patterns of shape t0, e1u and t0, e2u), etc. For instance, the configurations x and y in Figure 1 contain
eight different patterns with support t0, e1, 2e1, e2u, each occurring exactly once while overlapping the
difference set, see Figure 2.

The notion of indistinguishable asymptotic pairs appears naturally in Gibbs theory. This theory
studies measures on symbolic dynamical systems which are at equilibrium in the sense that the con-
ditional pressure for every finite region of the lattice is maximized, so that every finite region is in
equilibrium with its surrounding. See [19, 27, 34, 8] for further background. An important component
of Gibbs measures, the specification, can be formalized by means of a shift-invariant cocycle in the
equivalence relation of asymptotic pairs, see [15, 7]. With an appropriate norm, the space of continuous
shift invariant cocycles on the asymptotic relation becomes a Banach space, and every asymptotic pair
induces a continuous linear functional through the canonical evaluation map.

The set of indistinguishable asymptotic pairs are precisely those which induce the trivial linear
functional and thus a natural question is if there is an underlying dynamical structure behind this
property. We shall not speak any further of Gibbs theory in this work and study indistinguishable
asymptotic pairs without further reference to their origin in Gibbs theory. An interested reader can
find out more about the role of indistinguishable asymptotic pairs in the aforementioned setting by
reading sections 2 and 3 of [7].

In the case of dimension d “ 1, it was shown that for the difference set F “ t´1, 0u Ă Z, indistin-
guishable asymptotic pairs are precisely the étale limits of characteristic bi-infinite Sturmian sequences
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a pattern in x same pattern in y

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

a pattern in x same pattern in y

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 1 0 2 1
1 0 2 2 1 0
0 2 1 0 2 2

0 2 2 1 0 2
2 1 0 2 2 1
1 0 2 1 1 0
0 2 1 0 2 2

Figure 2. The 8 patterns of shape t0, e1, 2e1, e2u appearing in the configurations x
and y. All of them appear intersecting the difference set in x and y.

([9, Theorem B]). In the case where one of the configurations in the indistinguishable pair is recurrent,
the asymptotic pair can only be a pair of characteristic bi-infinite Sturmian sequences associated to a
fixed irrational value ([9, Theorem A]). Furthermore, it was shown that any indistinguishable asymp-
totic pair in ΣZ can be obtained from these base cases through the use of a substitution and the shift
map ([9, Theorem C]), thus providing a full characterization of indistinguishable asymptotic pairs in Z.

Main results. In this article, we extend [9, Theorem A] to the multidimensional setting. It is based on
the following additional condition made on the difference set. Let te1, . . . , edu denote the canonical basis
of Zd. We say that two indistinguishable asymptotic configurations x, y P t0, 1, . . . , duZ

d satisfy the
flip condition if their difference set is F “ t0,´e1, . . . ,´edu, every symbol in t0, 1, . . . , du occurs in x
and y at the support F , and the map defined by xn ÞÑ yn for every n P F is a cyclic permutation on the
alphabet t0, 1, . . . , du. Without lost of generality, we assume that x0 “ 0 and yn “ xn ´ 1 mod pd` 1q

for every n P F . For example, the indistinguishable asymptotic pair px, yq illustrated in Figure 1
satisfies the flip condition with px0, x´e1 , x´e2 q “ p0, 1, 2q and py0, y´e1 , y´e2 q “ p2, 0, 1q.

It is a well known fact that Sturmian configurations in dimension one can be characterized by their
complexity [31, 16], that is, they are exactly the bi-infinite recurrent words in which exactly n ` 1
subwords of length n occur for every n P N. We first prove the following result providing a similar
characterization of indistinguishable asymptotic pairs satisfying the flip condition by their pattern
complexity which does not require uniform recurrence, or even recurrence, as an hypothesis.

Theorem A. Let d ě 1 and x, y P t0, 1, . . . , duZ
d be an asymptotic pair satisfying the flip condition

with difference set F “ t0,´e1, . . . ,´edu. The following are equivalent:

(i) For every nonempty finite connected subset S Ă Zd and p P LSpxq Y LSpyq, we have

# poccppxqzoccppyqq “ 1 “ # poccppyqzoccppxqq .

(ii) The asymptotic pair px, yq is indistinguishable.
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(iii) For every nonempty finite connected subset S Ă Zd, the pattern complexity of x and y is

#LSpxq “ #LSpyq “ #pF ´ Sq.

The proof of Theorem A relies on an extension of the notion of bispecial factor to the setting of
multidimensional configurations. Given a language, a bispecial factor is a word that can be extended
in more than one way to the left and to the right. The bilateral multiplicity of bispecial factors
in a one-dimensional language is closely related to the complexity of that language, see [14]. Here,
for a connected support S Ă Zd and two distinct positions a, b P ZdzS such that S Y tau, S Y tbu

and S Y ta, bu are connected, we say that a pattern w : S Ñ A is bispecial if it can be extended
in more than one way at position a and at position b. The description of the bispecial patterns of
indistinguishable asymptotic pairs and their multiplicities, provides us a tool for bounding their pattern
complexity. Reciprocally, the rigid pattern complexity given in Theorem A forces the extension graphs
associated to the bispecial patterns to have no cycle, which in turn provides us a way to show that
the configurations are indistinguishable. In one dimension, sequences such as the extension graphs of
bispecial factors are trees are known as dendric words [11] and thus we may think of our construction
as multidimensional analogues of those.

When S is a d-dimensional rectangular block, the number #pF ´ Sq from Theorem A admits a
nice form. When d “ 1, we compute #pF ´ Sq “ #pt0,´1u ´ t0, 1, . . . , n ´ 1uq “ n ` 1 which
is the factor complexity function for 1-dimensional Sturmian words. When d “ 2, #pF ´ Sq “

#ptp0, 0q, p´1, 0q, p0,´1qu ´ tpi, jq : 0 ď i ă n, 0 ď j ă muq “ mn ` m ` n is the rectangular pattern
complexity of a discrete plane with totally irrational (irrational and rationally independent) slope,
see [12] for further references. With our result above, we can provide an explicit formula for every
dimension.

Corollary 1. Let d ě 1 and pm1, . . . ,mdq P Nd. The rectangular pattern complexity of an indistin-
guishable asymptotic pair x, y P t0, 1, . . . , duZ

d satisfying the flip condition is

#Lpm1,...,mdqpxq “ #Lpm1,...,mdqpyq “ m1 ¨ ¨ ¨md

ˆ

1 `
1
m1

` ¨ ¨ ¨ `
1
md

˙

.

Our main result provides a beautiful connection between indistinguishable asymptotic pairs sat-
isfying the flip condition and codimension-one (dimension of the internal space) cut and project
schemes, see [20] for further background, and more precisely with multidimensional Sturmian con-
figurations. The definition of multidimensional Sturmian configurations from codimension-one cut
and project schemes is fully described in Section 4.1. A quick and easy definition of multidimen-
sional Sturmian configurations can be given with the following formulas. Given a totally irrational
vector α “ pα1, . . . , αdq P r0, 1qd, the lower and upper characteristic d-dimensional Sturmian
configurations with slope α are given by

(2)
cα : Zd Ñ t0, 1, . . . , du

n ÞÑ
d
ř

i“1
ptαi ` n ¨ αu ´ tn ¨ αuq

and
c1

α : Zd Ñ t0, 1, . . . , du

n ÞÑ
d
ř

i“1
prαi ` n ¨ αs ´ rn ¨ αsq .

It turns out that these configurations are examples of indistinguishable asymptotic pairs which satisfy
the flip condition. In fact, we show that a pair of uniformly recurrent asymptotic configurations is
indistinguishable and satisfies the flip condition if and only if it is a pair of characteristic d-dimensional
Sturmian configurations for some totally irrational slope.

Theorem B. Let d ě 1 and x, y P t0, 1, . . . , duZ
d such that x is uniformly recurrent. The pair px, yq

is an indistinguishable asymptotic pair satisfying the flip condition if and only if there exists a totally
irrational vector α P r0, 1qd such that x “ cα and y “ c1

α are the lower and upper characteristic
d-dimensional Sturmian configurations with slope α.
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The indistinguishable asymptotic pair shown in Figure 1 is an example as such, where x “ cα and
y “ c1

α with α “ pα1, α2q “ p
?

2{2,
?

19 ´ 4q. Notice that cα and c1
α are uniformly recurrent when α

contains at least an irrational coordinate (see Lemma 4.5), so that hypothesis is really only used in one
direction of the theorem. Note that a version of Theorem B for rational vector α P Qd was considered
in [26] with an infinite difference set of the form F `K where K Ă Zd is some lattice.

The link with codimension-one cut and project schemes can be illustrated as follows. The configu-
rations x “ cα and y “ c1

α encode the rhombi obtained as the projection of the cube faces in a discrete
plane of normal vector p1 ´α1, α1 ´α2, α2q, see Figure 3. This three symbol coding of a discrete plane
was proposed in [22], see also [10].
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Figure 3. The configurations x and y from Figure 1 are encoding a tiling of the plane
[5] by three types of pointed rhombus drawn using Jolivet’s notation [23, p. 112]. The
tilings shown above correspond to the projection of the surface of a discrete plane
of normal vector p1 ´ α1, α1 ´ α2, α2q « p0.293, 0.348, 0.359q, with α “ pα1, α2q “

p
?

2{2,
?

19 ´ 4q, in 3 dimensional space, and their difference can be interpreted as the
flip of a unit cube shown in yellow.

We also prove a slightly more general version of Theorem B. We say that two indistinguishable
asymptotic configurations x, y P ΣZd satisfy the affine flip condition if their difference set F has
cardinality #F “ d` 1, there is m P F such that pF ´mqzt0u is a base of Zd, the restriction x|F is a
bijection F Ñ Σ and the map defined by xn ÞÑ yn for every n P F is a cyclic permutation on Σ.

Corollary 2. Let d ě 1 and x, y P ΣZd such that x is uniformly recurrent. The pair px, yq is an
indistinguishable asymptotic pair satisfying the affine flip condition if and only if there exist a bijection
τ : t0, 1, . . . , du Ñ Σ, an invertible affine transformation A P AffpZdq and a totally irrational vector
α P r0, 1qd such that x “ τ ˝ cα ˝A and y “ τ ˝ c1

α ˝A.
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If we further assume that the configurations in the asymptotic pair are uniformly recurrent, we can
put together Theorem A and Theorem B and obtain the following characterization of uniformly recur-
rent multidimensional Sturmian configurations in terms of their pattern complexity. This generalizes
the well-known theorem of Morse-Hedlund-Coven to higher dimensions [31, 16].

Corollary 3. Let d ě 1 and x, y P t0, 1, . . . , duZ
d be an asymptotic pair such that x is uniformly

recurrent and which satisfies the flip condition with difference set F “ t0,´e1, . . . ,´edu. The following
are equivalent:

(i) For every nonempty finite connected subset S Ă Zd and p P LSpx, yq, we have

# poccppxqzoccppyqq “ 1 “ # poccppyqzoccppxqq .

(ii) The asymptotic pair px, yq is indistinguishable.
(iii) For every nonempty finite connected subset S Ă Zd, we have

#LSpxq “ #LSpyq “ #pF ´ Sq.

(iv) There exists a totally irrational vector α P r0, 1qd such that x “ cα and y “ c1
α.

Open questions. To fully generalize the theorem of Morse-Hedlund-Coven, we would hope the equiv-
alence holds for single configurations and not only for pairs of asymptotic configurations satisfying the
flip condition. More precisely, in the case of uniformly recurrent configurations, we believe that the
pattern complexity characterizes multidimensional Sturmian configurations. The formula defining sα,ρ

and s1
α,ρ slightly extends Equation (2) and can be found in Lemma 4.3.

Question 1. Let d ě 1 and x P t0, 1, . . . , duZ
d be uniformly recurrent configuration. Let F “

t0,´e1, . . . ,´edu. Consider the following two statements:
(i) for every nonempty finite connected subset S Ă Zd, we have #LSpxq “ #pF ´ Sq.
(ii) there exists a totally irrational vector α P r0, 1qd and a intercept ρ P r0, 1q such that x “ sα,ρ

or x “ s1
α,ρ.

Since sα,ρ, s1
α,ρ and cα have the same language when α is totally irrational, we can deduce from

Corollary 3 that (ii) implies (i). Is it true that (i) and (ii) are equivalent?

Consider a sequence of totally irrational slopes pαnqnPN for which both cαn
and c1

αn
converge in the

prodiscrete topology. Then pcαn
, c1

αn
qnPN converges in the asymptotic relation to an étale limit pc, c1q,

see Definition 2.8. It turns out that étale limits preserve both the flip condition and indistinguishability,
and will thus satisfy all of the equivalences stated in Theorem A. An example of such a limit is illustrated
in Figure 4.

We believe that in fact every indistinguishable asymptotic pair on Zd which satisfies the flip condition
can be obtained through an étale limit as above.

Conjecture 1. Let d ě 1 and x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic pair which

satisfies the flip condition. Then there exists a sequence of totally irrational vectors pαnqnPN such that
px, yq is the étale limit of the sequence of asymptotic pairs pcαn

, c1
αn

qnPN.

It was proved that Conjecture 1 holds when d “ 1, see [9, Theorem B]. Proving it for d ą 1 is
harder due to the various ways a sequence pαnqnPN can converge to some vector α P r0, 1qd leading to
infinitely many étale limits associated to a single vector. When d “ 1, there are only two such ways:
from above or from below. Describing combinatorially what happens in these two cases was sufficient
in [9] to prove the result. An analogue combinatorial description of all different behaviors when d ą 1
is still open.

In [9, Theorem C], indistinguishable asymptotic pairs were totally described when d “ 1 by the image
under substitutions of characteristic Sturmian sequences. Describing indistinguishable asymptotic pairs
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c c1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4. An indistinguishable asymptotic pair pc, c1q which satisfies the flip con-
dition obtained by taking the limit of the Sturmian configurations given by αn “

p 1
n p

?
2 ´ 1q, 1

n p
?

3 ´ 1qq.

in general when d ą 1 (other than those satisfying the flip condition or some affine version of it) remains
an open question.

Question 2. Let d ě 1 and x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic pair. Does there

exists a sequence of totally irrational vectors pαnqnPN such that px, yq can be derived from the étale
limit of the sequence of asymptotic pairs pcαn

, c1
αn

qnPN?

Our current work also leads to another interesting question. In dimension 1, it is known at least
since [30] that a sequence of factor complexity less than or equal to n is eventually periodic. In two
dimensions, it is still an open problem [17, 24] known as Nivat’s conjecture [32] whether a configuration
x for which there are n,m P N with #Lpn,mqpxq ď nm is periodic or not. Another question which seems
to have been overlooked due to the difficulty of settling Nivat’s conjecture is to describe the minimal
complexity of an aperiodic configuration (trivial stabilizer under the shift map, that is σnpxq “ x only
holds for n “ 0) which admits a totally irrational vector of symbols frequencies. When d “ 1, we
know that such sequences have complexity at least n` 1 and are realized by Sturmian configurations.
However, when d “ 2, configurations with rectangular pattern complexity mn ` 1 are not uniformly
recurrent and do not have a totally irrational vector of symbol frequencies [13]. As the symbol fre-
quencies of the multidimensional Sturmian configurations cα and c1

α is α, it follows by Theorem B and
Theorem A that they provide an upper bound for this problem, namely, that these sequences can be
realized with complexity #pF ´ Sq for every pattern of connected support S. According to Cassaigne
and Moutot (personal communication, January 2023), there exist 2-dimensional configurations with
totally irrational vector of symbol frequencies with pattern complexity strictly less than #pF ´ Sq for
infinitely many connected supports S. Therefore, we ask the following question.

Question 3. Let d ě 1. Let x P t0, 1, . . . , duZ
d be a configuration with trivial stabilizer and assume

that the frequencies of symbols in x exist and form a totally irrational vector. Let S Ă Zd be a
nonempty connected finite support. What is the greatest lower bound for the pattern complexity
#LSpxq?



8 S. BARBIERI AND S. LABBÉ

It is known that bispecial factors within the language of a Sturmian sequence of slope α P r0, 1q are
related to the convergents of the continued fraction expansion of α [18]. Since our work extends the
notion of bispecial factors to the setup of multidimensional Sturmian configurations (see Figure 5), it
is natural to ask the following question about simultaneous Diophantine approximation [35].

2
1
0
2

1 0 2 1

0
2
1
0
2

1 1 0 2 1

0
2
1
0
2

2 1 0 2 1

1
2
1
0
2

2 1 0 2 1

Figure 5. On the left, an L-shape pattern of support
tp1, 0q, p2, 0q, p3, 0q, p4, 0q, p4, 1q, p4, 2q, p4, 3q, p4, 4qu is shown. It is bispecial at
positions a “ p0, 0q and b “ p4, 5q because it can be extended in more than one way at
these positions within the language of the configurations x and y shown in Figure 1.
Thus b´ a “ p4, 5q P Vα when α “ p

?
2{2,

?
19 ´ 4q.

Question 4. Let d ě 1 and α P r0, 1qd be a totally irrational vector. What is the relation between
the set

Vα “ tb´ a : there exists w P LSpcαq which is bispecial at positions a, b P Zdu

and simultaneous Diophantine approximations of the vector α?

Structure of the article. Preliminary properties of indistinguishable asymptotic pairs are pre-
sented in Section 2. In Section 3, we study the pattern complexity of multidimensional indistinguishable
asymptotic pairs satisfying the flip condition and we prove Theorem A. In Section 4, we define charac-
teristic Sturmian configurations in Zd from codimension-one cut and project schemes. We prove that
they are indistinguishable asymptotic pairs satisfying the flip condition. In Section 5, we complete the
proof of Theorem B, more precisely that uniformly recurrent indistinguishable asymptotic pairs satis-
fying the flip condition are multidimensional Sturmian configurations. In the appendix (Appendix A),
we provide an analogous notion of indistinguishable pairs for pairs of asymptotic configurations on a
countable group and provide proofs of their basic properties for further reference.

Acknowledgments. We are very grateful to an anonymous reviewer who suggested several im-
provements. The two authors were supported by the Agence Nationale de la Recherche through the
projects CODYS (ANR-18-CE40-0007), CoCoGro (ANR-16-CE40-0005) and IZES (ANR-22-CE40-
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originated from a previous work with Š. Starosta and a visit of the two authors in October 2019 sup-
ported by PHC Barrande, a France-Czech Republic bilateral funding and grant no. 7AMB18FR048 of
MEYS of Czech Republic.

2. Preliminaries

We denote by N the set of non-negative integers. Intervals consisting of integers are written using
the notation Jn,mK “ tk P Z : n ď k ď mu, for n,m P Z with n ď m. A finite subset S Ă Zd is
connected if the subgraph induced by the vertices S within the graph with vertices V “ Zd and edges
E “ tpu, u` eiq : u P Zd, 1 ď i ď du is connected, where ei is the canonical vector with 1 on position i

and 0 elsewhere.
Let Σ be a finite set which we call alphabet and d a positive integer. An element x P ΣZd

“

tx : Zd Ñ Σu is called a configuration. For u P Zd we denote the value xpuq by xu. We endow set of
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all configurations ΣZd with the prodiscrete topology. The shift action Zd σ
ñ ΣZd is given by the map

σ : Zd ˆ ΣZd

Ñ ΣZd where

σupxqv :“ σpu, xqv “ xu`v for every u, v P Zd, x P ΣZd

.

The orbit of x P ΣZd is the set Orbpxq “ tσvpxq : v P Zdu. For a finite subset S Ă Zd, a function
p : S Ñ Σ is called a pattern and the set S is its support. We denote it as p P ΣS . Given a pattern
p P ΣS , the cylinder centered at p is rps “ tx P ΣZd : x|S “ pu. For finite subset S Ă Zd, the language
with support S of a configuration x is the set of patterns

LSpxq “ tp P ΣS : there is u P Zd such that σupxq P rpsu.

The language of x is the union Lpxq of the sets LSpxq for every finite S Ă Zd. We say a pattern p

appears in x P ΣZd if there exists u P Zd such that σupxq P rps. Let us also denote by occppxq “ tu P

Zd : σupxq P rpsu the set of occurrences of a pattern p in the configuration x P ΣZd .

Definition 2.1. We say that two configurations x, y are asymptotic, or that px, yq is an asymptotic
pair, if the set F “ tu P Zd : xu ‰ yuu is finite. The set F is called the difference set of px, yq. If
x “ y we say that the asymptotic pair is trivial.

Observe that when x, y P ΣZd are asymptotic sequences, the difference occppxqzoccppyq is finite
because the occurrences of p are the same far from the difference set. More precisely, let F denote
the difference set of an asymptotic pair x, y. Let S denote the support of a pattern p, then for every
u P ZdzpF ´ Sq and every s P S, we have s` u R F and thus

σupxqs “ xu`s “ yu`s “ σupyqs,

which implies in turn that u P occppxq if and only if u P occppyq for all u P ZdzpF ´ Sq. Therefore,

occppxqzoccppyq Ď F ´ S “ tg ´ s : g P F, s P Su.

In particular, the set occppxqzoccppyq is finite. Moreover, since F is the difference set of x and y, we
have

occppxqzoccppyq “ occppxq X pF ´ Sq.

Definition 2.2. We say that two asymptotic configurations x, y P ΣZd are indistinguishable if for
every pattern p of finite support, we have

# poccppxqzoccppyqq “ # poccppyqzoccppxqq .

Notice that Definition 2.2 holds only for asymptotic pairs. A more general notion, known as local
indistinguishability exists in the context of tilings of Rd, see [6, §5.1.1]. In terms of subshifts,
two configurations x, y P ΣZd are locally indistinguishable, or LI for short, if they have the same
language, i.e., Lpxq “ Lpyq. In this work, we always write “indistinguishable asymptotic pair” to
emphasize the context in which Definition 2.2 holds.

An example of an indistinguishable asymptotic pair over Z2 is shown on Figure 6, see also Figure 1
in the introduction.

Next we state equivalent conditions for indistinguishability which we will use interchangeably in the
proofs that follow. We use the symbol 1A to indicate the characteristic function of a set A.

Remark 2.3. The following conditions are equivalent:

(1) x and y are indistinguishable asymptotic configurations with difference set F ,
(2) for every pattern p with finite support S Ă Zd, we have

# poccppxq X pF ´ Sqq “ # poccppyq X pF ´ Sqq ,
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x “

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 1 1 1 1 1 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

y “

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Figure 6. A non-trivial indistinguishable asymptotic pair for Σ “ t0, 1u and d “ 2
where y “ σp3,1qpxq. The difference set is highlighted in red and the portions of the
configurations which are not shown consist only of the symbol 0.

(3) for every pattern p with finite support S Ă Zd, we have

∆ppx, yq :“
ÿ

uPF ´S

1rpspσ
upyqq ´ 1rpspσ

upxqq “ 0.

2.1. Properties of indistinguishable asymptotic pairs.

Proposition 2.4. Let S1 Ă S2 be finite subsets of Zd, and let p P ΣS1 . We have

∆ppx, yq “
ÿ

qPΣS2 ,rqsĂrps

∆qpx, yq.

Proof. Notice that rps is the disjoint union of all rqs where q P ΣS2 and rqs Ă rps. It follows that for
any z P ΣZd we have 1rpspzq “ 1 if and only if there is a unique q P ΣS2 such that rqs Ă rps and
1rqspzq “ 1. Letting F be the difference set of x, y we obtain,

∆ppx, yq “
ÿ

uPF ´S1

1rpspσ
upyqq ´ 1rpspσ

upxqq

“
ÿ

vPF ´S2

1rpspσ
vpyqq ´ 1rpspσ

vpxqq

“
ÿ

vPF ´S2

ÿ

qPΣS2

rqsĂrps

1rqspσ
vpyqq ´ 1rqspσ

vpxqq.

Exchanging the order of the sums yields the result. □

In particular, to prove that two asymptotic configurations are indistinguishable, it suffices to verify
the condition ∆ppx, yq “ 0 on patterns p whose supports form a collection of finite subsets of Zd with
the property that every finite subset of Zd is contained in some set in the collection. In particular, we
may consider the collection of all rectangles (products of bounded integer intervals) or the collection
of all connected finite subsets of Zd.

The affine group AffpZdq of Zd is the group of all invertible affine transformations from Zd into
itself. We can represent it as the semidirect product AffpZdq “ Zd ¸ GLdpZq, where GLdpZq is the
group of all invertible d ˆ d matrices with integer entries, which represents the automorphisms of Zd,
and the factor Zd on the left represents translations.

Proposition 2.5. Let px, yq be an indistinguishable asymptotic pair, then
(1) pσupxq, σupyqq is an indistinguishable asymptotic pair for every u P Zd.
(2) px ˝A, y ˝Aq is an indistinguishable asymptotic pair for every A P GLdpZq.

In particular, the set of indistinguishable asymptotic pairs is invariant under the action of AffpZdq.

Proof. Let F be the difference set of px, yq. A straightforward computation shows that the difference
set of pσupxq, σupyqq is F1 “ F ´ u and the difference set of px ˝A, x ˝Aq is F2 “ A´1pF q.
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Let S Ă Zd be a finite set and p P ΣS . For the first claim we have

∆ppσupxq, σupyqq “
ÿ

vPF1´S

1rpspσ
vpσupyqqq ´ 1rpspσ

vpσupyqqq

“
ÿ

vPpF ´uq´S

1rpspσ
v`upyqq ´ 1rpspσ

v`upyqq

“
ÿ

tPF ´S

1rpspσ
tpyqq ´ 1rpspσ

tpyqq “ ∆ppx, yq “ 0.

Thus pσupxq, σupyqq is an indistinguishable asymptotic pair.
For the second claim, let q P ΣApSq be the pattern given by qAs “ ps for every s P S. We note that

for any v P Zd, σvpxq P rqs if and only if σA´1vpx ˝Aq P rps. This means that v P occqpxq if and only if
A´1pvq P occppx ˝Aq.

As px, yq is an indistinguishable asymptotic pair, there is a finitely supported permutation π of
Zd so that occqpxq “ πpoccqpyqq. Then π1 “ A ˝ π ˝ A´1 is a finitely supported permutation of Zd

so that occppx ˝ Aq “ π1poccppy ˝ Aqq. We conclude that ∆ppx ˝ A, y ˝ Aq “ 0 and thus they are
indistinguishable. □

Let Σ1,Σ2 be alphabets. A map ϕ : ΣZd

1 Ñ ΣZd

2 is a sliding block code if there exists a finite set
D Ă Zd and map Φ: ΣD

1 Ñ Σ2 called the block code such that

ϕpxqu “ Φpσupxq|Dq for every u P Zd, x P ΣZd

1 .

Notice that sliding block codes are continuous maps which commute with the shift action, that is,
σupϕpxqq “ ϕpσupxqq for every u P Zd and x P ΣZd

1 .

Proposition 2.6. Let x, y P ΣZd

1 be an indistinguishable asymptotic pair and ϕ : ΣZd

1 Ñ ΣZd

2 a sliding
block code. The pair ϕpxq, ϕpyq P ΣZd

2 is an indistinguishable asymptotic pair.

Proof. Let F be the difference set of x, y and D Ă Zd, Φ: ΣD
1 Ñ Σ2 be respectively the set and block

code which define ϕ. If u R F ´ D, then σupxq|D “ σupyq|D and thus ϕpxqu “ ϕpyqu. As F ´ D is
finite, it follows that ϕpxq, ϕpyq are asymptotic.

Let S Ă Zd be finite and p : S Ñ Σ2 be a pattern. Let ϕ´1ppq Ă pΣ1qD`S be the set of patterns q
with support D`S so that for every s P S, Φppqd`sqdPDq “ ps. It follows that ϕ´1prpsq “

Ť

qPϕ´1ppqrqs.
Let W Ă Zd be a finite set which is large enough such that W Ě F Y pD ` F q. We have,

#tu P W ´ S | σupϕpxqq P rpsu “
ÿ

qPϕ´1ppq

#tu P W ´ S | σupxq P rqsu

“
ÿ

qPϕ´1ppq

#tu P W ´ S | σupyq P rqsu

“ #tu P W ´ S | σupϕpyqq P rpsu.

As W Ě F , we conclude that ∆ppϕpxq, ϕpyqq “ 0 and therefore pϕpxq, ϕpyqq is an indistinguishable
asymptotic pair. □

Remark 2.7. The property of being an indistinguishable asymptotic pair is also preserved by d-
dimensional substitutions and the proof is essentially the same as [9, Lemma 5.2]. We will not make
use of this fact anywhere in the article. However, we remark that substitutions might be helpful in order
to answer Question 2, since they were the tool that provides the characterization of indistinguishable
asymptotic pairs for d “ 1, see [9, Theorem C].

Let us recall that a sequence pxnqnPN of configurations in ΣZd converges to x P ΣZd if for every
u P Zd we have that pxnqu “ xu for all large enough n P N. In what follows we use a notion of
convergence for asymptotic pairs which is stronger than the convergence in the prodiscrete topology
in order to ensure that limits of asymptotic pairs are themselves asymptotic. This notion comes from
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interpreting the equivalence relation of asymptotic pairs as an “étale equivalence relation”. For more
information on étale equivalence relations and their role in the theory of topological orbit equivalence
of Cantor minimal systems the reader can refer to [33].

Definition 2.8. Let pxn, ynqnPN be a sequence of asymptotic pairs. We say that pxn, ynqnPN converges
in the asymptotic relation to a pair px, yq if pxnqnPN converges to x, pynqnPN converges to y, and
there exists a finite set F Ă Zd so that xn|ZdzF “ yn|ZdzF for all large enough n P N.

If pxn, ynqnPN converges in the asymptotic relation to a pair px, yq, then the pair px, yq is necessarily
asymptotic. We call px, yq the étale limit of pxn, ynqnPN. In the next proposition, we see that
indistinguishability is preserved by étale limits.

Proposition 2.9. Let pxn, ynqnPN be a sequence of asymptotic pairs in ΣZd which converges in the
asymptotic relation to px, yq. If for every n P N we have that pxn, ynq is indistinguishable, then px, yq

is indistinguishable.

Proof. Let p P ΣS be a pattern. As pxn, ynqnPN converges in the asymptotic relation to px, yq, there
exists a finite set F Ă Zd and N1 P N so that xn|ZdzF “ yn|ZdzF for every n ě N1. In particular we
have that the difference sets of px, yq and pxn, ynq for n ě N1 are contained in F . It suffices thus to
show that

#toccppxq X pF ´ Squ “ #toccppyq X pF ´ Squ.

As pxnqnPN converges to x and pynqnPN converges to y, there exists N2 P N so that xn|F ´S`S “ x|F ´S`S

and yn|F ´S`S “ y|F ´S`S for all n ě N2. Thus for n ě N2 and every v P F ´S we have that σvpxq|S “

σvpxnq|S and σvpyq|S “ σvpynq|S . From this we obtain that occppxq X pF ´ Sq “ occppxnq X pF ´ Sq

and occppyq X pF ´ Sq “ occppynq X pF ´ Sq for every n ě N2.
Let N “ maxtN1, N2u and let n ě N . As n ě N1, we have that pxn, ynq is an indistinguishable

asymptotic pair whose difference set is contained in F , it follows that #toccppxnq X pF ´ Squ “

#toccppynq X pF ´ Squ. As n ě N2, we obtain #toccppxq X pF ´ Squ “ #toccppyq X pF ´ Squ. As this
argument holds for every pattern p, we conclude that px, yq is indistinguishable. □

Definition 2.10. Let x P ΣZd be a configuration.

(1) x is recurrent if for every p P Lpxq the set occppxq is infinite.
(2) x is uniformly recurrent if every p P Lpxq appears with bounded gaps, that is, for every

p P Lpxq there exists a finite K Ă Zd such that for every u P Zd there is k P K such that
σu`kpxq P rps.

Clearly both recurrence and uniform recurrence are properties that are satisfied either by both con-
figurations in an indistinguishable asymptotic pair simultaneously, or by none of them. Furthermore,
it can be easily verified that both of these properties are preserved under the action of AffpZdq, just
as in Proposition 2.5.

Proposition 2.11. Let x, y P ΣZd be an indistinguishable asymptotic pair. If x is not recurrent, then
x, y lie in the same orbit.

Proof. If x is not recurrent, there is a finite S Ă Zd and p P LSpxq such that occppxq is finite. As
∆ppx, yq “ 0, it follows that occppyq is also finite.

Let pSnqnPN be an increasing sequence of finite subsets of Zd such that S0 “ S and
Ť

nPN Sn “ Zd

and let qn “ x|Sn
. As x P rqns and ∆qn

px, yq “ 0, there exists un P Zd so that σun pyq P rqns.
Furthermore, as qn|S “ p, it follows that σun pyq P rps and thus un P occppyq. As occppyq is finite, there
exists v P occppyq and a subsequence such that unpkq “ v and thus σvpyq P rqnpkqs for every k P N. As
Ş

nPNrqns “
Ş

kPNrqnpkqs “ txu we deduce that σvpyq “ x. □
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Remark 2.12. All of the definitions and results stated so far in this section are valid in the more
general context where Zd is replaced by a countable group Γ. In Appendix A we provide definitions
and proofs in this more general setting with the hope that it might be useful for further research.

2.2. Known results on dimension 1. When considering d “ 1, two phenomena, stated in the
lemmas below, simplify the study of indistinguishable asymptotic pairs: every word in the language
can be read from the difference set, and recurrent configurations which are part of an indistinguishable
asymptotic pair are in fact uniformly recurrent.

Lemma 2.13. [Lemma 2.8 of [9]] Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair with
difference set F . For every finite S Ă Z and w P LSpxq there is u P F ´ S such that σupxq P rws.

Lemma 2.14. [Lemma 2.12 of [9]] Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair. If
x is recurrent, then x is uniformly recurrent.

Gathering Proposition 2.11 and Lemma 2.14 we obtain the following beautiful dichotomy.

Corollary 2.15 (Corollary 2.13 of [9]). Let x, y P ΣZ be a non-trivial asymptotic indistinguishable
pair. Then exactly one of the following statements holds

(1) x “ σnpyq for some nonzero n P Z,
(2) x and y are uniformly recurrent.

This dichotomy was the starting point which lead to our characterization of Sturmian configurations
through indistinguishable asymptotic pairs in Z.

Theorem 2.16. [Theorem A of [9]] Let x, y P t0, 1uZ and assume that x is recurrent. The pair px, yq

is an indistinguishable asymptotic pair with difference set F “ t´1, 0u such that x´1x0 “ 10 and
y´1y0 “ 01 if and only if there exists α P r0, 1szQ such that x “ cα and y “ c1

α are the lower and upper
characteristic Sturmian sequences of slope α.

When d ě 2 there exist non-trivial indistinguishable asymptotic pairs where both of the above
lemmas fail.

Example 2.17. Let u, v P t0, 1uZ be any indistinguishable asymptotic pair. Consider the configura-
tions x, y P t0, 1, 2uZ

2 given by

xpi, jq “

$

&

%

upiq if j “ 0

2 if j ‰ 0
and ypi, jq “

$

&

%

vpiq if j “ 0

2 if j ‰ 0
for every i, j P Z.

The words x, y form an indistinguishable asymptotic pair which does not satisfy Lemma 2.13 (the
symbol 2 does not occur in the difference set) nor Lemma 2.14 (it is recurrent but not uniformly
recurrent). See Figure 7.

In particular, a convenient consequence of Lemma 2.13 in d “ 1 is that the complexity of any pair
of indistinguishable configurations is linear and the bound is given by the size of the difference set.
More precisely, if x, y P ΣZ is a non-trivial indistinguishable asymptotic pair whose difference set F is
contained in an interval I, then for every n ě 1

n` 1 ď #LJ1,nKpxq ď n` #pIq ´ 1.

See [9, Proposition 3.4]. This consequence also fails in the multidimensional setting as shown in the
following example.

Example 2.18. Fix k ě 1. Let u, v as in Example 2.17 and let x, y P t0, . . . , k ´ 1uZ
2 be given by

xpi, jq “

$

&

%

upiq if j “ 0

j mod k if j ‰ 0
and ypi, jq “

$

&

%

vpiq if j “ 0

j mod k if j ‰ 0
.
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x “

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 1 0 0 1 0 1 0 0 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

y “

2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 0 0 1 0 1 0 0 1 0 0 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2

Figure 7. An indistinguishable, recurrent but not uniformly recurrent asymptotic
pair px, yq given by the two characteristic Fibonacci words (α “

?
5´1
2 ) in the central

row.

We obtain an indistinguishable asymptotic pair whose difference set has size 2, but such that the
alphabet can be as large as required by taking larger values of k.

This shows that a naive analogue of the complexity upper-bound given by Lemma 2.13 also fails in
the multidimensional setting. However, under special conditions which we introduce in Section 2.3, we
show that an analogue of Lemma 2.13 holds, which gives us a way to extend Theorem 2.16 to Zd.

2.3. The flip condition. As shown in the examples of Section 2.2, indistinguishable asymptotic pairs
in Zd in general are not related to Sturmian configurations as strongly as in dimension 1. Despite
these discouraging examples, we show that if we consider indistinguishable asymptotic pairs satisfying
an additional hypothesis, then many of the good properties from dimension 1 are still valid and we
will be able to obtain a characterization of multidimensional Sturmian configurations in terms of
indistinguishable asymptotic pairs.

Definition 2.19. Let x, y P t0, 1, . . . , duZ
d be an asymptotic pair. We say it satisfies the flip condi-

tion if:

(1) the difference set of x and y is F “ t0,´e1, . . . ,´edu,
(2) the restriction x|F is a bijection F Ñ t0, 1, . . . , du,
(3) the map defined by xn ÞÑ yn for every n P F is a cyclic permutation on the alphabet t0, 1, . . . , du.

Without lost of generality, we assume that x0 “ 0 and yn “ xn ´ 1 mod pd` 1q for every n P F .

The flip condition may be interpreted as a symbolic coding of the act of geometrically flipping the
faces of a hypercube at the origin of a discrete hyperplane as in Figure 3.

3. Multidimensional indistinguishable asymptotic pairs and their complexity

The goal of this section is to prove Theorem A which characterizes indistinguishable asymptotic
pairs which satisfy the flip condition through their complexity.

3.1. Special factors in higher dimensions. In one dimension, the factor complexity is related to the
valence of left and right special factors [14]. Similarly, in higher dimensions, the pattern complexity is
related with the valence of special patterns with connected support. In this section we shall generalize
the notion of special factors to higher dimensions, which will be the fundamental tool in the proof
of Theorem A.

Since we will often consider all patterns which appear in configurations x, y P t0, 1, . . . , duZ
d , it is

practical to introduce the notations Lpx, yq :“ Lpxq Y Lpyq and LSpx, yq :“ LSpxq Y LSpyq for every
finite support S Ă Zd. For a pattern w P LSpx, yq, and a position ℓ P ZdzS, let the extensions at
position ℓ P Zd of the pattern w within the language Lpx, yq be

Eℓpwq :“ tuℓ : u P LSYtℓupx, yq and u|S “ wu.
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Observe that the extensions Eℓpwq always depend on the language Lpx, yq but we do not write Eℓ
x,ypwq

to lighten the notations. Following the terminology for d “ 1, we say that a pattern w P LSpx, yq such
that #Eℓpwq ě 2 is special at position ℓ P Zd. Notice that we have the equality

#LSYtℓupx, yq “
ÿ

wPLSpx,yq

#Eℓpwq.

Let ℓ, r P ZdzS be positions such that ℓ ‰ r. We say that a pattern w P LSpx, yq is bispecial at
positions ℓ, r if #Eℓpwq ě 2 and #Erpwq ě 2. Moreover, for a pattern w P LSpx, yq let the bilateral
extensions at positions ℓ, r P ZdzS of the pattern w within the language Lpx, yq be

Eℓ,rpwq “ tpuℓ, urq : u P LSYtℓ,rupx, yq and u|S “ wu.

The bilateral multiplicity mℓ,rpwq of the pattern w at the positions ℓ, r P ZdzS within the language
Lpx, yq is given by the expression

mℓ,rpwq “ #Eℓ,rpwq ´ #Eℓpwq ´ #Erpwq ` 1.

We use the same terminology as when d “ 1 [14] to describe bispecial factors: we say that a pattern
w P LSpx, yq is strong (resp. weak, neutral) at the positions ℓ, r P ZdzS if mℓ,rpwq ą 0 (resp.
mℓ,rpwq ă 0, mℓ,rpwq “ 0).

Notice that we may interpret Eℓ,rpwq as an undirected bipartite graph called extension graph,
see [11]. The vertices are given by the disjoint union V “ Eℓpwq \ Erpwq and we have an edge
pa, bq P Eℓpwq ˆ Erpwq if there is u P LSYtℓ,rupx, yq such that uℓ “ a, ur “ b and u|S “ w. In this
manner #Eℓ,rpwq corresponds to the number of edges of the graph and #Eℓpwq`#Erpwq corresponds
to the number of vertices.

In the next lemma, we show that combinatorial properties of the extension graph Eℓ,rpwq impose
lower bounds on the bilateral multiplicity of the pattern w.

Lemma 3.1. Let w P LSpx, yq be a pattern and c be the number of connected components of Eℓ,rpwq.

(1) mℓ,rpwq ě 1 ´ c.
(2) The extension graph Eℓ,rpwq is acyclic if and only if mℓ,rpwq “ 1 ´ c.
(3) If Eℓ,rpwq is connected, then mℓ,rpwq ě 0.
(4) If Eℓ,rpwq is connected and contains a cycle, then mℓ,rpwq ą 0.

Proof. (1) Notice that

mℓ,rpwq “ #Eℓ,rpwq ´ #Eℓpwq ´ #Erpwq ` 1

“ #edges ´ #vertices ` 1.

In each connected component we have that the number of edges is at least the number of vertices
minus 1. (2) If mℓ,rpwq “ 1´c, it implies that #edges´#vertices “ ´1 in each connected component.
Therefore each connected component is a tree and we deduce that the extension graph Eℓ,rpwq is
acyclic. If mℓ,rpwq ą 1´c, it implies there is a connected component in which #edges´#vertices ą ´1.
That connected component must contain a cycle. Thus, the extension graph Eℓ,rpwq is not acyclic.
Part (3) is an immediate consequence of (1). Part (4) is an immediate consequence of (2). □

3.2. Complexity of indistinguishable asymptotic pairs with the flip condition. Here we shall
show that the flip condition along with indistinguishability impose that every pattern in the language
must occur in a position which intersects the difference set. This property implies an upper bound for
the pattern complexity.
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Lemma 3.2. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic pair satisfying the flip con-

dition. For every finite nonempty subset S Ă Zd, we have LSpx, yq Ă tσnpxq|S : n P F ´ Su. In
particular, #LSpx, yq ď #pF ´ Sq.

Proof. For i P t0, 1, . . . , du, let gi “ ix ´ iy where ix, iy are the unique positions in F so that xix
“ i

and yiy
“ i. Let Gx´y “ tg0, . . . , gdu, Gy´x “ ´Gx´y and G “ Gx´y Y Gy´x.

We claim that the collection G “ Gx´y Y Gy´x generates Zd as a monoid. Indeed, the flip condition
ensures that every position in F occurs exactly once as an ix (and exactly once as an iy). Moreover,
for every i P t0, 1, . . . , du, gi “ ix ´ iy ‰ 0. As 0x “ 0, using the previous properties we can suitably
add elements from Gx´y to produce all canonical vectors te1, . . . , edu. Similarly, adding elements from
Gy´x we can produce t´e1, . . . ,´edu. This provides a set which generates Zd as a monoid.

For m P Zd, let ∥m∥G be the word metric generated by G, that is, the least number ℓ so that m
can be written as a sum of ℓ elements of G (0 can be written as a sum of zero elements). Denote by
dGpm,m1q “ ∥m´m1∥G and for a set K Ă Zd let dGpm,Kq “ minkPK dGpm, kq.

We just show that LSpxq Ă tσnpxq|S : n P F ´ Su, as the other case is analogous. Let p P LSpxq.
There exists n P Zd such that σnpxq P rps. Choose n as above such that it minimizes dGpn, F ´ Sq.
We claim that dGpn, F ´ Sq “ 0. If this were not the case, there is f P F and s P S so that
dGpn, F ´ Sq “ dGpn, f ´ sq “ ∥n´ pf ´ sq∥G ě 1.

By definition, we can write n ´ pf ´ sq “
řdGpn,F ´Sq

j“1 hj with each hj P G. Consider h1. There are
two cases:

(1) If h1 P Gx´y then h1 “ gi for some 0 ď i ď d. Consider the support S1 “ tixu Y pn ` Sq and
let q “ x|S1 . By definition x P rqs and as x, y are indistinguishable, there must exist k P F ´S1

so that σkpyq P rqs and thus σk`npyq P rps. There are again two cases.
(a) If k ` n P F ´ S, then as x, y are indistinguishable there must exist n1 P F ´ S so that

σn1

pxq P rps. This contradicts the choice of n.
(b) If k ` n R F ´ S, then necessarily k P F ´ tixu. We obtain that there is f˚ P F so that

k “ f˚ ´ ix. As σkpyqix “ yf˚´ix`ix
“ i, it follows by the flip condition that f˚ “ iy and

so k “ iy ´ ix “ ´gi “ ´h1. We deduce that σn´h1 pyq P rps. As k ` n “ n´ h1 R F ´ S

and x, y are asymptotic, we have that σn´h1 pxq P rps and that

dGpn´ h1, F ´ Sq ď ∥n´ h1 ´ f ´ s∥G “ ∥n´ f ´ s∥G ´ 1 “ dGpn, F ´ Sq ´ 1.

Letting n1 “ n´h1, we have σn1

pxq P rps and dGpn1, F´Sq ď dGpn, F´Sq´1, contradicting
the choice of n.

(2) If h1 P Gy´x, then h1 “ ´gi for some 0 ď i ď d. The argument is analogous except that now
we consider S1 “ tiyu Y pn` Sq and q “ y|S1 .

We conclude that dGpn, F ´ Sq “ 0 and thus n P F ´ S. □

Lemma 3.2 generalizes Lemma 2.13 which is valid in Z without resorting to the flip condition. We
say that a permutation is cyclic if it consists of a single cycle and has no fixed points. In order to
obtain a lower bound and thus the equality, we will use the following technical result.

Lemma 3.3. Let π : U Ñ U be a cyclic permutation on a finite set U . Let A Ă U and f : A Ñ B be
a surjective map for some finite set B. If A ‰ U , then

#tpa, fpaqq | a P Au Y tpπpaq, fpaqq | a P Au ě #A` #B.

Proof. Let P1 “ tpa, fpaqq | a P Au and P2 “ tpπpaq, fpaqq | a P Au. It is clear that P1 and A have
the same number of elements, it suffices thus to show that for every b P B, there is a P A such that
pπpaq, fpaqq P P2zP1 and fpaq “ b.
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Indeed, fix b P B and let Q “ ta P A : fpaq “ bu. Clearly Q ‰ ∅ as f is surjective. Consider the
directed graph G “ pQ,Eq where pq, rq P E if and only if πpqq “ r. Notice that Q does not contain a
cycle due to π being cyclic on U and A ‰ U , therefore there is q̄ P Q such that πpq̄q R Q. Then we
have pπpq̄q, fpq̄qq P P2zP1 and fpq̄q “ b. □

We will now use Lemma 3.3 to prove a lower bound for the pattern complexity of asymptotic pairs
satisfying the flip condition. Notice that we do not use indistinguishability in what follows.

Lemma 3.4. Let x, y P t0, 1, . . . , duZ
d be an asymptotic pair satisfying the flip condition. Then for

every finite nonempty connected subset S Ă Zd, we have

#LSpx, yq ě #pF ´ Sq.

Proof. We do the proof of the inequality by induction on the cardinality of S. If S “ tau is a singleton,
the inequality holds since Ltaupxq “ Ltaupyq “ t0, 1, . . . , du and thus

#pLtaupxq Y Ltaupyqq “ d` 1 “ #F “ #pF ´ tauq.

Proceeding by induction, we assume that #LSpx, yq ě #pF ´Sq holds for some finite connected subset
S Ă Zd and we want to show it for S Y tau for some a P ZdzS such that S Y tau is connected.

Let
G “ pF ´ pS Y tauqqzpF ´ Sq “ pF ´ aqzpF ´ Sq

be the set of vectors m P Zd such that m` pS Y tauq intersects F without m`S intersecting F . Since
S Y tau is connected, G is a strict subset of F ´ a.

Let f : G Ñ LSpxq be the map defined by fpmq “ σmpxq|S , and g : G Ñ t0, 1, . . . , du be the map
defined by gpmq “ pσmpxqqa “ xm`a for every m P G. Notice that if m P G, then fpmq “ σmpyq|S

and fpGq “ tσmpxq|S : m P Gu “ tσmpyq|S : m P Gu.
Putting together the flip condition and that G`a is a strict subset of F , it follows that g is injective

and its image is a strict subset of the alphabet t0, 1, . . . , du. Also notice that the flip condition implies
that ym`a “ pgpmq ´ 1q mod pd` 1q.

Since the asymptotic pair px, yq satisfies the flip condition, we have that fpGq is a subset of patterns
that are special at position a. This provides a lower bound for the pattern complexity. More precisely,
because of the flip condition, for every m P G, we have that σmpxq|SYtau and σmpyq|SYtau are two
distinct extensions to the support S Y tau of the pattern σmpxq|S “ σmpyq|S . Therefore, we have the
inclusion

ď

wPfpGq

tu P LSYtaupx, yq : u|S “ wu Ě
␣

σmpxq|SYtau : m P G
(

Y
␣

σmpyq|SYtau : m P G
(

.

The union on the left is disjoint, therefore, taking the cardinality of both sides, we obtain
ÿ

wPfpGq

#Eapwq ě #
`␣

σmpxq|SYtau : m P G
(

Y
␣

σmpyq|SYtau : m P G
(˘

“ # ptpgpmq, fpmqq : m P Gu Y tpgpmq ´ 1 mod pd` 1q, fpmqq : m P Guq

“ #
`␣

ps, fg´1psqq : s P gpGq
(

Y
␣

ps´ 1 mod pd` 1q, fg´1psqq : s P gpGq
(˘

ě #gpGq ` #fpGq “ #G` #fpGq.

In the penultimate line, we use that g is injective and thus g´1 : gpGq Ñ G is a bijection. In particular,
this implies that fg´1 : gpGq Ñ fpGq is surjective. As gpGq is a strict subset of the alphabet t0, 1, . . . , du

we obtain the last line using Lemma 3.3.
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Since every pattern in LSpx, yq can be extended in at least one way to position a, we have #Eapwq ě

1 for every w P LSpx, yq. Also since fpGq Ă LSpx, yq, we have

#LSYtaupx, yq ´ #LSpx, yq “
ÿ

wPLSpx,yq

p#Eapwq ´ 1q ě
ÿ

wPfpGq

p#Eapwq ´ 1q

“
ÿ

wPfpGq

#Eapwq ´ #fpGq

ě p#G` #fpGqq ´ #fpGq “ #G.

Therefore,

#LSYtaupx, yq ě #LSpx, yq ` #G ě #pF ´ Sq ` #G “ #pF ´ pS Y tauqq. □

3.3. Properties of asymptotic pairs with the flip condition and complexity #pF ´Sq. In this
subsection, we fix an asymptotic pair px, yq which satisfies the flip condition and study the properties
we can obtain from the assumption that LSpx, yq “ #pF ´ Sq for every nonempty connected finite
S Ă Zd. For the remainder of the subsection, we fix a (possibly empty) connected set S Ă Zd and
ℓ, r P ZdzS such that SYtℓu, SYtru and SYtℓ, ru are connected. We also convene that L∅px, yq “ tεu,
where ε is the empty pattern. As our proof will be by induction, we shall often make use of the following
condition which will correspond to the inductive hypothesis.

Definition 3.5. We say that px, yq satisfies condition (IND) if for every S1 P tS, SYtℓu, SYtruu any
pattern p1 P LS1 px, yq occurs intersecting F in x, that is, for every p1 P LS1 px, yq there is t1 P F ´ S1

such that we have σt1

pxq P rp1s.

It is clear that condition (IND) implies that #LS1 px, yq ď #pF ´ S1q. By Lemma 3.4, we have the
other inequality and thus condition (IND) in fact states two things: that #LS1 px, yq “ #pF ´S1q and
that the position t1 P F ´ S1 such that σt1

pxq P rp1s is unique.
Our general strategy will be similar to the proof of Lemma 3.4, that is, we will look at the positions

in F ´ pS Y tℓ, ruq for which only one of tℓ, ru intersects the difference set and nothing else does,
this will provide us with the means to describe Eℓ,rpwq for words w P t0, 1, . . . , duS and ultimately to
prove Theorem A.

Let w P LSpx, yq. We are going to define three special subsets of Eℓ,rpwq

Γℓpwq “ tpxt`ℓ, xt`rq P Eℓ,rpwq : there is t P Zd such that σtpxq P rws, t`ℓ P F, pt`pSYtruqqXF “ ∅u.

Γrpwq “ tpxt`ℓ, xt`rq P Eℓ,rpwq : there is t P Zd such that σtpxq P rws, t`r P F, pt`pSYtℓuqqXF “ ∅u.

Γ‹pwq “ tpxt`ℓ, xt`rq P Eℓ,rpwq : there is t P Zd with σtpxq P rws such that either pt` Sq X F ‰ ∅

or t` ℓ, t` r P F and pt` Sq X F “ ∅u.

The set Γℓpwq consists of all edges in Eℓ,rpwq which can be obtained by a pattern (with support
S Y tℓ, ru and whose restriction to S is w) which intersects F solely on position ℓ. Similarly, Γrpwq

consists of all edges in Eℓ,rpwq which can be obtained by a pattern which intersects F solely on position
r. Finally, Γ‹pwq represents the edges in Eℓ,rpwq which occur in some pattern which intersects F , but
does so either having S intersect F , or having both ℓ and r do so at the same time. Notice that these
three sets cover all possible ways that S Y tℓ, ru can intersect the difference set F .

In particular, if we want to show that no pattern appears twice on x intersecting the difference set,
we would need to show that Γℓpwq X Γrpwq “ ∅. This will be the main goal of this section.

We shall first show that under condition (IND) we can use the set Γ‹pwq to bound the number of
connected components of Eℓ,rpwq.

Lemma 3.6. For a symbol κ P t0, 1, . . . , du, let us denote by κ˚ “ pκ ´ 1q mod pd` 1q. Assume
condition (IND) and consider the bipartite graph Eℓ,rpwq.
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(1) If pa, bq P Γℓpwq, then pa˚, bq P Eℓ,rpwq and there is b1 such that pa˚, b1q P Γℓpwq Y Γ‹pwq.
(2) If pa, bq P Γrpwq, then pa, b˚q P Eℓ,rpwq and there is a1 such that pa1, b˚q P Γrpwq Y Γ‹pwq.
(3) The number of connected components of Eℓ,rpwq is bounded above by #Γ‹pwq.

Proof. Let us show (1). Fix pa, bq P Γℓpwq and let w1 be the pattern with support S Y tℓ, ru such
that w1|S “ w, w1

ℓ “ a and w1
r “ b. As pa, bq P Γℓpwq, there is t P Zd such that t ` ℓ P F ,

pt ` pS Y truqq X F “ ∅ and σtpxq P rw1s. On the one hand, as x, y are asymptotic with difference
set F , we have x|t`pSYtruq “ y|t`pSYtruq and thus yt`r “ xt`r “ b. On the other hand, by the flip
condition yt`ℓ “ xt`ℓ ´ 1 mod d` 1 “ a˚, which means we have both pa, bq and pa˚, bq in Eℓ,rpwq.
Furthermore, if we let w2 be the pattern with support S Y tℓu such that w2|S “ w and w2

ℓ “ a˚,
condition (IND) implies that w2 must occur in x intersecting the difference set. It follows that there
is b1 such that pa˚, b1q P Γℓpwq Y Γ‹pwq. The second claim is analogous to the first one.

Next we shall provide a bound on the number of edges of Γℓpwq and Γrpwq. Indeed, notice that by
condition (IND) we have that

#Γℓpwq ď #tt P Zd : t` ℓ P F and pt` pS Y truqq X F “ ∅qu.

As S Y tℓ, ru is connected, there is u P Zd with ∥u∥1 ď 1 such that ℓ ` u P S Y tru. In particular,
there is at least one t P Zd is such that t ` ℓ P F and t ` ℓ ` u P F . As #F “ d ` 1, we deduce that
#Γℓpwq ď d. Analogously, we have #Γrpwq ď d.

Let us finally prove (3). Let a P Eℓpwq and consider again the pattern w1 with support SY tℓu such
that w1|S “ w and w1

ℓ “ a. By condition (IND), it must occur intersecting F and thus we have that a
must occur in some edge in Γℓpwq Y Γ‹pwq. If it occurs in an edge of Γ‹pwq we are done, otherwise by
(1), we know it is connected to a˚ “ a´1 mod d` 1 and that a˚ occurs in some edge in ΓℓpwqYΓ‹pwq.
If said edge is in Γ‹pwq we are done, otherwise we iterate the process, as #Γℓpwq ď d it follows that
we eventually end up in a vertex which belongs to an edge in Γ‹pwq. After an analogous argument for
b P Erpwq we obtain that every connected component of Eℓ,rpwq must contain an edge of Γ‹pwq, and
thus the number of connected components is bounded by #Γ‹pwq. □

Next we will have to estimate the size of Γ‹pwq in order to have a lower bound on the multiplicities
mℓ,rpwq. It turns out that one particular case is harder to deal with and thus we shall give it a special
name to simplify the upcoming statements.

Definition 3.7. Let S Ă Zd be a connected nonempty finite support and ℓ, r P ZdzS with ℓ ‰ r. We
say that pS, ℓ, rq is evil if there exists t P Zd such that tt` ℓ, t` ru Ă F and pt` Sq X F “ ∅.

We also say that w P LSpxq is an evil pattern if for t P Zd such that tt ` ℓ, t ` ru Ă F and
pt` Sq X F “ ∅ we have xt`s “ ws for every s P S.

We remark that by definition the empty pattern ε with support S “ ∅ is not evil. Definition 3.7 is
illustrated in Figure 8 when d “ 2.

F

S1

ℓ1
r1

S2

ℓ2
r2

S3

ℓ3
r3

Figure 8. pS1, ℓ1, r1q is evil, as both ℓ1 and r1 can simultaneously overlap F without
S1 doing so. Notice that pS2, ℓ2, r2q is not evil since ℓ2 ´ r2 R F ´ F . pS3, ℓ3, r3q is
also not evil since the unique t P Z2 with t`tℓ3, r3u Ă F is such that pt`S3qXF ‰ ∅.
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Lemma 3.8. Let w P LSpx, yq and assume conditon (IND). If w is an evil pattern, then mℓ,rpwq ě

´1. If w is non-evil, then mℓ,rpwq ě 0

Proof. In the case when S “ ∅, as ℓ ‰ r there is at most a unique t P Zd such that t ` ℓ, t ` r P F ,
and thus #Γ‹pwq ď 1. If S ‰ ∅, condition (IND) implies that there is a unique t P Zd such
that pt ` Sq X F ‰ ∅ and σtpxq P rws. The second possibility, namely, that there is t1 such that
pt1 `Sq XF “ ∅ and t1 ` ℓ, t1 ` r P F can only occur if w is evil, therefore we obtain that #Γ‹pwq ď 1
if w is non-evil and #Γ‹pwq ď 2 if w is evil.

By Lemma 3.6 we obtain that the number of connected components of Eℓ,rpwq is bounded by 1
if w is non-evil, and by 2 if it is evil. Using Lemma 3.1, we obtain that mℓ,rpwq ě 0 whenever w is
non-evil, and mℓ,rpwq ě ´1 if w is evil. □

Next we shall show that the bound in Lemma 3.8 is tight. In order to do so we will produce a
formula for the sum of a bilateral multiplicities.

Lemma 3.9. Suppose that #LSYtℓ,rupx, yq “ #pF ´ pS Y tℓ, ruqq and that condition (IND) holds.
For every w P LSpx, yq, let c be the number of connected components of Eℓ,rpwq. We have

mℓ,rpwq “ 1 ´ c “

$

&

%

´1 if w is evil,

0 otherwise.

In particular, the extension graph Eℓ,rpwq contains no cycle.

Proof. Let us first deal with the case S ‰ ∅. Summing each term in the definition of multiplicity we
obtain

ÿ

wPLSpx,yq

mℓ,rpwq “
ÿ

wPLSpx,yq

#Eℓ,rpwq ´
ÿ

wPLSpx,yq

#Eℓpwq ´
ÿ

wPLSpx,yq

#Erpwq `
ÿ

wPLSpx,yq

1

“ #LSYtℓ,rupx, yq ´ #LSYtℓupx, yq ´ #LSYtrupx, yq ` #LSpx, yq.

On the one hand, we have the hypothesis that #LSYtℓ,rupx, yq “ #pF ´ pS Y tℓ, ruqq. On the other
hand, condition (IND) implies that #LS1 px, yq “ #pF ´ S1q for every S1 P tS, S Y tℓu, S Y truu. We
obtain

ÿ

wPLSpx,yq

mℓ,rpwq “ #pF ´ pS Y tℓ, ruqq ´ #pF ´ pS Y truqq ´ #pF ´ pS Y tℓuqq ` #pF ´ Sq

“ #ppF ´ pS Y tℓ, ruqqzpF ´ pS Y truqqq ´ #ppF ´ pS Y tℓuqqzpF ´ Sqq

“ #ppF ´ tℓuqzpF ´ pS Y truqqq ´ #ppF ´ tℓuqzpF ´ Sqq

“ ´#pppF ´ truqzpF ´ Sqq X pF ´ tℓuqq.

Clearly if ppF ´ truqzpF ´ Sqq X pF ´ tℓuq “ ∅ the value of the sum is 0. Otherwise, there is t P Zd

such that t ` r P F , t ` ℓ P F but t ` s R F for every s P S, which is precisely the evil case. Notice
that as ℓ ‰ r, if such a t exists then it is unique (because any non-trivial intersection F X pt` F q has
size at most 1), and thus in this case the sum has value ´1. We obtain thus that for S ‰ ∅ we have

ÿ

wPLSpx,yq

mℓ,rpwq “

$

&

%

´1 if pS, ℓ, rq is evil,

0 otherwise.

Using Lemma 3.8 and the fact that there is exactly one evil pattern for an evil pS, ℓ, rq, we obtain that
mℓ,rpwq “ 1 ´ c. By Lemma 3.1, this implies that the extension graph Eℓ,rpwq is acyclic.

Let us now deal with the case when S “ ∅. By assumption, S Y tℓ, ru is connected and thus
without loss of generality we may write r “ ℓ ` ei for some i P t1, . . . , du. By definition mℓ,rpεq “

#Eℓ,rpεq ´ #Eℓpεq ´ #Erpεq ` 1. Clearly #Eℓpεq “ #Erpεq “ Lt0upx, yq “ d ` 1 and one can easily
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verify that for U “ tℓ, ℓ ` eiu we have #Eℓ,rpεq “ #pF ´ Uq “ 2d ` 1. It follows that mℓ,rpεq “ 0.
As the number of connected components of Eℓ,rpεq is bounded by #Γ‹pεq ď 1, we conclude that c “ 1
and thus mℓ,rpεq “ 1 ´ c. By Lemma 3.1, this yields that the extension graph Eℓ,rpwq is acyclic. □

Lemma 3.10. Suppose that #LSYtℓ,rupx, yq “ #pF ´ pS Y tℓ, ruqq and that condition (IND) holds.
For every non-evil w P LSpx, yq, if Γℓpwq X Γrpwq ‰ ∅, then the extension graph Eℓ,rpwq contains a
cycle.

Proof. Let w P LSpx, yq be a non-evil pattern. It follows that #Γ‹pwq “ 1. Let pâ, b̂q be the sole
element of Γ‹pwq.

Suppose that Γℓpwq X Γrpwq ‰ ∅. Let pa, bq P Γℓpwq X Γrpwq and p be the pattern with support
SYtℓ, ru with p|S “ w, pℓ “ a, pr “ b. It follows that there exists t, t1 P Zd such that σtpxq, σt1

pxq P rps

with t ` ℓ P F , pt ` pS Y truqq X F “ ∅, and t1 ` r P F , pt1 ` pS Y tℓuqq X F “ ∅. It follows that
the subpatterns qℓ and qr of p, with supports S Y tℓu and S Y tru respectively, already intersect the
support F in x (with vectors t and t1 respectively), and thus if t2 P Zd is such that σt2

pxq P rws and
pt2 ` Sq X F ‰ ∅, then both â “ xt2`ℓ ‰ a and b̂ “ xt2`r ‰ b (otherwise the intersections of qℓ and
qr with F on x would not be unique).

Iterating Lemma 3.6 part (1), we can construct a path πa in Eℓ,rpwq from a to â which begins by
the edge pa, bq. Similarly, using part (2) we can build a path π2 from b to b̂ which begins with the
edge pb, aq. Notice that in each path either the edge pâ, b̂q does not appear, or it is the last edge on
the path.

If pâ, b̂q does not appear in either πa nor πb, we can put them together to construct a path from â

to b̂ which does not use the edge pâ, b̂q. Similarly, if pâ, b̂q appears in both of the paths, we can remove
it from both paths and again we have a path from â to b̂ which does not use the edge pâ, b̂q. In both
cases we obtain a cycle in Eℓ,rpwq.

Finally, let us suppose that the (undirected) edge pâ, b̂q appears at the end of just one path. As
both cases are analogous, let us assume that it appears in πa. If we remove the first and last edge from
πa we obtain a path from b to b̂ which does not use the edge pa, bq and in which a does not appear. If
we remove the first edge from πb we obtain a path from a to b̂ which does not use the edge pb, aq and
where b does not appear. Thus a and b are connected through a path that does not use the edge pa, bq

and thus we obtain a cycle in Eℓ,rpwq. □

Remark 3.11. Using a variation of the previous argument, it is also possible to show for evil patterns
that if Γℓpwq X Γrpwq ‰ ∅, then Eℓ,rpwq contains a cycle. However, we shall not need that statement
for the proof of Theorem A.

Proposition 3.12. Let d ě 1 and x, y P t0, 1, . . . , duZ
d be an asymptotic pair satisfying the flip

condition with difference set F “ t0,´e1, . . . ,´edu. Assume that for every nonempty finite connected
subset S Ă Zd, the pattern complexity of x and y is #LSpxq “ #LSpyq “ #pF ´ Sq. Then for every
nonempty finite connected subset S Ă Zd and p P LSpxq Y LSpyq, we have

(3) # poccppxqzoccppyqq “ 1 “ # poccppyqzoccppxqq .

Proof. The proof is done by induction on the cardinality of S. If #S “ 1, then it follows from the flip
condition that Equation (3) holds for all patterns p : S Ñ t0, 1, . . . , du with support S of cardinality
1. Let us assume (by the induction hypothesis) that Equation (3) holds for all supports S Ă Zd with
cardinality #S ď k for some integer k ě 1. For the sake of contradiction, let us suppose that there
exists a finite connected subset U Ă Zd of cardinality #U “ k ` 1 such that Equation (3) does not
hold for some pattern p P LU px, yq. As #LU pxq “ #LU pyq “ #pF ´ Uq, we may assume without
loss of generality that there exists a pattern p P LU px, yq such that # poccppxqzoccppyqq ě 2. In other
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words, there are two distinct vectors t, t1 P F ´ U such that both σtpxq, σt1

pxq P rps. We claim that
there exist ℓ, r P U which satisfy the following properties:

(A) ℓ ‰ r.
(B) U is a path in Zd whose extreme elements are ℓ and r.
(C) ℓ is the unique element of U such that t` ℓ P F .
(D) r is the unique element of U such that t1 ` r P F .

Indeed, as t, t1 P F ´ U , there are ℓ, r P U such that t ` ℓ, t1 ` r P F . If ℓ “ r, then as t ‰ t1 it
follows that t ` ℓ ‰ t1 ` ℓ are two distinct positions in F , however, as σtpxq, σt1

pxq P rps, it follows
that xt`ℓ “ xt1`ℓ “ pℓ which contradicts the flip condition. Therefore we must have that ℓ ‰ r. As U
is connected, we may extract a path U 1 Ď U in Zd which connects ℓ and r. It follows that p1 “ p|U 1

also breaks Equation (3) because σtpxq, σt1

pxq P rp1s and t, t1 P F ´ U 1, and thus from the induction
hypothesis we must have U 1 “ U and thus U is a path in Zd whose extreme elements are ℓ, r. Using
the same idea, suppose there is ℓ1 P U such that t ` ℓ1 P F , then we could take the sub-path U2 Ă U

which begins in ℓ1 and ends in r and again p2 “ p|U2 would violate the induction hypothesis. Thus ℓ
is unique. Similarly, r is unique.

Let S “ Uztℓ, ru, w “ p|S , a “ pℓ and b “ pr. Notice that the induction hypothesis implies that
condition (IND) holds in px, yq for pS, ℓ, rq.

As t ‰ t1, it follows that w is not an evil pattern. Furthermore, conditions (C) and (D) give
that pa, bq P Γℓpwq and pa, bq P Γrpwq respectively. Therefore we have Γℓpwq X Γrpwq ‰ ∅ and
thus Lemma 3.10, yields that the extension graph Eℓ,rpwq contains a cycle. This is a contradiction
with Lemma 3.9 that states that Eℓ,rpwq is acyclic.

We conclude that Equation (3) holds for all patterns p P LU px, yq for all finite connected subset
U Ă Zd of cardinality #U “ k ` 1. □

3.4. Proof of Theorem A. We shall now prove our characterization of indistinguishable asymptotic
pairs with the flip condition through complexity. For the convenience of the reader, we recall the
statement.

Theorem A. Let d ě 1 and x, y P t0, 1, . . . , duZ
d be an asymptotic pair satisfying the flip condition

with difference set F “ t0,´e1, . . . ,´edu. The following are equivalent:
(i) For every nonempty finite connected subset S Ă Zd and p P LSpxq Y LSpyq, we have

# poccppxqzoccppyqq “ 1 “ # poccppyqzoccppxqq .

(ii) The asymptotic pair px, yq is indistinguishable.
(iii) For every nonempty finite connected subset S Ă Zd, the pattern complexity of x and y is

#LSpxq “ #LSpyq “ #pF ´ Sq.

Proof of Theorem A. Let x, y P t0, 1, . . . , duZ
d be an asymptotic pair satisfying the flip condition with

difference set F “ t0,´e1, . . . ,´edu. By Proposition 2.4 it follows that (i) implies (ii).
Assume (ii) holds and let S Ă Zd be a finite nonempty connected subset. As px, yq is indistin-

guishable, we have LSpxq “ LSpyq “ LSpx, yq. Furthermore, from Lemma 3.4, we have #LSpx, yq ě

#pF ´Sq. From Lemma 3.2, we have #LSpx, yq ď #pF ´Sq. We conclude that #LSpxq “ #LSpyq “

#pF ´ Sq and thus (iii) holds.
In Proposition 3.12, we proved that (iii) implies (i). □

Theorem A gives us two descriptions of the language of x and y for any connected support.

Corollary 3.13. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic pair satisfying the flip

condition. For every finite nonempty connected subset S Ă Zd, we have that the maps given by
n ÞÑ σnpxq|S and n ÞÑ σnpyq|S are two distinct bijections from F ´ S to LSpxq.
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Proof. We proved LSpxq Ă tσnpxq|S : n P F ´ Su in Lemma 3.2. The equality

LSpxq “ tσnpxq|S : n P F ´ Su

follows from Theorem A. From this equality we deduce that the map n ÞÑ σnpxq|S is a bijection from
F ´ S to LSpxq. As LSpxq “ LSpyq we deduce that

LSpxq “ LSpyq “ tσnpyq|S : n P F ´ Su.

Thus we conclude that the map n ÞÑ σnpyq|S is another bijection from F ´ S to LSpxq. □

3.5. Rectangular pattern complexity. We have so far shown that for any indistinguishable pair
px, yq P t0, 1, . . . , duZ

d which satisfies the flip condition and any finite nonempty connected subset
S Ă Zd we have #LSpxq “ #LSpyq “ #pF ´ Sq. This equation takes a beautiful form when S is a
d-dimensional box.

For a positive integer vector m “ pm1, . . . ,mdq P Nd, let Spmq Ă Zd denote the support

Spmq :“
d
ź

i“1
J0,mi ´ 1K “ tpniq1ďiďd P Zd : 0 ď ni ă mi for every 1 ď i ď du,

which represents the d-dimensional box whose sides have lengths m1, . . . ,md. Also, for x P ΣZd we
write Lmpxq “ LSpmqpxq to denote the set of patterns with support Spmq occurring in x. We refer to
the function which maps m to #Lmpxq as the rectangular pattern complexity of x.

Proof of Corollary 1. Let m “ pm1, . . . ,mdq P Nd be a positive integer vector. From Theorem A, we
have that Lmpxq “ Lmpyq “ #pF ´ Spmqq.

By a simple counting argument, we have that #pF ´Spmqq is equal to the volume of Spmq plus the
volume of each of its d´ 1 dimensional faces. We conclude that

#Lmpxq “ #Lmpyq “ m1 ¨ ¨ ¨md

ˆ

1 `
1
m1

` ¨ ¨ ¨ `
1
md

˙

. □

The geometrical interpretation of the rectangular complexity of an indistinguishable pair px, yq P

t0, 1, . . . , duZ
d which satisfies the flip condition provides meaning to a curious relation that one can find

perhaps by boredom or accident. Let us express the rectangular complexity as a real map f : Rd Ñ R
given by

fpx1, . . . , xdq “ x1 ¨ ¨ ¨xd

ˆ

1 `
1
x1

` ¨ ¨ ¨ `
1
xd

˙

.

If we consider the derivative of f with respect to some xi we obtain
B

Bxi
fpx1 ¨ ¨ ¨xdq “

x1 ¨ ¨ ¨xd

xi

ˆ

1 `
1
x1

` ¨ ¨ ¨ `
1
xd

˙

` x1 ¨ ¨ ¨xd

ˆ

´1
x2

i

˙

“
x1 ¨ ¨ ¨xd

xi

ˆ

1 `
1
x1

` ¨ ¨ ¨ `
1
xd

´
1
xi

˙

.

In other words, the derivative of the complexity function of a d-dimensional indistinguishable pair
px, yq P t0, 1, . . . , duZ

d which satisfies the flip condition with respect to any variable yields the rectan-
gular complexity function of a pd ´ 1q-dimensional indistinguishable pair px1, y1q P t0, 1, . . . , d ´ 1uZ

d

which satisfies the flip condition. The geometrical interpretation is that as this complexity corresponds
to the volume of a d-dimensional box of size pm1 ¨ ¨ ¨mdq plus the sum of the volume of the pd ´ 1q-
dimensional faces, then taking the derivative with respect to a canonical direction ei yields from the
box the volume m1¨¨¨md

mi
of the corresponding pd ´ 1q-dimensional face orthogonal to ei, and for each

of the pd´ 1q-dimensional faces we either obtain the pd´ 2q-dimensional face orthogonal to ei, or 0 if
the pd´ 1q-dimensional face is orthogonal to ei.
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4. Characteristic Sturmian configurations in Zd

In this section, we introduce characteristic multidimensional Sturmian configurations from codimension-
one cut and project schemes. We show that they are examples of indistinguishable asymptotic pairs
satisfying the flip condition.

4.1. Codimension-one cut and project schemes for symbolic configurations. Cut and project
schemes of codimension-one (dimension of the internal space) can be defined in several ways (for a
different definition see [20]). In what follows we follow the formalism of [6, §7], but note that we need
to adapt it in order to describe symbolic configurations over a lattice Zd. Let d ě 1 be an integer and

π : Rd`1 Ñ Rd

px0, x1, . . . , xdq ÞÑ px1, . . . , xdq

be the projection of Rd`1 in the physical space Rd. Let α0 “ 1, αd`1 “ 0 and α “ pα1, . . . , αdq P

r0, 1qd be a totally irrational vector, that is such that t1, α1, . . . , αdu is linearly independent over Q.
Let

πint : Rd`1 Ñ R{Z
px0, x1, . . . , xdq ÞÑ

řd
i“0 xiαi

be the projection of Rd`1 in the internal space R{Z. Consider the lattice L “ Zd`1 Ă Rd`1 whose
image is πpLq “ Zd. This is the setting of a codimension-one cut and project scheme summarized
in the following diagram adapted from [6, §7.2]:

W R{Z Rd`1 Rd

πintpLq L πpLq NpW q

Ă
πint π

Ă dense Ă Ă

‹

Ą

Remark 4.1. The usual condition imposed in cut and project schemes is that π|L is injective, see [6,
§7.2], which does not hold in our case. Here, it is more convenient to relax this condition to

(4) Kerπ X L Ď Kerπint.

Of course if π|L is injective, then (4) is satisfied since KerπXL “ t0u Ă Kerπint. Also, we may observe
that if (4) holds, then the star map πpLq Ñ πintpLq is still well defined:

x ÞÑ x‹ :“ πint
`

L X π´1pxq
˘

.

With the definition of π and πint above, we have that (4) holds since KerπXL “ Zˆt0ud Ď Kerπint.
Moreover,

(5) n‹ “ α ¨ n mod 1

for every n P πpLq “ Zd. For a given window W Ă R{Z in the internal space,

NpW q :“ tx P L | x‹ P W u

is the projection set within the cut and project scheme, where L “ πpLq. If W Ă R{Z is a relatively
compact set with non-empty interior, any translate t ` NpW q of the projection set, t P Rd, is called a
model set.

If W “ r0, 1q, then NpW q “ Zd. Thus, if W Ă r0, 1q, then NpW q Ă Zd. Moreover, if tWiuiPt0,...,du

is a partition of r0, 1q, then tNpWiquiPt0,...,du is a partition of Zd. Using this idea, we now build
configurations Zd Ñ t0, 1, . . . , du according to a partition of R{Z, or equivalently of the interval r0, 1q,
into consecutive intervals.
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Definition 4.2. Let α “ pα1, . . . , αdq P r0, 1qd be a totally irrational vector and τ be the permutation of
t1, . . . , duYt0, d`1u which fixes t0, d`1u and such that 0 “ ατpd`1q ă ατpdq ă ¨ ¨ ¨ ă ατp1q ă ατp0q “ 1.
For every i P t0, 1, . . . , du, let

Wi “ r1 ´ ατpiq, 1 ´ ατpi`1qq, W 1
i “ p1 ´ ατpiq, 1 ´ ατpi`1qs

be such that tWiuiPt0,...,du and tW 1
i uiPt0,...,du are two partitions of the interval r0, 1q. The configurations

cα : Zd Ñ t0, 1, . . . , du

n ÞÑ i if n‹ P Wi

and
c1

α : Zd Ñ t0, 1, . . . , du

n ÞÑ i if n‹ P W 1
i

are respectively the lower and upper characteristic d-dimensional Sturmian configurations
with slope α P r0, 1qd. Moreover, if ρ P R{Z, the configurations

sα,ρ : Zd Ñ t0, 1, . . . , du

n ÞÑ i if n‹ ` ρ P Wi

and
s1

α,ρ : Zd Ñ t0, 1, . . . , du

n ÞÑ i if n‹ ` ρ P W 1
i

are respectively the lower and upper d-dimensional Sturmian configurations with slope α P

r0, 1qd and intercept ρ P R{Z.

It turns out that configurations sα,ρ and s1
α,ρ can be expressed by a formula involving a sum

of differences of floor functions thus extending the definition of Sturmian sequences by mechanical
sequences [31]. It also reminds of recent progresses on Nivat’s conjecture where configurations with
low pattern complexity are proved to be sums of periodic configurations [24, 36], although here it
involves a sum of non-periodic configurations.

Lemma 4.3. Let α “ pα1, . . . , αdq P r0, 1qd be a totally irrational vector and ρ P R{Z. The lower and
upper d-dimensional Sturmian configurations with slope α and intercept ρ are given by the following
rules:

sα,ρ : Zd Ñ t0, 1, . . . , du

n ÞÑ
d
ř

i“1
ptαi ` n ¨ α ` ρu ´ tn ¨ α ` ρuq ,

and
s1

α,ρ : Zd Ñ t0, 1, . . . , du

n ÞÑ
d
ř

i“1
prαi ` n ¨ α ` ρs ´ rn ¨ α ` ρsq .

Proof. Let n P Zd and j P t0, 1, . . . , du be such that n‹ ` ρ P Wj . Therefore sα,ρpnq “ j. From
Equation (5), recall that we have n‹ “ n ¨ α mod 1. Since the intervals W0, W1, . . . , Wd are ordered
from left to right on the interval r0, 1q, we must have

sα,ρpnq “ j “ #ti P t1, . . . , du : 1 ´ αi ď n ¨ α ` ρ´ tn ¨ α ` ρuu

“ #ti P t1, . . . , du : 1 ď αi ` n ¨ α ` ρ´ tn ¨ α ` ρuu

“ #ti P t1, . . . , du : tαi ` n ¨ α ` ρu ´ tn ¨ α ` ρu “ 1u

“

d
ÿ

i“1
ptαi ` n ¨ α ` ρu ´ tn ¨ α ` ρuq .

The proof for s1
α,ρ follows the same argument after replacing inequalities (ď) by strict inequalities (ă)

and floor functions (t¨u) by ceil functions (r¨s). □

When d “ 1, sα,ρ and s1
α,ρ correspond to lower and upper mechanical words defined in [31], see also

[29, 3, 1]. When d “ 2, they are in direct correspondence to discrete planes as defined in [12, 4, 5]. See
also Jolivet’s Ph.D. thesis [23]. In general, we say that a configuration in t0, 1, . . . , duZ

d is Sturmian,
if it coincides either with sα,ρ or s1

α,ρ for some ρ P R and totally irrational α P r0, 1qd.
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When ρ “ 0, we have sα,0 “ cα and s1
α,0 “ c1

α. Thus, Equation (2) in the Introduction follows from
Lemma 4.3.

The fact that the configurations cα and c1
α are encodings of codimension-one cut and project schemes

is illustrated with α “ pα1, α2q “ p
?

2{2,
?

19 ´ 4q in Figure 3 in which we see a discrete plane in
dimension 3 of normal vector p1 ´ α1, α1 ´ α2, α2q « p0.293, 0.348, 0.359q. Below, we exhibit another
example and compute its language for small rectangular supports.

Example 4.4. Let α “ p
?

3 ´ 1,
?

2 ´ 1q. The 2-dimensional characteristic Sturmian configurations
cα and c1

α are shown on Figure 9. In order to motivate the main ideas of the proofs in the next section,
we explicitly compute the language of these configurations for some rectangular supports of small size.

c
p
?

3´1,
?

2´1q
c1

p
?

3´1,
?

2´1q

2 1 0 2 2 1 0 2 2 1 0 2 1 1 0
1 0 2 1 1 0 2 1 0 2 2 1 0 2 2
2 2 1 0 2 2 1 0 2 1 0 2 2 1 0
1 0 2 2 1 0 2 2 1 0 2 1 1 0 2
0 2 1 1 0 2 1 0 2 2 1 0 2 2 1
2 1 0 2 2 1 0 2 1 1 0 2 1 0 2
1 0 2 1 0 2 2 1 0 2 2 1 0 2 1
2 2 1 0 2 1 1 0 2 1 0 2 2 1 0
1 0 2 2 1 0 2 2 1 0 2 1 0 2 2
0 2 1 0 2 2 1 0 2 2 1 0 2 1 1
2 1 0 2 1 1 0 2 1 0 2 2 1 0 2
0 2 2 1 0 2 2 1 0 2 1 1 0 2 1
2 1 1 0 2 1 0 2 2 1 0 2 2 1 0
1 0 2 2 1 0 2 1 0 2 2 1 0 2 2
2 2 1 0 2 2 1 0 2 1 1 0 2 1 0

2 1 0 2 2 1 0 2 2 1 0 2 1 1 0
1 0 2 1 1 0 2 1 0 2 2 1 0 2 2
2 2 1 0 2 2 1 0 2 1 0 2 2 1 0
1 0 2 2 1 0 2 2 1 0 2 1 1 0 2
0 2 1 1 0 2 1 0 2 2 1 0 2 2 1
2 1 0 2 2 1 0 2 1 1 0 2 1 0 2
1 0 2 1 0 2 2 1 0 2 2 1 0 2 1
2 2 1 0 2 1 0 2 2 1 0 2 2 1 0
1 0 2 2 1 0 2 1 1 0 2 1 0 2 2
0 2 1 0 2 2 1 0 2 2 1 0 2 1 1
2 1 0 2 1 1 0 2 1 0 2 2 1 0 2
0 2 2 1 0 2 2 1 0 2 1 1 0 2 1
2 1 1 0 2 1 0 2 2 1 0 2 2 1 0
1 0 2 2 1 0 2 1 0 2 2 1 0 2 2
2 2 1 0 2 2 1 0 2 1 1 0 2 1 0

Figure 9. The 2-dimensional configurations cα and c1
α when α “ p

?
3 ´ 1,

?
2 ´ 1q

are shown on the support J´7, 7K ˆ J´7, 7K. The two configurations are equal except
on the difference set F “ tp0, 0q, p´1, 0q, p0,´1qu shown in red.

The patterns of shape p1, 3q that we see in c
p
?

3´1,
?

2´1q
and c1

p
?

3´1,
?

2´1q
are

$

’

&

’

%

0
2
0
,

0
2
1
,

1
0
2
,

1
2
1
,

2
0
2
,

2
1
0
,

2
1
2

,

/

.

/

-

The patterns of shape p3, 1q that we see in c
p
?

3´1,
?

2´1q
and c1

p
?

3´1,
?

2´1q
are

!

0 2 1 , 0 2 2 , 1 0 2 , 1 1 0 , 2 1 0 , 2 1 1 , 2 2 1
)

The patterns of shape p2, 2q that we see in c
p
?

3´1,
?

2´1q
and c1

p
?

3´1,
?

2´1q
are

#

0 2
2 1

,
1 0
0 2

,
1 0
2 2

,
1 1
0 2

,
2 1
0 2

,
2 1
1 0

,
2 2
1 0

,
2 2
1 1

+

The patterns of shape p2, 3q that we see in c
p
?

3´1,
?

2´1q
and c1

p
?

3´1,
?

2´1q
are

$

’

&

’

%

0 2
2 1
0 2

,
0 2
2 1
1 0

,
1 0
0 2
2 1

,
1 0
2 2
1 0

,
1 0
2 2
1 1

,
1 1
0 2
2 1

,
2 1
0 2
2 1

,
2 1
1 0
0 2

,
2 1
1 0
2 2

,
2 2
1 0
0 2

,
2 2
1 1
0 2

,

/

.

/

-
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The patterns of shape p3, 2q that we see in c
p
?

3´1,
?

2´1q
and c1

p
?

3´1,
?

2´1q
are

$

’

’

’

’

&

’

’

’

’

%

0 2 1
2 1 0

,
0 2 2
2 1 0

,
0 2 2
2 1 1

,
1 0 2
0 2 1

,
1 0 2
2 2 1

,
1 1 0
0 2 2

2 1 0
0 2 2

,
2 1 0
1 0 2

,
2 1 1
1 0 2

,
2 2 1
1 0 2

,
2 2 1
1 1 0

,

/

/

/

/

.

/

/

/

/

-

We may check on Figure 9 that each of these patterns has exactly one occurrence intersecting the
difference set. This is the main tool that allows us to show that d-dimensional characteristic Sturmian
configurations are indistinguishable.

4.2. Characteristic d-dimensional Sturmian configurations and the flip condition.

Lemma 4.5. For any α P r0, 1qd and ρ P R, the configurations sα,ρ and s1
α,ρ are uniformly recurrent.

Proof. If all coordinates in α “ pα1, . . . , αdq are rational, it is clear that sα,ρ and s1
α,ρ have finite orbits

under the shift action and are thus uniformly recurrent.
Suppose there is 1 ď i ď d such that αi is irrational and let S Ă Zd be finite and p P LSpsα,ρq.

From the definition we have that σnpsα,ρq P rps if and only if

n ¨ α ` ρ P
č

kPS

pWpk
´ α ¨ k ` Zq.

From the definition, it is easy to see that for each j P t0, 1, . . . , du, the set Wj is either empty or has
nonempty interior. As p P LSpsα,ρq, it follows that

Ş

kPSpIntpWpk
q ´ α ¨ k ` Zq is nonempty and thus

contains an open interval U Ď R{Z.
As αi is irrational, it follows that there is M P N such that for any b P R{Z there is 0 ď m ď M such

that b`mαi P U . It follows that for any n P Zd, there is 0 ď m ď M such that pn`meiq ¨ α` ρ P U ,
and therefore σn`mei psα,ρq P rps. This shows that sα,ρ is uniformly recurrent. The argument for s1

α,ρ

is analogous. □

Lemma 4.6. If α is totally irrational, then
`

cα, c
1
α

˘

is an asymptotic pair whose difference set is
F “ t0,´e1, . . . ,´edu.

Proof. Since α is totally irrational, we have that αi `n ¨α is an integer if and only if n “ ´ei and n ¨α

is an integer if and only if n “ 0. Therefore, we have that

tαi ` n ¨ αu ´ tn ¨ αu “ rαi ` n ¨ αs ´ rn ¨ αs

for every n P Zdzt0,´eiu and i P t1, . . . , du. Therefore,

cαpnq “ c1
αpnq

for every n P Zdzt0,´e0, . . . ,´edu. This shows that pcα, c
1
αq is an asymptotic pair whose difference set

is F “ t0,´e0, . . . ,´edu. □

Proposition 4.7. Let α P r0, 1qd be totally irrational. The characteristic d-dimensional Sturmian
configurations cα and c1

α satisfy the flip condition.

Proof. From Lemma 4.6, if α “ pα1, . . . , αdq P r0, 1qd is totally irrational, then pcα, c
1
αq is an asymptotic

pair whose difference set is F “ t0,´e1, . . . ,´edu.
From Lemma 4.3, we have that for n P Zd,

pcαqn “

d
ÿ

i“1
ptαi ` n ¨ αu ´ tn ¨ αuq and pc1

αqn “

d
ÿ

i“1
prαi ` n ¨ αs ´ rn ¨ αsq .
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From here we obtain directly that pcαq0 “ 0 and pc1
αq0 “ d. For n “ ´ei we get

pcαq´ei “

d
ÿ

j“1

`

tαj ´ αiu ´ t´αiu
˘

“ d´ #tj : αj ă αiu “ #tj : αj ě αiu,(6)

pc1
αq´ei “

d
ÿ

j“1

`

rαj ´ αis ´ r´αis
˘

“ #tj : αj ą αiu.(7)

As α is totally irrational, all αi are distinct non-zero values. From the above formula we obtain that
pcαq|F and pc1

αq|F are bijections onto t0, 1, . . . , du and pcαq´ei ´ pc1
αq´ei “ 1, from where the second

condition follows. □

4.3. Characteristic d-dimensional Sturmian configurations are indistinguishable. For every
i with 0 ď i ď d, the set Wi is a left-closed right-open interval sharing the same end-points as W 1

i

which is a right-closed left-open interval. We have that P “ tWiu0ďiďd and P 1 “ tW 1
iu0ďiďd are two

partitions of the circle R{Z illustrated in Figure 10.

1 ´ ατp1q 1 ´ ατp2q 1 ´ ατp3q 1 ´ ατpdq0 1¨ ¨ ¨

W0

W1

W2

Wd

W 1
0

W 1
1

W 1
2

W 1
d

Figure 10. Define α0 “ 1 and αd`1 “ 0 and let τ be the permutation of t1, . . . , du Y

t0, d ` 1u which fixes t0, d ` 1u and such that 0 ă ατpdq ă ¨ ¨ ¨ ă ατp1q ă 1. The
intervals Wi “ r1 ´ατpiq, 1 ´ατpi`1qq form a partition of the circle R{Z and similarly
for the intervals W 1

i “ p1 ´ ατpiq, 1 ´ ατpi`1qs.

Let S Ă Zd be finite and p : S Ñ t0, 1, . . . , du be a pattern with support S. Let

(8) Ip “
č

nPS

`

Wppnq ´ α ¨ n
˘

and I 1
p “

č

nPS

´

W 1
ppnq ´ α ¨ n

¯

.

And let PS “ tIpupPt0,1,...,duS and pP 1qS “ tI 1
pupPt0,1,...,duS be the partitions of R{Z determined by

the support S. Notice that the sets Ip and I 1
p have the same interior (which is nonempty if and only

if these sets are nonempty) and thus differ only on their boundary points.
The pattern p appears in cα if and only if IntpIpq ‰ ∅. Similarly, the pattern p appears in c1

α if and
only if IntpI 1

pq ‰ ∅. As IntpIpq “ IntpI 1
pq, we obtain that p appears in cα if and only if p appears in c1

α.
Therefore, the configurations cα and c1

α share the same language, that is: LSpcαq “ LSpc1
αq for every

finite S Ă Zd. Also, #LSpcαq is equal to the number of non-empty sets Ip for p P t0, 1, . . . , duS .

Lemma 4.8. For every nonempty connected finite set S Ă Zd and pattern p P t0, 1, . . . , duS, the sets
Ip, I

1
p are either empty or intervals in R{Z.

Proof. We only prove this for Ip, the argument for I 1
p follows from the considerations stated above.

Let us notice that the intersection of two left-closed, right-open intervals on the circle is either empty,
a left-closed and right-open interval, or a disconnected union of them. This third case can only occur
when the sum of the lengths of both intervals exceeds 1.

Let us now prove the lemma by induction. If S “ tnu is a singleton, then the result is direct: if
ppnq “ i, we have that Ip “ Ii ´ α ¨ n, which is clearly a non-empty interval on the circle.

Now let S be a nonempty connected finite set, p P t0, 1, . . . , duS and suppose the result holds for
every strict nonempty connected subset of S. As S is finite, we can find n P S such that S1 “ Sztnu
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is also connected by removing a leaf in some spanning tree of S. Let p1 be the restriction of p to S1,
then we have

Ip “ Ip1 X pIppnq ´ α ¨ nq.

By the inductive hypothesis Ip1 is an interval. We also have that pIppnq ´α ¨nq is an interval. Therefore
the only case where Ip might not be an interval is when the sum of the lengths of Ip1 and Ippnq is
strictly larger than 1.

As S is connected, there is 1 ď j ď d such that n ´ ej P S1 or n ` ej P S1. Let us proceed in the
case where n´ ej P S1, the other case is analogous. We have that Ip1 Ă Ippn´ej q ´ α ¨ pn´ ejq. Notice
that if ppn´ ejq ‰ ppnq, then the sum of the lengths of Ip1 and Ippnq is at most 1, hence the only issue
can arise when ppn´ ejq “ ppnq (and Ippnq has length larger than 1

2 ).
Suppose it is the case and let i “ ppn´ejq “ ppnq. Let π be the permutation of t1, . . . , duYt0, d`1u

which fixes 0 and d` 1 and such that

0 “ απpd`1q ă απpdq ă ¨ ¨ ¨ ă απp1q ă απp0q “ 1.

With this Ii “ r1 ´ απpiq, 1 ´ απpi`1qq, and hence we have

Ip1 Ă Ii ´ α ¨ pn´ ejq “ r1 ´ απpiq ` αj, 1 ´ απpi`1q ` αjq ´ α ¨ n

Ippnq ´ α ¨ n “ r1 ´ απpiq, 1 ´ απpi`1qq ´ α ¨ n.

There are two cases to consider:

(1) If αj ď απpi`1q, we have that Ip1 ` α ¨ n Ă pIi ` αjq Ă r0, 1q. It follows that Ip ` α ¨ n “

pIp1 ` α ¨ nq X Ippnq is either empty or an interval in R{Z and therefore so is Ip.
(2) If αj ě απpiq, we have Ip1 `α¨n Ă pIp`αjq Ă r1, 2q. It follows that Ip`α¨n “ pIp1 `α¨nqXIppnq

is either empty or an interval in R{Z and therefore so is Ip.

We conclude that in both of the problematic cases, Ip is either empty or an interval in R{Z. □

Lemma 4.9. Let α “ pα1, . . . , αdq P r0, 1qd be totally irrational and S be a nonempty finite connected
subset of Zd. For every p P LSpcαq “ LSpc1

αq, the sets occppcαq X pF ´ Sq and occppc1
αq X pF ´ Sq are

singletons.

Proof. The partition P “ tIiu0ďiďd of R{Z is a partition into d`1 intervals corresponding to the d`1
symbols in the alphabet. The boundary points of the intervals Ii P P are

F ¨ α “ t0, 1 ´ α1, . . . , 1 ´ αdu.

Notice that PS “ tIp : p P LSpcαqu “ tIp : p P t0, 1, . . . , duS and Ip ‰ ∅u. Using Lemma 4.8, we
obtain that PS is a partition of R{Z into nonempty (left-closed, right-open) intervals. It is therefore
clear from the definition of the intervals Ip that their unique boundary points are described by the set
F ¨ α ´ S ¨ α “ pF ´ Sq ¨ α.

For each p, there exists a unique boundary point ξ P pF ´ Sq ¨ α which belongs to Ip (the left-end
point of Ip). Since α is totally irrational, the map n ÞÑ n ¨ α ` Z is injective, thus there is a unique
vector n P F ´ S such that n ¨ α “ ξ. We have that σnpcαq “ sα,ξ P rps and so n P occppcαq.

The argument for c1
α is identical, the only difference being that the unique boundary point is now

the right-end point of I 1
p. □

Theorem 4.10. If α “ pα1, . . . , αdq P r0, 1qd is totally irrational, then pcα, c
1
αq is a non-trivial indis-

tinguishable asymptotic pair which satisfies the flip condition.

Proof. By Lemma 4.6, we have that pcα, c
1
αq is a non-trivial asymptotic pair whose differences set is

F “ t0,´e1, . . . ,´edu. Furthermore, by Proposition 4.7, it satisfies the flip condition. Let S be a
nonempty connected finite subset of Zd and p P t0, 1, . . . , duS . From Lemma 4.9, we obtain that the
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set of occurrences of p intersects F ´ S exactly once for both cα and c1
α, that is

#poccppcαq X pF ´ Sqq “ 1 “ #poccppc1
αq X pF ´ Sqq.

By Proposition 2.4 it suffices to check the above condition for patterns whose support is a nonempty
finite connected subset of Zd. We conclude that pcα, c

1
αq is indistinguishable. □

Remark 4.11. If we take a sequence of totally irrational vectors pαnqnPN it follows that each associ-
ated pair pcαn , c

1
αn

q satisfies the flip condition. It follows that if both pcαn qnPN and pc1
αn

qnPN converge
to c and c1 in the prodiscrete topology, then pcαn , c

1
αn

q converges in the asymptotic relation to the étale
limit pc, c1q which thus also satisfies the flip condition. By Proposition 2.9 we get that pc, c1q is there-
fore an indistinguishable asymptotic pair. This can be used to provide examples of indistinguishable
asymptotic pairs which satisfy the flip condition but that are not uniformly recurrent. See Figure 4.

5. Uniformly recurrent indistinguishable asymptotic pairs are Sturmian

The goal of this section is to prove Theorem B. We already proved in Theorem 4.10 that if α “

pα1, . . . , αdq P r0, 1qd is totally irrational, then pcα, c
1
αq is a non-trivial indistinguishable asymptotic

pair which satisfies the flip condition. Thus, it remains to show the existence of a totally irrational
vector α “ pα1, . . . , αdq P r0, 1qd describing an indistinguishable asymptotic pair which satisfies the
flip condition whenever the configurations are uniformly recurrent. The proof relies on an induction
argument on the dimension of Zd and on the existence of a factor map between the symbolic dynamical
system generated by a multidimensional Sturmian configuration and rotations on the circle R{Z.

5.1. Symbolic representations. Consider Zd R
ñ R{Z a continuous Zd-action on R{Z where R : Zd ˆ

R{Z Ñ R{Z. For some finite set A, a topological partition of R{Z (in the sense of Definition 6.5.3
of [28]) is a collection tPauaPA of disjoint open sets Pa Ă R{Z such that R{Z “

Ť

aPA Pa. If S Ă Zd is
a finite set, we say that a pattern w P AS is allowed for P, R if

(9)
č

kPS

R´kpPwk
q ‰ ∅.

The intersection in Equation (9) is related to the definition of I 1
w and Iw done in Equation (8) except

here the sets Pwk
are open.

Let us recall that a Zd-subshift is a set of the form X Ă AZd which is closed in the prodiscrete
topology and invariant under the shift action; and its language is the union of Lpxq for every x P X.
Let LP,R be the collection of all allowed patterns for P, R. The set LP,R is the language of a subshift
XP,R Ď AZd defined as follows, see [21, Prop. 9.2.4],

XP,R “ tx P AZd

| σnpxq|S P LP,R for every n P Zd and finite subset S Ă Zdu.

We call XP,R the symbolic extension of Zd R
ñ R{Z determined by P.

For each x P XP,R and m ě 0 there is a corresponding nonempty open set

Dmpxq “
č

}k}8ďm

R´kpPxk
q Ă R{Z.

The sequence of compact closures pDmpxqqmPN of these sets is nested and thus it follows that their
intersection is nonempty. Notice that there is no reason why diampDmpxqq should converge to zero,
and thus the intersection could contain more than one point. In order for XP,R to capture the dynamics
of Zd R

ñ R{Z, this intersection should contain only one point. This leads to the following definition.

Definition 5.1. A topological partition P of R{Z gives a symbolic representation XP,R of Zd R
ñ

R{Z if for every x P XP,R the intersection
Ş8

m“0 Dmpxq consists of exactly one point ρ P R{Z. We call
x a symbolic representation of ρ.
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If P gives a symbolic representation of the dynamical system Zd R
ñ R{Z, then there is a well-defined

map f : XP,R Ñ R{Z which maps a configuration x P XP,R Ă AZd to the unique point fpxq P R{Z in
the intersection X8

n“0Dnpwq. It is not hard to prove that f is in fact a factor map, that is, such that
f is continuous, surjective and Zd-equivariant (fpσkpxqq “ Rkpfpxqq for every k P Zd). A proof of this
fact for the case d “ 1 can be found in [28, Prop. 6.5.8]. A proof for Z2-actions can be found in [25,
Prop. 5.1] and a proof for general group actions follows the same arguments.

Now let us turn back to circle rotations. Let α P r0, 1qd and consider the dynamical system Zd R
ñ R{Z

where R : Zd ˆ R{Z Ñ R{Z is the continuous Zd-action on R{Z defined by

Rnpxq :“ Rpn, xq “ x` n ¨ α

for every n P Zd.
Recall that an action is minimal if every orbit is dense. The following lemma is well known, we

write it down for future reference and we give a quick proof sketch.

Lemma 5.2. Let α P r0, 1qd be totally irrational and consider the topological partition of the circle

P “ tIntpWiquiPt0,1,...,du.

(1) The partition P gives a symbolic representation of the dynamical system Zd R
ñ R{Z.

(2) The symbolic dynamical system XP,R is minimal and satisfies XP,R “ tσkcα : k P Zdu.
(3) f : XP,R Ñ R{Z where fpxq P

Ş8

n“0 Dnpwq is a factor map.

Proof. As α is totally irrational, then every component αi is irrational and hence it follows that the
action Zd R

ñ R{Z is minimal. From here it follows by standard arguments that P gives a symbolic
representation XP,R of the Zd R

ñ R{Z, as every IntpWiq is invariant only under the trivial rotation
(e.g., see [25, Lemma 3.4]). The second statement follows easily from the definitions of XP,R and cα,
and the third statement follows from the discussion below Definition 5.1. □

5.2. Ordered flip condition. In order to simplify the proofs in this section, we consider a particular
case of the flip condition in which the values of x|F and y|F are fixed.

Definition 5.3. Let d ě 1 be an integer. An indistinguishable asymptotic pair x, y P t0, 1, . . . , duZ
d

satisfies the ordered flip condition if:

(1) the difference set of x and y is F “ t0,´e1, . . . ,´edu,
(2) x0 “ 0 and x´ei

“ i for all 1 ď i ď d,
(3) y0 “ d and y´ei

“ i ´ 1 for all 1 ď i ď d.

Observe that if two configurations satisfy the ordered flip condition, they also satisfy the flip con-
dition. Moreover, notice that the ordered flip condition corresponds to the permutation of F given
by

0 ÞÑ ´e1 ÞÑ ´e2 ÞÑ ¨ ¨ ¨ ÞÑ ´ed ÞÑ 0.

Lemma 5.4. Let d ě 1 be an integer. Let x, y P t0, 1, . . . , duZ
d form an indistinguishable asymptotic

pair satisfying the flip condition. Then there exists a matrix A P GLdpZq which permutes the canonical
base te1, . . . , edu such that px ˝A, y ˝Aq is an indistinguishable asymptotic pair satisfying the ordered
flip condition.

Proof. As x, y satisfy the flip condition, then the restrictions of x and y to F are bijections F Ñ

t0, 1, . . . , du, x0 “ 0 and yn “ xn ´ 1 mod pd` 1q for every n P F . Let A P GLdpZq be the permutation
matrix which sends ´ei to x|

´1
F piq for all i with 1 ď i ď d. Thus it satisfies xp´Aeiq “ i.

By Proposition 2.5, x ˝A, y ˝A is an indistinguishable asymptotic pair. It is clear by definition of A
that their difference set is F , that px ˝Aq0 “ x0 “ 0 and px ˝Aq´ei

“ xp´Aeiq “ i for all 1 ď i ď d.
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Finally, py ˝ Aq0 “ y0 “ x0 ´ 1 “ 0 ´ 1 “ d mod pd ` 1q, and for 1 ď i ď d, we have py ˝ Aq´ei
“

yp´Aeiq “ xp´Aeiq ´ 1 “ i ´ 1 mod pd` 1q. Thus px ˝A, y ˝Aq satisfy the ordered flip condition. □

It follows that if we show that every pair x, y P t0, 1, . . . , duZ
d which satisfies the ordered flip

condition is equal to cα, c
1
α for some totally irrational α, we immediately obtain that every non-trivial

indistinguishable asymptotic pair which satisfies the flip condition also coincides with cα1 , c1
α1 for some

totally irrational slope α1 where α1 is a permutation of α.

Proposition 5.5. Let d ě 1 be an integer. Let α P r0, 1qd be totally irrational such that 1 ą α1 ą

α2 ą ¨ ¨ ¨ ą αd ą 0. The characteristic d-dimensional Sturmian configurations cα and c1
α satisfy the

ordered flip condition.

Proof. From Proposition 4.7, pcα, c
1
αq satisfy the flip condition. Following Equation (6) and Equa-

tion (7), we get

pcαq´ei “ #tj : αj ě αiu “ i,

pc1
αq´ei “ #tj : αj ą αiu “ i ´ 1.

Thus pcα, c
1
αq satisfy the ordered flip condition. □

5.3. Indistinguishable asymptotic pairs restricted to a pd ´ 1q-dimensional submodule. In
what follows we show that indistinguishable asymptotic pairs which satisfy the ordered flip condition
are Sturmian. Our strategy is to reduce the dimension of the underlying group by restricting the values
of the configurations to the pd´1q-dimensional submodule orthogonal to e1, and then to apply a suitable
projection which fuses two symbols into a single one. We show that the resulting configurations in Zd´1

also satisfy the ordered flip condition, and thus it gives us the means to prove our result inductively.
In order to develop this strategy, we introduce the following notation. Let B “ tb1, . . . , bku Ă Zd.

For each starting point v P Zd, let

ℓv,B : Zk Ñ Zd

n ÞÑ v ` n1b1 ` ¨ ¨ ¨ ` nkbk.

If x P ΣZd is a configuration, then x ˝ ℓv,B P ΣZk is the k-dimensional configuration which occurs in
x starting at position v P Zd and following the directions bi P B. Below, we use the shorter notation
eK

1 :“ te2, . . . , edu to denote the canonical basis without the vector e1.
Let us consider the projection

π : t0, 1, . . . , du Ñ t0, . . . , d´ 1u

j ÞÑ

$

&

%

0 if j “ 0,

j ´ 1 if j ‰ 0.

which extends to configurations x P t0, 1, . . . , duZ
d by letting

πpxq “ pπpxnqqnPZd P t0, . . . , d´ 1uZ
d

.

Proposition 5.6. Let d ě 2 be an integer. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic

pair satisfying the ordered flip condition. Then π ˝ x ˝ ℓ0,eK
1

and π ˝ y ˝ ℓ0,eK
1

are indistinguishable
asymptotic configurations in t0, 1, . . . , d´ 1uZ

d´1 which satisfy the ordered flip condition in dimension
d´ 1.

Proof. By Proposition 2.6 we have that pπpxq, πpyqq is an indistinguishable asymptotic pair. Under
the ordered flip condition, the difference set of pπpxq, πpyqq is F zt´e1u “ t0,´e2,´e3, . . . ,´edu and
thus it follows that for any pattern p with support S Ă xeK

1 y we have
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ÿ

uPpF zt´e1uq´S

1rpspσ
upπpyqqq ´ 1rpspσ

upπpxqqq “ 0.

It follows that the pair pπ ˝ x ˝ ℓ0,eK
1
, π ˝ y ˝ ℓ0,eK

1
q is also indistinguishable. It can be checked directly

that it also satisfies the ordered flip condition. □

If we were also able to show that π ˝x˝ ℓ0,eK
1

is uniformly recurrent, then Proposition 5.6 provides a
way to prove Theorem B by induction on the dimension. Namely, if we were to proceed by induction
we would obtain that π ˝ x ˝ ℓ0,eK

1
and π ˝ y ˝ ℓ0,eK

1
are pd ´ 1q-dimensional characteristic Sturmian

configurations associated to a totally irrational slope pαp2q, . . . , αpdqq P r0, 1qd´1, that is,

π ˝ x ˝ ℓ0,eK
1

“ cpαp2q,...,αpdqq and π ˝ y ˝ ℓ0,eK
1

“ c1
pαp2q,...,αpdqq

.

And we could proceed from there to obtain our desired result.
The next two lemmas show that, for all v P Zd, the parallel pd ´ 1q-dimensional configurations

π ˝ x ˝ ℓv,eK
1

and π ˝ y ˝ ℓv,eK
1

belong to Orbpπ ˝ x ˝ ℓ0,eK
1

q “ Orbpπ ˝ y ˝ ℓ0,eK
1

q, that is the pd ´ 1q-
dimensional subshift whose language is L

`

cpαp2q,...,αpdqq

˘

“ L
´

c1
pαp2q,...,αpdqq

¯

.

Lemma 5.7. Let d ě 2 be an integer. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic pair

satisfying the ordered flip condition. For each finite nonempty connected subset S Ă t0u ˆ Zd´1, let

AS “ LSpx ˝ ℓ0,eK
1

q Y LSpy ˝ ℓ0,eK
1

q,

BS “ LSpx ˝ ℓ´e1,eK
1

q Y LSpy ˝ ℓ´e1,eK
1

q.

We have AS XBS ‰ ∅.

Proof. Let S Ă t0u ˆ Zd´1 be a finite nonempty connected subset. Since pπ ˝ x ˝ ℓ0,eK
1
, π ˝ y ˝ ℓ0,eK

1
q

satisfies the pd ´ 1q-dimensional ordered flip condition with difference set F zt´e1u, from Theorem A,
we have

#AS ě #πpASq “ LSpπ ˝ x ˝ ℓ0,eK
1

q Y LSpπ ˝ y ˝ ℓ0,eK
1

q “ #pF zt´e1u ´ Sq “ #pF ´ Sq ´ #S.

By contradiction, assume that AS XBS “ ∅. From Corollary 3.13, we have that #LSpx˝ℓ´e1,eK
1

q ě

#S and #LSpy ˝ ℓ´e1,eK
1

q ě #S so that #BS ě #S. The case #BS “ #S is impossible. Indeed,
#BS “ #S implies that BS “ LSpx ˝ ℓ´e1,eK

1
q “ LSpy ˝ ℓ´e1,eK

1
q. Observe that xp´e1q “ 1 and

yp´e1q “ 0. Let w P BS be a pattern with the most occurrences of the symbol 0. Since x, y is an
indistinguishable asymptotic pair satisfying the flip condition, Corollary 3.13 implies that the pattern
w must appear in x intersecting the difference set F . Since AS XBS “ ∅, then necessarily the pattern
w appears in x intersecting the position ´e1. Over the same support, there is a pattern in y with one
more occurrence of the symbol 0. This pattern also belongs to BS , thus it contradicts the maximality
of the number of occurrences of the symbol 0 in w among all patterns in BS . Therefore, #BS ě #S`1.

From Theorem A, we have # pAS YBSq ď #LSpxq “ #pF ´ Sq. Thus

# pAS XBSq “ #AS ` #BS ´ # pAS YBSq

ě p#pF ´ Sq ´ #Sq ` p#S ` 1q ´ # pF ´ Sq “ 1.

This contradicts the assumption AS XBS “ ∅. Thus AS XBS ‰ ∅. □

Lemma 5.8. Let d ě 2 be an integer. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic pair

satisfying the ordered flip condition. For every v P Zd, we have

Lpπ ˝ x ˝ ℓv,eK
1

q Ă Lpπ ˝ x ˝ ℓ0,eK
1

q and Lpπ ˝ y ˝ ℓv,eK
1

q Ă Lpπ ˝ y ˝ ℓ0,eK
1

q.

Proof. As πpxq, πpyq is an indistinguishable asymptotic pair whose difference set is contained in eK
1 it

follows that π ˝ x ˝ ℓv,eK
1

“ π ˝ y ˝ ℓv,eK
1

for every v R xeK
1 y, and that Lpπ ˝ x ˝ ℓ0,eK

1
q “ Lpπ ˝ y ˝ ℓ0,eK

1
q.
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Therefore it is sufficient to prove the inclusion Lpπ ˝ x ˝ ℓv,eK
1

q Ă Lpπ ˝ x ˝ ℓ0,eK
1

q. By contradiction,
suppose that there is v P Ze1 such that w P Lpπ ˝ x ˝ ℓv,eK

1
qzLpπ ˝ x ˝ ℓ0,eK

1
q ‰ ∅. Let w1 P π´1pwq,

it follows that w1 P Lpx ˝ ℓv,eK
1

qzLpx ˝ ℓ0,eK
1

q. Using that x, y are indistinguishable and satisfy the
flip condition we conclude using Lemma 3.2 that w1 P Lpx ˝ ℓ´e1,eK

1
qzLpx ˝ ℓ0,eK

1
q and thus that w P

Lpπ ˝ x ˝ ℓ´e1,eK
1

qzLpπ ˝ x ˝ ℓ0,eK
1

q. In other words, without loss of generality we may assume that
v “ ´e1.

For every sufficiently large n P N, if we let Sn “ t´1u ˆ J´n, nKd´1, then the pattern p “ pπpxqq|Sn

contains w and thus does not occur in πpxq ˝ ℓ0,eK
1

. Define e0 “ 0 and let j P t0, . . . , duzt1u, Sj
n “

Sn Y t´eju and pj “ πpxq|Sj
n
. As πpxq, πpyq is indistinguishable, there must exist uj P pF zt´e1uq ´Sj

n

so that σuj pπpyqq P rpjs. As p “ pj |Sn
does not occur in πpxq˝ℓ0,eK

1
, we have that uj R pF zt´e1uq´Sn.

From where we obtain that uj P ej ` pF zt´e1uq. By the ordered flip condition we have that

(1) If j “ 0, then pπpxqq0 “ 0 and pπpyqq´e2 “ 0, hence we have uj “ e0 ´ e2 “ ´e2.
(2) If 2 ď j ă d, then pπpxqq´ej

“ j ´ 1 and pπpyqq´ej`1 “ j ´ 1, hence we have uj “ ej ´ ej`1.
(3) If j “ d, then pπpxqq´ed

“ d´ 1 and pπpyqq0 “ d´ 1, hence we have uj “ ´ed ` e0 “ ed.

Notice that in any case we have uj P xeK
1 y. As πpxq, πpyq is asymptotic outside of F zt´e1u, we

conclude that
σuj pπpxqq|Sn

“ σuj pπpyqq|Sn
“ pπpxqq|Sn

for every large enough n. Noting that the set G “ tuj : j P t0, . . . , duzt1uu generates (as a group)
t0u ˆ Zd´1, it follows that the configuration π ˝ x ˝ ℓ´e1,eK

1
is constant and thus LSpπ ˝ x ˝ ℓ´e1,eK

1
q is

a singleton for every finite support S Ă t0u ˆ Zd´1.
Assuming S Ă t0u ˆ Zd´1 is the shape of the pattern w, we have LSpπ ˝ x ˝ ℓ´e1,eK

1
q “ twu. From

Lemma 5.7, for all finite nonempty connected subset S Ă t0u ˆ Zd´1, we have AS XBS ‰ ∅ where

AS “ LSpx ˝ ℓ0,eK
1

q Y LSpy ˝ ℓ0,eK
1

q “ LSpx ˝ ℓ0,eK
1

q,

BS “ LSpx ˝ ℓ´e1,eK
1

q Y LSpy ˝ ℓ´e1,eK
1

q “ LSpx ˝ ℓ´e1,eK
1

q

which also holds under the projection by π. Therefore, if S is the shape of the pattern w, we have

∅ ‰ π pASq X π pBSq

“ LSpπ ˝ x ˝ ℓ0,eK
1

q X LSpπ ˝ x ˝ ℓ´e1,eK
1

q

“ LSpπ ˝ x ˝ ℓ0,eK
1

q X twu.

This implies that w P LSpπ ˝ x ˝ ℓ0,eK
1

q which contradicts the definition of w. Thus we conclude that
Lpπ ˝ x ˝ ℓv,eK

1
q Ă Lpπ ˝ x ˝ ℓ0,eK

1
q for all v P Zd. □

Given a configuration x P AZd , we say a pattern p P AS occurs with bounded gaps if there exists
n P N such that for any v P Zd, there is u P J´n, nKd such that σv`upxq|S “ p. If a pattern does not
occur with bounded gaps, this means that there is a sequence pviqiPN with vi P Zd such that p does
not occur in any accumulation point of the sequence pσvi pxqqiPN.

Lemma 5.9. Let d ě 1 be an integer. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymptotic

pair satisfying the ordered flip condition. If x is uniformly recurrent, then π ˝ x ˝ ℓ0,eK
1

is uniformly
recurrent.

Proof. Suppose that π ˝ x ˝ ℓ0,eK
1

is not uniformly recurrent and let p P Lpπ ˝ x ˝ ℓ0,eK
1

q be a pattern in
its language which does not occur with bounded gaps. Let S be the support of p. Let ψ : t0, 1, . . . , d´

1uZ
d

Ñ t,,7uZ
d be the sliding-block code such that for any z P t0, 1, . . . , d´ 1uZ

d and v P Zd,

ψpzqv “

$

&

%

, if σvpzq|t0uˆS “ p,

7 otherwise.
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As x is uniformly recurrent, the topological closure of its orbit X “ Orbpxq is a minimal subshift
and it follows that both πpXq and ψpπpXqq are also minimal subshifts. Let us denote w “ ψpπpxqq.

For n P N, let Bn “ J´n, nKd´1 and let hn denote the pattern with support Bn which is identically
7. For every t P Ze1, we define

Nptq “ suptn P N | hn occurs in w ˝ ℓt,eK
1

with bounded gapsu.

Notice that the values of Nptq do not change if we replace w by an accumulation point of a sequence
of shifts of w by vectors in t0u ˆZd´1. Let ptiqiě1 be an enumeration of Ze1. We construct a sequence
pwiqiě0 of configurations in ψpπpXqq as follows. Let w0 “ w. For every i ě 1, we construct the
configuration wi from wi´1 according to one of the following three cases:

Case 1: Nptiq “ ´8. In this case, the symbol 7 does not occur in w ˝ ℓt,eK
1

with bounded
gaps and thus there is a sequence punqnPN with un P t0u ˆ Zd´1 for which 7 does not appear in
pσun pwi´1q ˝ ℓti,eK

1
q|Bn . We let wi be any accumulation point of this sequence.

Case 2: Nptiq P N. This means that there is a largest n P N for which hn occurs in wi´1 ˝ ℓti,eK
1

with bounded gaps. In this case, there is a sequence punqnPN with un P t0u ˆZd´1 for which hn`1 does
not appear in pσun pwi´1q ˝ ℓti,eK

1
q|Bn . We let wi be any accumulation point of this sequence.

Case 3: Nptiq “ 8. Here for every n P N the pattern hn occurs in wi´1 ˝ ℓti,eK
1

with bounded
gaps. In this case there is a sequence punqnPN with un P t0u ˆ Zd´1 such that pσun pwi´1q ˝ ℓti,eK

1
q|Bn

is identically 7. We let wi be any accumulation point of this sequence.
By construction, wi P ψpπpXqq for every i P N. Let w̄ be an accumulation point of the sequence

pwiqiPN. It follows that w̄ P ψpπpXqq. This sequence has the following properties:

(1) Nptq “ ´8 if and only if w̄ ˝ ℓt,eK
1

is identically ,.
(2) Nptq “ n P N if and only if hn occurs with bounded gaps in w̄ ˝ ℓt,eK

1
and hn`1 does not occur.

(3) Nptq “ 8 if and only if w̄ ˝ ℓt,eK
1

is identically 7.

Let
N “ tNptq : t P Ze1u X N.

Suppose that the collection N is finite. This contradicts the minimality of ψpπpXqq. Indeed, by
the assumption on p, we have that both the symbol , and the patterns hn for every n P N occur
in w ˝ ℓ0,eK

1
. In particular for every n P N there is a pattern qn with support Bn`1 which occurs in

w ˝ ℓ0,eK
1

, such that qn|Bn “ hn and qn|Bn`1zBn
is not identically 7. For any n ą maxpN q, it follows

that qn does not occur in w̄, and thus w R Orbpw̄q, contradicting minimality.
Suppose now that the collection N is infinite. For any κ P N we can then find pkiqi“1,...,κ with

ki P Ze1 such that
0 ď Npk1q ă Npk2q ă ¨ ¨ ¨ ă Npkκq.

For every i P t1, . . . , κu, let Gpkiq be the smallest integer such that every pattern in w̄ki with support
a translate of BGpkiq contains hNpkiq as a subpattern. This value exists due to the fact that hNpkiq

occurs in w̄ki with bounded gaps.
Let ℓ P N be such that the support of p is contained in Bℓ, let g “ 1 ` 2 maxi“1,...,κ Gpkiq and let

m P N be an arbitrary number which we shall later on take sufficiently large to find a contradiction.
Let us consider any pattern ri with support Bg`m in Lpw̄ki

q. By definition of ψ, there is a pattern r1
i

with support Bg`m`ℓ in Lpπ ˝ x ˝ ℓki,eK
1

q whose image under ψ contains ri as a subpattern.
By Lemma 5.8 it follows that Lpπ ˝ x ˝ ℓki,eK

1
q Ă Lpπ ˝ x ˝ ℓ0,eK

1
q. Also, by Proposition 5.6, the

configurations π ˝ x ˝ ℓ0,eK
1
, π ˝ y ˝ ℓ0,eK

1
are indistinguishable with the ordered flip condition and thus

by Lemma 3.2 every pattern r1
i must occur in π ˝ x ˝ ℓ0,eK

1
intersecting its difference set. Applying the

map ψ, a simple estimate shows that an occurrence of ri must appear in w ˝ ℓ0,eK
1

such that its support
Bg`m is contained in the set B2pg`m`ℓq`1.
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Now let i, j P t1, . . . , κu be distinct. By construction, the patterns ri and rj can overlap at most in
their borders. More explicitly, if ri were to occur at position vi P Zd´1 and rj at position vj P Zd´1,
then vi ` Bm X vj ` Bm “ ∅. This is due to the definition of g, because if the intersection were to
contain a block Bg, then it would contain a block of 7 larger than the maximum allowed size for one
of both patterns, see Figure 11.

2m` 1

gPossible overlap zone

No overlap zone

Figure 11. Structure of the patterns ri

We conclude that within the support B2pg`m`ℓq`1 we must be able to fit κ blocks of size Bm with
no intersection. In particular we must have that

p4pg `m` ℓq ` 3qd “ |B2pg`m`ℓq`1| ě κ|Bm| “ κp2m` 1qd.

Let us fix κ “ 4d. This fixes in turn the constant g, thus let K “ g ` ℓ ` 1. Using the previous
inequality, we obtain

4dpK `mqd ě p4pg `m` ℓq ` 3qd ě κp2m` 1qd ě 4dp2mqd.

From where we deduce that
pK `mqd ě p2mqd for every m P N.

The previous inequality is clearly false for large enough m, thus we have that N cannot be infinite
either. We conclude that π ˝ x ˝ ℓ0,eK

1
is uniformly recurrent. □

The next proposition shows, under some hypothesis, the existence of a factor map g : Orbpxq Ñ R{Z.

Proposition 5.10. Let d ě 2 be an integer. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable as-

ymptotic pair satisfying the ordered flip condition and assume x is uniformly recurrent. Assume there
exists a factor map f : Orbpπ ˝ x ˝ ℓ0,eK

1
q Ñ R{Z commuting the actions Zd´1 σ

ñ Orbpπ ˝ x ˝ ℓ0,eK
1

q

and Zd´1 T
ñ R{Z. Then there is ρ P r0, 1q such that the map g : Orbpxq Ñ R{Z defined by gpzq “

fpπ ˝ z ˝ ℓ0,eK
1

q is a factor map between the actions Zd σ
ñ Orbpxq and Zd RρˆT

ñ R{Z where Rρ is the
rotation by ρ.

Proof. The map g is continuous and onto since f is continuous and onto. Also since f is a factor map
commuting the Zd´1-actions, for every z P Orbpxq and p0, rq P t0u ˆ Zd´1, we have

gpσp0,rqzq “ fpπ ˝ σp0,rqz ˝ ℓ0,eK
1

q “ fpσrpπ ˝ z ˝ ℓ0,eK
1

qq “ T rpfpπ ˝ z ˝ ℓ0,eK
1

qq “ T rpgpzqq.

Thus it remains to show that for every z P Orbpxq and k P Z, we have gpσke1zq “ Rk
ρpgpzqq for some

ρ P R{Z. Since Orbpxq is minimal and g is continuous, it is sufficient to prove it for z “ x or z “ y.
From Proposition 5.6, the configurations π ˝ x ˝ ℓ0,eK

1
and π ˝ y ˝ ℓ0,eK

1
P t0, 1, . . . , d ´ 1uZ

d´1 are
asymptotic with difference set F zt´e1u. Therefore π ˝ x ˝ ℓk,eK

1
“ π ˝ y ˝ ℓk,eK

1
for every k P Zzt0u. So



INDISTINGUISHABLE ASYMPTOTIC PAIRS OVER Zd 37

we have

gpσke1xq “ fpπ ˝ σke1x ˝ ℓ0,eK
1

q “ fpπ ˝ x ˝ ℓk,eK
1

q

“ fpπ ˝ y ˝ ℓk,eK
1

q “ fpπ ˝ σke1y ˝ ℓ0,eK
1

q “ gpσke1yq

for every k P Zzt0u. Moreover, for every r P Zd´1, we have

fpπ ˝ x ˝ ℓ0,eK
1

q ´ fpπ ˝ y ˝ ℓ0,eK
1

q “ fpπ ˝ x ˝ ℓ0,eK
1

q ` T rp0q ´ fpπ ˝ y ˝ ℓ0,eK
1

q ´ T rp0q

“ fpσrπ ˝ x ˝ ℓ0,eK
1

q ´ fpσrπ ˝ y ˝ ℓ0,eK
1

q

which goes to 0 when }r} Ñ 8 since π ˝ x ˝ ℓ0,eK
1

and π ˝ y ˝ ℓ0,eK
1

are asymptotic. We conclude that

(10) gpσke1xq “ gpσke1yq

for every k P Z.
The remaining of the proof is based on the following observation which we use several times.

Observation 5.11. Let d ě 2 be an integer. Let z, z1 P Orbpxq. If for all m P N there exist two
patterns u and v of support t0u ˆ J0,m´ 1Kd´1 and a vector t P t0u ˆ Zd´1 such that

πpzq, πpz1q P rus X σt`e1 rvs

then
gpzq ´ gpσ´e1zq “ gpz1q ´ gpσ´e1z1q.

Proof. The domain of the factor map f is compact so f is uniformly continuous. Therefore, for all
ε ą 0, there exists m P N such that for all patterns w of shape J´t m

2 u,´t m
2 u ` m ´ 1Kd´1, the

Lebesgue measure of the interval fprwsq is less than ε{2. Since the Lebesgue measure of the interval
fpσkrwsq “ T kpfprwsqq is equal to the Lebesgue measure of fprwsq for every k P Zd´1, we also have
that for all patterns w of shape B “ J0,m ´ 1Kd´1, the Lebesgue measure of the interval fprwsq is
less than ε{2. From the hypothesis, let u and v be two patterns of support t0u ˆ J0,m ´ 1Kd´1 and
t P t0u ˆ Zd´1 be a vector such that πpzq, πpz1q P rus X σt`e1 rvs. We obtain

gpzq ´ gpσ´e1zq “ fpπ ˝ z ˝ ℓ0,eK
1

q ´ fpπ ˝ σ´e1z ˝ ℓ0,eK
1

q

“ fpπpzq ˝ ℓ0,eK
1

q ´ fpσ´e1πpzq ˝ ℓ0,eK
1

q

P fprus ˝ ℓ0,eK
1

q ´ fpσtrvs ˝ ℓ0,eK
1

q

which is an interval in R{Z of size at most ε
2 ` ε

2 “ ε. Similarly,

gpz1q ´ gpσ´e1z1q P fprus ˝ ℓ0,eK
1

q ´ fpσtrvs ˝ ℓ0,eK
1

q.

Thus we have
ˇ

ˇ

`

gpzq ´ gpσ´e1zq
˘

´
`

gpz1q ´ gpσ´e1z1q
˘
ˇ

ˇ ď ε.

Since this holds for all ε ą 0, it concludes the proof of the observation. □

Our first goal is to show using Observation 5.11 that for all k P Z we have

(11) gpσke1xq ´ gpσpk´1qe1xq P
␣

gpσe1xq ´ gpxq, gpxq ´ gpσ´e1xq, gpσ´e1xq ´ gpσ´2e1xq
(

.

Let m P N. Let B “ t0u ˆ J0,m´ 1Kd´1 Ă Zd be a d-dimensional box in Zd of size m in all directions
except the direction e1. Let u and v be two patterns of support t0u ˆ J0,m ´ 1Kd´1 appearing in the
configuration x such that σke1x P rus X σe1 rvs. Thus

πpσke1xq P rπpuqs X σe1 rπpvqs.

The fact that the pair px, yq is indistinguishable implies that the pattern rus X σe1 rvs of support
B Y pB ´ e1q must appear in x (and y) intersecting the difference set. Therefore, there exists r P
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t0u ˆ Zd´1 and j P t´1, 0, 1u such that σje1`rx P rus X σe1 rvs. Thus

πpσje1`rxq P rπpuqs X σe1 rπpvqs.

From Observation 5.11 (here t “ 0), we obtain

gpσke1xq ´ gpσ´e1σke1xq “ gpσje1`rxq ´ gpσ´e1σje1`rxq

“ gpσje1xq ` T rp0q ´ gpσpj´1qe1xq ´ T rp0q

“ gpσje1xq ´ gpσpj´1qe1xq

which shows that (11) holds.
Our next goal is to show the existence of some ρ P R{Z such that

(12) gpσe1xq ´ gpxq “ gpxq ´ gpσ´e1xq “ gpσ´e1xq ´ gpσ´2e1xq “ ρ.

The strategy is to find patterns satisfying Observation 5.11. Let m P N. Let B “ t0u ˆ J0,m ´

1Kd´1 Ă Zd be a d-dimensional box in Zd of size m in all directions except the direction e1. Let
S Ă t0u ˆ Zd´1 Ă Zd be the union of all translates of B that intersect the difference set F zt´e1u of
the pair pπpxq, πpyqq, that is,

S “
ď

kPK

B ` k where K “
␣

k P Zd : pB ` kq X pF zt´e1uq ‰ ∅
(

.

The restrictions of the configurations πpxq and πpyq to the support S have the nice property of con-
taining their language of patterns of shape B in the most optimal way, i.e., they contain exactly one
occurrence of each pattern of shape B. Indeed, from Proposition 5.6, the configurations π ˝ x ˝ ℓ0,eK

1

and π ˝y ˝ ℓ0,eK
1

P t0, 1, . . . , d´ 1uZ
d´1 satisfy the pd´ 1q-dimensional ordered flip condition. Therefore,

from Corollary 3.13, it follows that the patterns Hx “ πpxq|S and Hy “ πpyq|S contain exactly one
occurrence of every pattern of shape B that are in LBpπpxqq “ LBpπpyqq.

We write πpxq P rHxs and πpyq P rHys where the cylinders are within Orbpπpxqq. Since πpxq0 ‰

πpyq0, we have rHxs X rHys “ ∅. Observe also that, from Corollary 3.13, the pattern Hx has only
one occurrence in πpxq whose support intersects the difference set F zt´e1u. More formally, if v P

F zt´e1u ´ S and rHxs X σvrHxs ‰ ∅, then v “ 0.
From Proposition 5.6, we also have Lpπ ˝ x ˝ ℓ0,eK

1
q “ Lpπ ˝ y ˝ ℓ0,eK

1
q. From Lemma 5.8, for every

v P Zd, we have

Lpπ ˝ x ˝ ℓv,eK
1

q Ď Lpπ ˝ x ˝ ℓ0,eK
1

q “ Lpπ ˝ y ˝ ℓ0,eK
1

q Ě Lpπ ˝ y ˝ ℓv,eK
1

q.

Since x is uniformly recurrent, we have that π ˝ x ˝ ℓ0,eK
1

and π ˝ y ˝ ℓ0,eK
1

are uniformly recurrent
by Lemma 5.9. Thus Orbpπ ˝ x ˝ ℓ0,eK

1
q “ Orbpπ ˝ y ˝ ℓ0,eK

1
q is a minimal subshift. We deduce π ˝ x ˝

ℓv,eK
1

P Orbpπ ˝ x ˝ ℓ0,eK
1

q, π ˝ y ˝ ℓv,eK
1

P Orbpπ ˝ y ˝ ℓ0,eK
1

q and the equality of the languages:

Lpπ ˝ x ˝ ℓv,eK
1

q “ Lpπ ˝ x ˝ ℓ0,eK
1

q “ Lpπ ˝ y ˝ ℓ0,eK
1

q “ Lpπ ˝ y ˝ ℓv,eK
1

q

for every v P Zd.
Therefore, the pattern Hx must occur in π ˝ y ˝ ℓe1,eK

1
. Let t P t0u ˆ Zd´1 be such that πpyq P

rσ´e1´tHxs. Since π ˝ x ˝ ℓe1,eK
1

“ π ˝ y ˝ ℓe1,eK
1

, we also have πpxq P rσ´e1´tHxs. Recall that
by Proposition 2.6, we have that pπpxq, πpyqq is an indistinguishable asymptotic pair. Since the pat-
tern πpxq|SYpS´t´e1q appears in πpxq intersecting the difference set F zt´e1u, it must appear in πpyq

intersecting the difference set F zt´e1u. Formally, there exists v P F zt´e1u ´ pS Y pS ´ t´ e1qq such
that σ´vpπpxqq P rσ´e1´tHxs X rHys. There are two cases to consider:

‚ If v P F zt´e1u´S, then σe1`tpπpxqq P rHxsXσvrHxs. Therefore v “ 0 and πpxq “ σ´vpπpxqq P

rHys. But πpxq P rHxs, which contradicts rHxs X rHys “ ∅.
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‚ If v P F zt´e1u ´ pS ´ e1 ´ tq, then πpxq P rHxs Xσv´e1´trHxs. Also v´ e1 ´ t P F zt´e1u ´S,
thus we must have v ´ e1 ´ t “ 0. Therefore πpxq P rσvHys “ rσe1`tHys.

πpxq

σ´e1´tHx

Hx

σe1`tHy

σ2e1`2tQ

t

e1

πpyq

σ´e1´tHx

Hy

σe1`tHy

σ2e1`2tQ

t

e1

e1

0

´e1

´2e1

Figure 12. The patterns Hx and Hy appearing in configurations πpxq and πpyq. The
pattern πpxq|SYpS´t´e1qYpS´2t´2e1q is shown in gray background. Since it appears in
πpxq intersecting the difference set F zt´e1u, it must appear in πpyq intersecting the
difference set F zt´e1u.

Let Q “ pσ´2e1´2tπpxqq|S . We have that

πpxq P rσ´e1´tHxs X rHxs X rσe1`tHys X rσ2e1`2tQs,

πpyq P rσ´e1´tHxs X rHys X rσe1`tHys X rσ2e1`2tQs.

The current situation is depicted in Figure 12.
Since the pattern πpxq|SYpS´t´e1qYpS´2t´2e1q appears in πpxq intersecting the difference set F zt´e1u,

it must appear in πpyq intersecting the difference set F zt´e1u. Formally, there exists v P F zt´e1u ´

pS Y pS ´ t´ e1q Y pS ´ 2t´ 2e1qq such that σ´vpπpxqq P rσ´e1´tHxsXrHysXrσe1`tHys. We consider
three cases, see Figure 13:

‚ If v P F zt´e1u´S, then σe1`tpπpxqq P rHxsXσvrHxs. Therefore v “ 0 and πpxq “ σ´vpπpxqq P

rHys. But πpxq P rHxs, which contradicts rHxs X rHys “ ∅.
‚ If v P F zt´e1u ´ pS ´ t´ e1q, then σ´e1´tpπpxqq P rHys X σv´e1´trHys. Also v ´ e1 ´ t P

F zt´e1u´S, thus we must have v´e1 ´t “ 0. On the one hand, we have σ´vπpxq P rσe1`tHys.
On the other hand, we have σ´vπpxq “ σ´e1´tπpxq P rσe1`tQs. We deduce the equality
Q “ Hy. We may now use Observation 5.11. Let u “ πpyq|B be the pattern of support B
within Hy. We have

πpyq P rHys Ă rus and πpyq P rσe1`tHys Ă rσe1`tus.

Also

σ´e1´tπpyq P rHys Ă rus and σ´e1´tπpyq P rσe1`tQs “ rσe1`tHys Ă rσe1`tus.

The pattern u also appears in Hx Let r P F zt´e1u ´B such that rσrHxs Ă rus. We have

σe1`t`rπpxq P rσrHxs Ă rus and σe1`t`rπpxq P rσe1`t`rHxs Ă rσe1`tus.

Since the above holds for pattern u of arbitrarily large size, from Observation 5.11, we conclude
that

gpσe1xq ´ gpxq “ gpyq ´ gpσ´e1yq “ gpσ´e1yq ´ gpσ´2e1yq “ ρ

for some ρ P R{Z.
‚ If v P F zt´e1u ´ pS ´ 2t´ 2e1q, then σ´v`e1`tpπpxqq P rHxs X σ´v`2e1`2trHys. Since v ´

2e1 ´ 2t P F zt´e1u ´S, the support S` v´ 2e1 ´ 2t of the translated pattern σ´v`2e1`2trHys

intersects the difference set F zt´e1u. Let γ P t0u ˆZd´1 be such that B`γ Ă S`v´ 2e1 ´ 2t
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and B ` γ X F zt´e1u ‰ ∅. By definition of S, we also have B ` γ Ă S. In other words,
ux “ πpxq|B`γ is a subpattern of Hx and of σ´v`2e1`2tHy, thus satisfying

rHxs X σ´v`2e1`2trHys Ă ruxs.

Similarly, we have σ´vpπpxqq P rHys X σ´v`2e1`2trQs. We obtain that uy “ πpyq|B`γ is a
subpattern of Hy and of σ´v`2e1`2tQ, thus satisfying

rHys X σ´v`2e1`2trQs Ă ruys.

In summary, we have

σe1`tπpyq P rHxs Ă ruxs and σe1`tπpyq P rσe1`tHys Ă rσe1`tuys.

Also
πpxq P rHxs Ă ruxs and πpxq P rσe1`tHys Ă rσe1`tuys.

Moreover,

σ´v`e1`tπpxq P σ´v`e1`trσe1`tHys Ă ruxs

σ´v`e1`tπpxq P σ´v`e1`trσ2e1`2tQs “ σe1`trσ´v`2e1`2tQs Ă rσe1`tuys.

Since the above holds for patterns ux and uy of arbitrarily large size, from Observation 5.11,
we conclude that

gpσe1yq ´ gpyq “ gpxq ´ gpσ´e1xq “ gpσ´e1xq ´ gpσ´2e1xq “ ρ

for some ρ P R{Z.

Hx

Hy

Hy

Q

Hx

Hy

Q

Hx

Hy

Hy

Q

Hx

Hy

Q

Hx

Hy

Hy

Q

Hx

Hy

Q

ux

uy

Figure 13. The pattern πpxq|SYpS´t´e1qYpS´2t´2e1q, shown in gray, appears in πpyq

intersecting the difference set F zt´e1u in one of three ways. To lighten the figure, we
omit the shifts σe1`t in the ellipses. In the first case, the nontrivial overlap of Hy with
itself is impossible, which implies Hx “ Hy, a contradiction. In the second case, the
nontrivial overlap of Hy with itself is impossible, which implies that Hy “ Q. In the
third case, the proof uses the existence of patterns ux and uy.

Using Equation (10), we obtain that Equation (12) holds. From Equation (11) and Equation (12), we
conclude that there exists ρ P R{Z such that for all k P Z, we have

gpσke1xq “ gpxq ` kρ “ Rk
ρpgpxqq.

Since Orbpxq is minimal and g is continuous, we conclude that for every z P Orbpxq and k P Z, we
have gpσke1zq “ Rk

ρpgpzqq. □

5.4. Proof of Theorem B. In this subsection, we prove Theorem B. The proof is essentially done
in Proposition 5.13 which assumes the ordered flip condition. The proof is done by induction on the
dimension using results proved in the previous subsection. First, we need the next lemma which is
used thereafter.
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Lemma 5.12. Let A,B Ă R be two closed sets such that A Y B is a compact interval I. If A X B is
a singleton, then A and B are intervals.

Proof. Let x be the element in A X B and let A1 “ IntpIqzA and B1 “ IntpIqzB. Then A1 Y B1 “

IntpIqztxu.
If x is in the boundary of I, we conclude that either A1 or B1 is empty, as both are open disjoint

sets and IntpIq is connected. Therefore one of A,B is equal to I and the other is equal to the singleton
txu.

If x is in the interior of I, we may write IntpIqztxu as the union of two open intervals. Again as
they are connected it follows that one must be A1 and the other B1, from where it follows that A and
B are intervals. □

Proposition 5.13. Let d ě 1 be an integer. Let x, y P t0, 1, . . . , duZ
d be an indistinguishable asymp-

totic pair satisfying the ordered flip condition and assume x is uniformly recurrent. There exists a
totally irrational vector α “ pα1, . . . , αdq P r0, 1qd such that 1 ą α1 ą α2 ą ¨ ¨ ¨ ą αd ą 0, and x “ cα,
y “ c1

α are the d-dimensional characteristic Sturmian configurations with slope α.

Proof. Our proof proceeds by induction on the dimension d. The base case d “ 1 is given in Theo-
rem 2.16. Let d ą 1 and assume that Proposition 5.13 holds for d´1. As the configurations π˝x˝ℓ0,eK

1

and π˝y˝ℓ0,eK
1

P t0, 1, . . . , d´1uZ
d´1 satisfy the pd´1q-dimensional ordered flip condition and π˝x˝ℓ0,eK

1

is uniformly recurrent (Lemma 5.9 and Proposition 5.6) it follows by the induction hypothesis that
π ˝ x ˝ ℓ0,eK

1
and π ˝ y ˝ ℓ0,eK

1
are pd´ 1q-dimensional characteristic Sturmian configurations associated

to a totally irrational slope pα2, . . . , αdq P r0, 1qd´1, satisfying 1 ą α2 ą ¨ ¨ ¨ ą αd ą 0, that is,

π ˝ x ˝ ℓ0,eK
1

“ cpα2,...,αdq and π ˝ y ˝ ℓ0,eK
1

“ c1
pα2,...,αdq.

Let f be the factor map f : Orbpπ ˝ x ˝ ℓ0,eK
1

q Ñ R{Z obtained in Lemma 5.2 which commutes the
pd´ 1q-dimensional shift on Orbpπ ˝ x ˝ ℓ0,eK

1
q with the pd´ 1q-dimensional rotation by pα2, . . . , αdq on

the circle R{Z. From Proposition 5.10, there exist ρ1 P R{Z and a topological factor map g : Orbpxq Ñ

R{Z that commutes the d-dimensional shift with the d-dimensional rotation by pρ1, α2, . . . , αdq on the
circle R{Z.

The map g is explicitly given by gpwq “ fpπ ˝ w ˝ ℓ0,eK
1

q. In particular, gpr0s Y r1sq, gpr2sq, . . . ,
gprdsq are consecutive intervals from left to right on the unit interval.

Next we show that gpr0sq and gpr1sq are also intervals using Lemma 5.12. As both r0s X Orbpxq and
r1s X Orbpxq are compact and g is continuous, it follows that their images are closed, thus it suffices
to show that their intersection is a singleton.

We have gpxq “ gpyq “ 0. Thus gpσ´e1xq “ gpσ´e1yq “ ´ρ1. Also, σ´e1x P r1s and σ´e1y P r0s.
Therefore ´ρ1 P gpr0sqXgpr1sq. By contradiction, suppose that gpr0sqXgpr1sq contains another element
γ ‰ ´ρ1. Therefore, there exist w, z P Orbpxq with w P r0s and z P r1s such that gpwq “ gpzq “ γ.
Since gpwq “ gpzq, the configurations w and z are equal on many positions. More precisely, if v P Zd

is such that gpσvpwqq “ γ ` v ¨ pρ1, α2, . . . , αdq “ gpσvpzqq is in the interior of the interval gprisq for
some i P t2, . . . , du, then wv “ i “ zv. In other words, the set

V “
␣

v P Zd : γ ` v ¨ pρ1, α2, . . . , αdq P Intpgprisqq for some i P t2, . . . , du
(

satisfies w|V “ z|V .
Let ε ą 0 be such that ε ă |γ ´ p´ρ1q| and ε ă |αd|. Let m P N be such that the Lebesgue measure

of fprqsq is less than ε for every allowed pattern q : J0,m ´ 1Kd´1 Ñ t0, . . . , d ´ 1u appearing in the
configuration π ˝ x ˝ ℓ0,eK

1
. Let Bm “ t0u ˆ J0,m ´ 1Kd´1 and p1 P LBm

pxq be a pattern such that
the number of sites S “ tu P Bm : p1puq P t2, . . . , duu is maximized. Let p : S Ñ t2, . . . , du be the
restriction of p1 to S. From the maximality of the set S Ă Bm, we know that for every u P Zd such that



42 S. BARBIERI AND S. LABBÉ

σupxq P rps, we have σupxq|BmzS is a pattern over symbols 0 and 1 only. Thus the pattern p occurs at
position u P Zd in x if and only if πpp1q occurs at position u in πpxq. Also the pattern p ˝ ℓ0,eK

1
occurs

at position u P Zd´1 in x ˝ ℓ0,eK
1

if and only if πpp1q ˝ ℓ0,eK
1

occurs at position u in πpxq ˝ ℓ0,eK
1

. From
Theorem A, the pattern πpp1q ˝ ℓ0,eK

1
of connected support J0,m ´ 1Kd´1 occurs in πpxq ˝ ℓ0,eK

1
with

support intersecting the difference set of the asymptotic pair
´

πpxq ˝ ℓ0,eK
1
, πpyq ˝ ℓ0,eK

1

¯

in a unique
position. Therefore, the pattern p occurs in x in a unique position with support intersecting the set
F zt´e1u. We use this property multiple times below.

From the maximality of S, we also have that rπppqs “ rπpp1qs where the cylinders are taken within
π
´

Orbpxq

¯

. On the one hand, it is clear that rπpp1qs Ď rπpp1q|Ss “ rπppqs. On the other hand, suppose
c P Orbpxq such that πpcq P rπppqs. If πpckq ‰ 0 for some k P BmzS, then cn “ πpckq ` 1 P t2, . . . , du.
Thus the pattern c|SYtku is strictly larger than the pattern p and this contradicts the maximality of
the set S. Thus πpcq P rπpp1qs, and hence rπppqs Ď rπpp1qs. Since the support of rπpp1qs is connected,
we deduce from Lemma 4.8 that gprpsq “ fprπppqs ˝ ℓ0,eK

1
q “ fprπpp1qs ˝ ℓ0,eK

1
q is a nonempty interval

whose length is at most ε.
As pα2, . . . , αdq is totally irrational, the interval gprpsq has nonempty interior and there exists u P

pt0u ˆZd´1qzS such that gpσ´upzqq “ gpσ´upwqq “ γ´u ¨ p0, α2, . . . , αdq P Intpgprpsqq. Thus σ´upwq P

rps and σ´upzq P rps. Equivalently, w P σuprpsq and z P σuprpsq. For each i P t0, 1, du, let qi : t0u Y

pS ´ uq Ñ t0, 1, . . . , du be the pattern defined by

qipnq “

$

&

%

ppn` uq if n P S ´ u,

i if n “ 0.

We have w P r0s X σuprpsq “ rq0s and z P r1s X σuprpsq “ rq1s. Also rds X σuprpsq “ rqds.
By Lemma 3.2, the pattern q1 must occur in x intersecting the difference set. Recall that x´e1 “ 1.

But σ´e1x R rq1s since the opposite implies that ´ρ1 “ gpσ´e1xq P gprq1sq Ă gpσuprpsqq. Since
γ “ gpwq P gpσuprpsqq and gpσuprpsqq “ gprpsq ` u ¨ pρ1, α2, . . . , αdq Ă R{Z is an interval of length at
most ε, we have |γ ´ p´ρ1q| ă ε, which is a contradiction. Therefore the pattern q1 must occur in x

intersecting the difference set in such a way that the subpattern p intersects the difference set. Since
the symbol 1 “ x´e1 is not in the pattern p, the pattern q1 must occur in x in such a way that the
subpattern p intersects the set F zt´e1u.

The pattern q0 must also occur in x intersecting the difference set. Since the pattern q0 does not
contain the symbol 1 “ x´e1 , the pattern q0 must occur in x intersecting the set F zt´e1u. As there is
exactly one occurrence of the subpattern p occurring in x intersecting the set F zt´e1u, we must have
x P rq0s Ă σuprpsq. This implies that y P rqds. Thus the pattern qd is in the language of x and must also
appear in x intersecting the difference set. Since the pattern qd does not contain the symbol 1 “ x´e1 ,
the pattern qd must occur in x intersecting the set F zt´e1u. Again, we recall that there is exactly one
occurrence of the subpattern p occurring in x intersecting the set F zt´e1u. Therefore, we must have
σ´edx P rqds Ă σuprpsq. In summary, we have 0 “ gpxq P gpσuprpsqq and ´αd “ gpσ´edxq P gpσuprpsqq.
Since gpσuprpsqq is an interval of length at most ε, we have |0 ´ p´αdq| ă ε, which is a contradiction.
Thus we conclude that gpr0sq X gpr1sq is a singleton and thus from Lemma 5.12, we deduce that
gpr0sq and gpr1sq are intervals. More precisely, from the facts that gpxq “ 0, gpσ´e2yq “ 1 and
´ρ1 P gpr0sq X gpr1sq we conclude that gpr0sq “ r0,´ρ1s and gpr1sq “ r´ρ1,´α2s.

We now claim that the vector rα “ pρ1, α2, . . . , αdq is totally irrational. Indeed, were it not the case,
there would exist a non-zero n P Zd for which n ¨ rα “ 0 mod 1. Let β P R{Z be rationally independent
with rα, it follows that for any m P Zd, the value β ` m ¨ rα P R{Z does not lie in the boundary of the
intervals gprisq. In particular g´1pβq is a singleton. Indeed, let rw, rz P g´1pβq. Then for every m P Zd

we have gpσmp rwqq “ gpσmprzqq “ β ` m ¨ rα P Intpgprisqq for some i P t0, . . . , du. Thus rwm “ i “ rzm

and globally we have the equality rw “ rz. Since n ¨ rα “ 0 mod 1, then it follows that σnp rwq “ rw.
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By minimality of Orbpxq, it follows that every configuration rz in Orbpxq satisfies σnprzq “ rz. This is
incompatible with x and y having a finite difference set as we would have

x|F “ σknpxq|F “ σknpyq|F “ y|F for arbitrarily large k P N.

Hence rα is totally irrational, it follows that the orbit Zd ¨ rα lies in the boundary of the intervals
exactly for values in F ¨ rα. An inspection of the values on the difference set shows that

x “ c
rα and y “ c1

rα. □

Remark 5.14. Proposition 5.13 is proven by induction starting with the base case d “ 1 which is
dealt with in Theorem 2.16. Technically it might be possible to perform the induction using as base
the case of dimension d “ 0. In this way Proposition 5.13 would contain an independent proof of the
case d “ 1 about Sturmian configurations in Z. In the current state of our proof this would demand
significant changes to the previous lemmas so we do not do it here.

We now present the proof of Theorem B.

Proof of Theorem B. Let α P r0, 1qd be totally irrational. From Lemma 4.5, the characteristic d-
dimensional Sturmian configurations cα and c1

α are uniformly recurrent. From Theorem 4.10, pcα, c
1
αq

is a non-trivial indistinguishable asymptotic pair. From Proposition 4.7, the pair pcα, c
1
αq satisfies the

flip condition.
Let x, y P t0, 1, . . . , duZ

d be an indistinguishable asymptotic pair satisfying the flip condition and
assume x is uniformly recurrent. Using Lemma 5.4 we obtain a permutation matrix A P GLdpZq such
that px ˝A, y ˝Aq is an indistinguishable asymptotic pair which satisfies the ordered flip condition. A
straightforward computation shows that x ˝ A is uniformly recurrent. From Proposition 5.13, there
exists a totally irrational vector α “ pα1, . . . , αdq P r0, 1qd such that 1 ą α1 ą α2 ą ¨ ¨ ¨ ą αd ą 0,
and x ˝A “ cα, y ˝A “ c1

α are the d-dimensional characteristic Sturmian configurations with slope α.
Then x “ cα ˝A´1 and y “ c1

α ˝A´1.
Let us compute these configurations explicitly. Recall that the adjoint of a permutation matrix is

its inverse, that is AT “ A´1. It follows, using Equation (2), that for every m P Zd, we have

xpmq “ cα ˝ pA´1mq “

d
ÿ

i“1

`

tαi ` pA´1mq ¨ αu ´ tpA´1mq ¨ αu
˘

“

d
ÿ

i“1
ptαi `m ¨ pAαqu ´ tm ¨ pAαquq “ cAαpmq.

Similarly, we get that ypmq “ c1
α ˝A´1pmq “ c1

Aαpmq for every m P Zd. Thus we obtain that x “ cAα

and y “ c1
Aα, as required. □

We finish this section by extending our result to Corollary 2. Let us briefly recall the definition of
the affine flip condition.

Definition 5.15. We say that an indistinguishable asymptotic pair x, y P ΣZd with difference set F
satisfies the affine flip condition if:

(1) there is m P F such that pF ´mqzt0u is a base of Zd,
(2) the restriction x|F is a bijection F Ñ Σ,
(3) the map xn ÞÑ yn for all n P F induces a cyclic permutation on Σ.

Notice that the first condition of Definition 5.15 implies that #F “ d` 1.
Let us also recall that Corollary 2 states if x, y P ΣZd is such that x is uniformly recurrent, then the

pair px, yq is an indistinguishable asymptotic pair satisfying the affine flip condition if and only if there
exists a bijection τ : t0, 1, . . . , du Ñ Σ, there exists an invertible affine transformation A P AffpZdq and
there exists a totally irrational vector α P r0, 1qd such that x “ τ ˝ cα ˝A and y “ τ ˝ c1

α ˝A.
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Proof of Corollary 2. Recall first that the property that a configuration is uniformly recurrent is in-
variant under affine transformations of Zd and sliding-block codes. We shall use this fact implicitly in
this proof.

Suppose first that x “ τ ˝ cα ˝A and y “ τ ˝ cα ˝A for some A P AffpZdq and τ : t0, 1, . . . , du Ñ Σ.
By Theorem B, cα, c

1
α form an indistinguishable asymptotic pair which satisfies the flip condition.

By Proposition 2.5 and Proposition 2.6, we obtain that x “ τ˝cα˝A, y “ τ˝c1
α˝A is an indistinguishable

asymptotic pair. Let us show that they satisfy the affine flip condition. As τ,A are bijections, it is
clear that if F is the difference set of x, y, then F “ A´1pF q. It follows that #F “ d ` 1, that
tA´1pnq ´ A´1p0q : n P t´e1, ¨ ¨ ¨ ,´eduu is a base of Zd, that the restriction x|F is a bijection, and
that the map xn ÞÑ yn induces a cyclic permutation on Σ. That is, x, y satisfy the affine flip condition.

Conversely, if x, y satisfy the affine flip condition there is m P F such that B “ pF ´ mqzt0u is a
base of Zd. Construct an integer matrix B P GLdpZq by putting elements of B “ tb1, . . . , bdu in its
columns. Let A´1 P AffpZdq be the affine transformation such that n ÞÑ m ` Bn and notice that it
maps F onto F sending 0 to m. By the second and third conditions of the affine flip condition, there is
a unique bijection τ´1 : Σ Ñ t0, 1, . . . , du such that τ´1pxmq “ 0 and τ´1pxnq “ τ´1pynq´1 mod d` 1
for every n P F . It follows directly from the choices of A´1 and τ´1 that τ´1 ˝ x ˝A´1, τ´1 ˝ y ˝A´1

satisfy the flip condition. Furthermore, by Propositions 2.5 and 2.6 they form an indistinguishable
asymptotic pair. Hence by Theorem B it follows that there is a totally irrational vector α P r0, 1sd

such that τ´1 ˝ x ˝A´1 “ cα and τ´1 ˝ y ˝A´1 “ c1
α. Thus x “ τ ˝ cα ˝A and y “ τ ˝ c1

α ˝A. □

Proof of Corollary 3. It follows directly from Theorem A and Theorem B. □

Appendix A. Indistinguishable pairs on countable groups

As mentioned in Section 2, the results in the first part of that section can be stated and proven in the
context of an arbitrary countable group Γ. At this moment we do not have any interesting application
in this context, but in order to avoid senseless repetition in potential future work, we provide proofs
of those statements in this appendix.

Let Σ be a finite set which we call alphabet and Γ a countable group. An element x P ΣΓ “

tx : Γ Ñ Σu is called a configuration. For g P Γ, let xg denote the value xpgq. The set ΣΓ of all
configurations is endowed with the prodiscrete topology.

The (left) shift action Γ σ
ñ ΣΓ (by right multiplication) is given by the map σ : Γ ˆ ΣΓ Ñ ΣΓ

where
σgpxqh :“ σpg, xqh “ xhg for every g, h P Γ, x P ΣΓ.

Remark A.1. We may alternatively consider the left action by left multiplication given by σgpxqh “

xg´1h for every g, h P Γ and x P ΣΓ. Here we chose right multiplication to be consistent with the
definition on Zd. All proofs below are also valid with this choice.

Two configurations x, y are asymptotic if the set F “ tg P Γ: xg ‰ ygu is finite. F is called the
difference set of px, yq. If x “ y we say that the asymptotic pair is trivial.

For finite S Ă Γ, an element p P ΣS is called a pattern and the set S is its support. Given a
pattern p P ΣS , the cylinder centered at p is rps “ tx P ΣΓ : x|S “ pu. A pattern p appears in x P ΣΓ

if there exists g P Γ such that σgpxq P rps. We also denote by occppxq “ tg P Γ: σgpxq P rpsu the set of
occurrences of p in x P ΣΓ.

For finite S Ă Γ, the language with support S of a configuration x is the set of patterns

LSpxq “ tp P ΣS : there is g P Γ such that σgpxq P rpsu.

The language of x is the union Lpxq of the sets LSpxq for every finite S Ă Γ.
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Definition A.2. We say that two asymptotic configurations x and y in ΣΓ are indistinguishable if
for every pattern p we have

#poccppxqzoccppyqq “ #poccppyqzoccppxqq.

For a pattern p P ΣS , its discrepancy in x, y is given by

∆ppx, yq :“
ÿ

gPS´1F

1rpspσ
gpyqq ´ 1rpspσ

gpxqq.

It is clear that the following conditions are equivalent:
(1) x and y are indistinguishable asymptotic configurations with difference set F ,
(2) for every pattern p with finite support S Ă Zd, we have

#
`

occppxq X S´1F
˘

“ #
`

occppyq X S´1F
˘

,

(3) for every pattern p with finite support S Ă Zd, we have ∆ppx, yq “ 0.

Proposition A.3. Let S1 Ă S2 be finite subsets of Γ, and let p P ΣS1 . We have

∆ppx, yq “
ÿ

qPΣS2 ,rqsĂrps

∆qpx, yq.

Proof. Notice that rps is the disjoint union of all rqs where q P ΣS2 and rqs Ă rps. It follows that for any
z P ΣΓ we have 1rpspzq “ 1 if and only if there is a unique q P ΣS2 such that rqs Ă rps and 1rqspzq “ 1.
Letting F be the difference set of x, y we obtain,

∆ppx, yq “
ÿ

gPS´1
1 F

1rpspσ
gpyqq ´ 1rpspσ

gpxqq

“
ÿ

gPS´1
2 F

1rpspσ
gpyqq ´ 1rpspσ

gpxqq

“
ÿ

gPS´1
2 F

ÿ

qPΣS2

rqsĂrps

1rqspσ
gpyqq ´ 1rqspσ

gpxqq.

Exchanging the order of the sums yields the result. □

Let us denote the group of automorphisms of Γ by AutpΓq.

Proposition A.4. Let px, yq be an indistinguishable asymptotic pair, then

(1) pσgpxq, σgpyqq is an indistinguishable asymptotic pair for every g P Γ.
(2) px ˝ φ, x ˝ φq is an indistinguishable asymptotic pair for every φ P AutpΓq.

Proof. Let F be the difference set of px, yq. A straightforward computation shows that the difference
set of pσgpxq, σgpyqq is F1 “ Fg´1 and the difference set of px ˝ φ, x ˝ φq is F2 “ φ´1pF q.

Let S Ă Γ be a finite set and p P ΣS . For the first claim we have

∆ppσgpxq, σgpyqq “
ÿ

hPS´1F1

1rpspσ
hpσgpyqqq ´ 1rpspσ

hpσgpyqqq

“
ÿ

hPS´1F g´1

1rpspσ
hgpyqq ´ 1rpspσ

hgpyqq

“
ÿ

tPS´1F

1rpspσ
tpyqq ´ 1rpspσ

tpyqq “ ∆ppx, yq “ 0.

Thus pσgpxq, σgpyqq is an indistinguishable asymptotic pair.
For the second claim, let q P ΣφpSq be the pattern given by qpφpsqq “ ppsq for every s P S. We note

that for any h P Γ, σhpxq P rqs if and only if σφ´1
phqpx ˝ φq P rps. This means that h P occqpxq if and

only if φ´1phq P occppx ˝ φq.
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As px, yq is an indistinguishable asymptotic pair, there is a finitely supported permutation π of
Γ so that occqpxq “ πpoccqpyqq. Then π1 “ φ ˝ π ˝ φ´1 is a finitely supported permutation of Γ
so that occppx ˝ φq “ π1poccppy ˝ φqq. We conclude that ∆ppx ˝ φ, y ˝ φq “ 0 and thus they are
indistinguishable. □

Let Σ1,Σ2 be alphabets. A map ϕ : ΣΓ
1 Ñ ΣΓ

2 is a sliding block code if there exists a finite set
D Ă Γ and map Φ: ΣD

1 Ñ Σ2 called the block code such that

ϕpxqg “ Φpσgpxq|Dq for every g P Γ, x P ΣΓ
1 .

Proposition A.5. Let x, y P ΣΓ
1 be an indistinguishable asymptotic pair and ϕ : ΣΓ

1 Ñ ΣΓ
2 a sliding

block code. The pair ϕpxq, ϕpyq P ΣΓ
2 is also an indistinguishable asymptotic pair.

Proof. Let F be the difference set of x, y and D Ă Γ, Φ: ΣD
1 Ñ Σ2 be the set and block code which

define ϕ. If g R D´1F , then σgpxq|D “ σgpyq|D and thus ϕpxqg “ ϕpyqg. As D´1F is finite, it follows
that ϕpxq, ϕpyq are asymptotic.

Let S Ă Γ be finite and p : S Ñ Σ2 be a pattern. Let ϕ´1ppq Ă pΣ1qDS be the set of patterns q so
that for every s P S, ΦppqdsqdPDq “ ps. It follows that ϕ´1prpsq “

Ť

qPϕ´1ppqrqs.
Let W Ă Γ be a finite set which is large enough such that W Ě F YDF . We have,

#tg P S´1W | σgpϕpxqq P rpsu “
ÿ

qPϕ´1ppq

#tg P S´1W | σgpxq P rqsu

“
ÿ

qPϕ´1ppq

#tg P S´1W | σgpyq P rqsu

“ #tg P S´1W | σgpϕpyqq P rpsu.

Taking W large enough such that W Ě F YDF , we conclude that pϕpxq, ϕpyqq is an indistinguishable
asymptotic pair. □

Let pxn, ynqnPN be a sequence of asymptotic pairs. We say that pxn, ynqnPN converges in the
asymptotic relation to a pair px, yq if pxnqnPN converges to x, pynqnPN converges to y, and there
exists a finite set F Ă Γ so that xn|ΓzF “ yn|ΓzF for all large enough n P N. We say that px, yq is the
étale limit of pxn, ynqnPN.

Proposition A.6. Let pxn, ynqnPN be a sequence of asymptotic pairs in ΣΓ which converges in the
asymptotic relation to px, yq. If for every n P N we have that pxn, ynq is indistinguishable, then px, yq

is indistinguishable.

Proof. Let p P ΣS be a pattern. As pxn, ynqnPN converges in the asymptotic relation to px, yq, there
exists a finite set F Ă Γ and N1 P N so that xn|ΓzF “ yn|ΓzF for every n ě N1. In particular we have
that the difference sets of px, yq and pxn, ynq for n ě N1 are contained in F . It suffices thus to show
that

#toccppxq X S´1F u “ #toccppyq X S´1F u.

As pxnqnPN converges to x and pynqn P N converges to y, there existsN2 P N so that xn|SS´1F “ x|SS´1F

and yn|SS´1F “ y|SS´1F for all n ě N2. This implies that occppxq X S´1F “ occppxnq X S´1F and
occppyq X S´1F “ occppynq X S´1F for every n ě N2.

Let N “ maxtN1, N2u and let n ě N . As n ě N1, we have that pxn, ynq is an indistinguish-
able asymptotic pair whose difference set is contained in F , it follows that #toccppxnq X S´1F u “

#toccppynq X S´1F u. As n ě N2, we obtain #toccppxq X S´1F u “ #toccppyq X S´1F u. As this
argument holds for every pattern p, we conclude that px, yq is indistinguishable. □

A configuration x P ΣΓ is recurrent if for every p P Lpxq we have that occppxq is infinite.
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Proposition A.7. Let x, y P ΣΓ be an indistinguishable asymptotic pair. If x is not recurrent, then
x, y lie in the same orbit.

Proof. If x is not recurrent, there is a finite S Ă Γ and p P LSpxq such that occppxq is finite. As
∆ppx, yq “ 0, it follows that occppyq is also finite.

Let pSnqnPN be an increasing sequence of finite subsets of Γ such that S0 “ S and
Ť

nPN Sn “ Γ and
let qn “ x|Sn

. As x P rqns and ∆qn
px, yq “ 0, there exists gn P Γ so that σgn pyq P rqns. Furthermore,

as qn|S “ p, it follows that σgn pyq P rps and thus gn P occppyq. As occppyq is finite, there exists
h P occppyq and a subsequence such that gnpkq “ h and thus σhpyq P rqnpkqs for every k P N. As
Ş

nPNrqns “
Ş

kPNrqnpkqs “ txu we deduce that σhpyq “ x. □
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