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1. Introduction

Given a countable group G and a finite set Σ, a subshift is a closed subset of ΣG under the prodiscrete
topology that is invariant under the shift G-action. Subshifts of finite type (SFTs) are an important
class of subshifts which are defined through a finite number of local rules. Following the celebrated
result of Hochman [20] that states that any computable Zd-action can be obtained as a factor of a
subaction of a Zd+2-SFT, a number of results in the literature [4, 15, 22, 6, 8] have explored how far
are SFTs and their symbolic factors, called sofic subshifts, of encoding all computable dynamics of a
given group.

In the setting of expansive actions, it is natural to ask which dynamics can be realized by sofic
subshifts. One natural computability obstruction (for finitely generated and recursively presented
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groups) is that sofic subshifts are effective; that is, there exists a description of the subshift through
a set of forbidden patterns that can be enumerated algorithmically. A series of studies have explored
which dynamical properties of an effective Zd-subshift actually force it to become sofic, for instance,
combinatorial constraints from Π0

1-sets [31], or very low pattern complexity [13].
Conversely, it is natural to explore which effective subshifts are not sofic. To the best of our

knowledge, the most well-known example of an effective Z2-subshift that is not sofic is the mirror
subshift described in [21]. This is the space of all Z2 configurations over {0, 1, ⋆} with the property
that if one ⋆ occurs, it extends vertically and imposes a mirror symmetry on the remainder of the
configuration, see Figure 1.1. The proof of non-soficity is based on a combinatorial argument that
heavily relies in the amenability of the underlying group.
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Figure 1.1. A portion of a configuration in the Z2-mirror shift.

Variations of the argument used to prove non-soficity of the mirror shift have been used to demon-
strate the non-soficity of a subshift corresponding to the superposition of Sturmian words of the same
slope [16] or minimal effective subshifts which have high entropy dimension [18]. In the case of Zd, other
sufficient conditions for non-soficity can be expressed in terms of extender sets [24] and Kolmogorov
complexity [14].

In the context of finitely generated groups with decidable word problem, the mirror subshift argu-
ment has been used to construct effective subshifts that are not sofic when the group is amenable or
multi-ended [2]. Hence a natural question is whether such a construction exists in all groups or if there
are groups where all effective subshifts are sofic. In [8] the authors introduce the class of self-simulable
groups, in which every effective subshift is sofic and show that it is non-trivial. We remark that while
the definition of self-simulable is actually more general, see Definition 2.5, for finitely generated and
recursively presented groups it is equivalent to the statement that all effective subshifts are sofic.

In [8] it was shown that the direct product of any two finitely generated nonamenable groups is
self-simulable. This, along with some stability properties of the class of self-simulable groups, was used
to produce a list of interesting examples such as SLn(Z) for n ≥ 5 and Thompson’s V . It was also
shown that Thompson’s group F is self-simulable if and only if it is nonamenable.

Two properties of a finitely generated group with decidable word problem that provide obstructions
to being self-simulable are amenability and the property of having multiple ends. However, it was also
shown in [8] that there exist groups which are nonamenable and 1-ended that are not self-simulable,
such as F2 × Z.
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The main purpose of this article is to present a new quasi-isometry invariant for finitely generated
groups which provides an obstruction to self-simulability. Furthermore, all examples we are aware of
that are not self-simulable satisfy this property. We call groups which satisfy this property extrater-
restrial because their Cayley graphs admit structures which roughly resemble flying saucers.

Let us be more precise. Consider an infinite graph G of bounded degree and non-negative integers
m, k, r. An (m, k, r)-UFO is a triple of sets of vertices (U,F,O) of G which satisfies |U | ≥ m|F |, that
U and O can be matched by paths of length at most k, and that all paths from U to O which avoid
vertices in F have at least length r. A graph is called extraterrestrial if for all m there is some k such
that for all r then G admits an (m, k, r)-UFO. In Figure 1.2 we represent a UFO in a Cayley graph of
Z2.

F

O

U

Figure 1.2. A (1, 4, 18)-UFO for the canonical Cayley graph of Z2.

Intuitively, a graph G is extraterrestrial if there are pairs of subsets of vertices U,O of the same size,
which are close (parametrized by k) in G, but that can be made to be arbitrarily far (parametrized by
r) by removing a set of vertices F which is small (parametrized by m) in comparison with U and O.

Our first observation is that the property of being extraterrestrial is a geometric invariant:

Theorem A. Being extraterrestrial is a quasi-isometry invariant for graphs of bounded degree.

In particular, given a finitely generated group G, it follows that if for some finite generating set S
of G the Cayley graph Cay(G, S) is extraterrestrial, then the property is preserved by changing the
set of generators. In particular, being extraterrestrial is a property of the group.

Our main result is that being extraterrestrial is an obstruction to self-simulability.

Theorem B. Let G be a finitely generated extraterrestrial group, there exists a G-subshift which is
effectively closed by patterns and which is not the topological factor of any G-SFT.

Intuitively, a subshift is effectively closed by patterns if it can be described by a list of forbidden
cylinders that are produced by a Turing machine. In the case where G is recursively presented, every
subshift which is effectively closed by patterns is topologically conjugate to an expansive action by
computable maps on a Π0

1 subset of the Cantor space, thus in particular these groups cannot be self-
simulable. In the case of groups which are non-recursively presented, this provides an obstruction to
the natural relativization of self-simulability, which we call strong self-simulability, see Section 2.2.

The proof of Theorem B relies on a construction that in a very abstract way generalizes the mirror
shift. More precisely, we replace the algebraic global symmetry with respect to mirror symbols by global
symmetry through matchings in the group induced by a lexicographic ordering. The property of being
extraterrestrial provides the precise geometrical structure in the group that makes this construction
work.

The last part of the article is dedicated to producing examples of extraterrestrial groups and tools to
prove that a group is extraterrestrial. The following theorem summarizes the most relevant examples.
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Theorem C. The following classes of finitely generated groups are extraterrestrial:

• Infinite amenable groups (Proposition 5.1).
• Multi-ended groups (Proposition 5.2).
• Amalgamated free products relative to an amenable subgroup with strict embeddings (Propo-
sition 5.7).

• HNN-extensions relative to an amenable subgroup (Proposition 5.9).
• Generalized Baumslag-Solitar groups (Corollary 5.13).
• Cocompact Fuchsian groups (Corollary 5.17).
• Fundamental groups of surfaces (Corollary 5.18).

In [8, Question 9.3] we asked whether every 1-ended hyperbolic group is self-simulable. The previous
result answers this question negatively: the fundamental group of a closed orientable surface of genus
2 is a 1-ended hyperbolic group which is extraterrestrial and thus cannot be self-simulable.

The main tool used to provide the examples in Theorem C is that every group that admits an
amenable subgroup whose associated Schreier graph is multi-ended is extraterrestrial (Theorem 5.3).
We do not know any example of extraterrestrial group which does not fall into this case. We also do
not know any example of finitely generated group which is not (strongly) self-simulable and fails to be
extraterrestrial.

Question 1.1. Is there any group which is neither strongly self-simulable nor extraterrestrial?

Question 1.2. Is there any group which is extraterrestrial but does not admit an amenable subgroup
whose associated Schreier graph is multi-ended?

Acknowledgments: S. Barbieri was supported by projects ANID FONDECYT regular 1240085,
AMSUD240026 and ECOS230003.

2. Preliminaries

We shall use the notation A ⋐ B to denote that A is a finite subset of B. We also use A∗ to denote
the set of words on alphabet A.

Let G be a group with identity 1G and S ⋐ G a symmetric set, that is, such that if s ∈ S then
s−1 ∈ S. The word problem of a group G with respect to S ⋐ G is the language

WPS(G) = {w ∈ S∗ : w = 1G}

where w denotes the element of G represented by the word w.
Now let G be a finitely generated group and S ⋐ G a finite generating symmetric set. We say that

G is recursively presented (with respect to S ⋐ G) if WPS(G) is recursively enumerable. A group is
said to have decidable word problem (with respect to S ⋐ G) if WPS(G) is decidable. These notions do
not depend upon the choice of generating set S.

A graph is a pair G = (V,E) where V is a set of vertices and E is a set of undirected edges, that
is, of unordered pairs of elements of V . The degree deg(v) of a vertex v ∈ V is the number of edges
containing v. A graph has bounded degree if maxv∈V deg(v) is finite. A path of length n ≥ 0 between
u and v in G is a finite sequence w0, . . . , wn of distinct elements of V such that u = w0, v = wn and
{wi, wi+1} is an edge for all i ∈ {0, . . . , n− 1}. We say G is connected if there is path between every
pair of u, v ∈ V . For a connected graph G we denote by dG the metric on V where dG(u, v) is the
length of the shortest path from u to v. If the graph is not connected and no such path exists between
u, v we set dG(u, v) = ∞.
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For a group G and a symmetric S ⋐ G, the right Cayley graph Cay(G, S) is the graph where the
vertices are G and there is an edge between g and g′ if there exists s ∈ S such that g′ = gs. If G
is generated by S then Cay(G, S) is a connected graph of bounded degree and we denote the metric
dCay(G,S) on G by dS instead. For an element g ∈ G we denote |g|S = dS(g, 1G) and for k ∈ N we write
Bk = {g ∈ G : |g|S ≤ k} for the ball of radius k on G under the metric dS .

Similarly, for a subgroup H ⩽ G and a symmetric S ⋐ G, the right Schreier graph Sch(G,H, S) is
the graph where the vertices are {Hg, g ∈ G} and there is an edge between Hg and Hg′ if there exists
s ∈ S such that Hg′ = Hgs. It can equivalently be defined as the quotient graph of Cay(G, S) by the
left action of H by multiplication.

2.1. Shift spaces. Let Σ be a finite alphabet and G be a group. The full G-shift is the set ΣG =
{x : G → Σ} equipped with the left shift action G ↷ ΣG by left multiplication given by

gx(h) = x(g−1h) for every g, h ∈ G and x ∈ ΣG.

The elements a ∈ Σ and x ∈ ΣG are called symbols and configurations respectively. We endow ΣG

with the prodiscrete topology generated by the clopen subbase given by the cylinders [a]g = {x ∈ ΣG :
x(g) = a} where g ∈ G. Given F ⋐ G, a pattern with support F is an element p ∈ ΣF . We denote
the cylinder generated by p by [p] =

⋂
h∈F [p(h)]h.

In the case of a finitely generated group G, it will be useful to encode patterns in a computable
manner. Let S be a symmetric set of generators and Σ a finite alphabet. A pattern coding is a map
c ∈ ΣW for some W ⋐ S∗. The cylinder induced by c is given by

[c] =
⋂
w∈W

[c(w)]w.

where w is the element of G represented by the word w. Notice that the cylinder associated to a
pattern coding may be empty.

Definition 2.1. A subset X ⊆ ΣG is a G-subshift if and only if it is G-invariant and closed in the
prodiscrete topology.

If the context is clear, we drop the G from the notation and speak plainly of a subshift. It follows
directly from the definition that X is a subshift if and only if there exists a set of patterns F such that
X = XF , where

XF = ΣG \
⋃

p∈F,g∈G
g[p].

If X = XF , we say that F is a set of forbidden patterns for X.
Let X ⊂ (ΣX)G and Y ⊂ (ΣY )

G be G-subshifts. A morphism is a continuous function ϕ : X → Y
which is G-equivariant, that is, ϕ(gx) = gϕ(x) for every x ∈ X and g ∈ G. A morphism is a factor
map if the map is onto, and a conjugacy if it is bijective. Given a factor map ϕ : X → Y we say that
Y is a factor of X, and that X is an extension of Y .

Equivalently, by the Curtis-Lyndon-Hedlund theorem, see [11, Theorem 1.8.1], a map ϕ : X → Y is
a morphism if and only if there exists F ⋐ G and Φ: (ΣX)F → ΣY such that (ϕ(x))(g) = Φ(g−1x|F )
for all g ∈ G. We say that a morphism ϕ : X → Y is a 1-block map if there exists Φ: ΣX → ΣY such
that (ϕ(x))(g) = Φ(x(g)) for every g ∈ G and x ∈ X.

It well-known that a G-action by homeomorphisms on a compact metrizable space (X, d) of topo-
logical dimension zero is conjugate to some G-subshift if and only if it is expansive, that is, there is a
constant C > 0 such that for every x, y ∈ X then x = y if and only if d(gx, gy) < C for every g ∈ G.
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Definition 2.2. Let G be a group and S ⋐ G a symmetric set of generators of G. We say that a
subshift X ⊆ ΣG is:

(1) S-nearest neighbor, if X = XF for a finite set of forbidden patterns F . And the support of
every pattern in F is of the form {1G, s} for some s ∈ S.

(2) a subshift of finite type (SFT), if there exists a finite set of forbidden patterns F such that
X = XF .

(3) a sofic subshift, if it is a factor of an SFT.

We remark that all S-nearest neighbor subshifts are SFTs, and all SFTs are sofic subshifts. It is well
known that every subshift of finite type is conjugate to an S-nearest neighbor subshift. Furthermore,
if X is a sofic subshift, it is always possible to construct an SFT Y which is S-nearest neighbor and a
1-block factor map ϕ such that ϕ(Y ) = X. For a proof of these facts, see [5].

2.2. Computability of group actions. Next we will introduce notions of computability for group
actions. We will assume the reader is acquainted with the basic concepts of computability, such as
(oracle) Turing machines. An introduction can be found in [12].

A subset X ⊂ {0, 1}N is called effectively closed or Π0
1 if there exists a recursively enumerable

language L ⊂ {0, 1}∗ such that X = {0, 1}N \
⋃
w∈L[w], where [w] denotes the cylinder set of all

x ∈ {0, 1}N which begin by the word w. A map f : X → {0, 1}N is computable if there is an oracle
Turing machine which on oracle x ∈ X and input n ∈ N outputs f(x)(n). An action of a finitely
generated group G on a zero-dimensional topological space is called effective if it is topologically
conjugate to a G-action on an effectively closed set by computable maps.

Definition 2.3. A G-subshift is effective if it is conjugate to an (expansive) effective G-action.

It is often useful to have an explicit characterization of effective subshifts without passing through
conjugacies. This can be done using pattern codings up to a small subtlety which we shall explain in
a moment.

Definition 2.4. A G-subshift is effectively closed by patterns, if there exists a recursively enumerable
set C of pattern codings such that X = ΣG \

⋃
c∈C,g∈G g[c].

In the case where G is a recursively presented group, a G-subshift is effectively closed by patterns if
and only if it is an effective subshift [7, Corollary 7.7] and in particular all sofic G-subshifts are effective.
Furthermore, if G has decidable word problem there is an enumeration of the group that makes the
group operations computable and thus instead of considering pattern codings one can directly talk
about recursively enumerable sets of forbidden patterns for the group.

Definition 2.5. A finitely generated group G is self-simulable if every effective G-action is the topo-
logical factor of a G-SFT.

It was shown in [8, Proposition 3.7] that if G is a recursively presented self-simulable group, then G
is nonamenable. Furthermore, if G is recursively presented and nonamenable, then G is self-simulable if
and only if every effective G-subshift is a factor of a G-SFT [8, Theorem 4.6]. Therefore for recursively
presented groups being self-simulable coincides with the statement that the classes of sofic G-subshifts
and effective G-subshifts coincide.

If G is not recursively presented, then for |Σ| ≥ 2 even the full G-shift ΣG is non-effective, see [7,
Proposition 7.9]. It follows that the notion of self-simulation as stated above is not very meaningful be-
yond recursively presented groups. However, there is an easy way to “fix” the definition by relativizing
the notion of an effective action.
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Let G be a finitely generated group and S a finite set of generators. Let F (S) be the free group on
basis S and take ψ : F (S) → G be the canonical epimorphism where for a reduced word w ∈ F (S) we
let ψ(w) be the element obtained by multiplying the symbols of w as elements in G. We say that an
action G ↷ X is relatively effective if there exists an effective action F (S) ↷ Y such that if we let

X ′ = {y ∈ Y : gy = y for every g ∈ ker(ψ)},
then the actions G ↷ X and F (S)/ ker(ψ) ↷ X ′ are topologically conjugate.

In the definition of relative effective action we have “factored out” the computational complexity of
the word problem of G. In fact, it is easy to see that for a recursively presented group G both notions
coincide. It is natural then to consider self-simulation for non-recursively presented groups using this
notion instead. This motivates the following definition.

Definition 2.6. A finitely generated group G is strongly self-simulable if every relative effective G-
action is the factor of a G-SFT.

We remark that the main theorem of [8] which states that the direct product of any two finitely
generated nonamenable groups is self-simulable, can be directly extended to show that in fact it is
strongly self-simulable. In retrospective, we believe that strong self-simulability is the right notion for
non-recursively presented groups, and thus in fact the right notion for all finitely generated groups.

The next proposition shows that G-subshifts which are effectively closed by patterns are precisely
the expansive relative effective G-actions on spaces with zero topological dimension. Let G be finitely
generated by S and take ψ : F (S) → G the canonical epimorphism. Note that every x ∈ AF (S) such
that gx = x for every g ∈ ker(ψ) induces a configuration ψ∗(x) ∈ AG given by

ψ∗(x)(ϕ(g)) = x(g) for every g ∈ G.

Proposition 2.7. A G-subshift X is effectively closed by patterns if and only if there exists an effective
F (S)-subshift Y such that

X = {ψ∗(y) : y ∈ AF (S) and gy = y for every g ∈ ker(ψ)}.

A proof of Proposition 2.7 can be found in [7, Section 7]. We note that if G is a finitely generated
non-amenable group, then every relatively effective G-action is the topological factor of an effectively
closed by patterns G-subshift (the proof is exactly the same as in [8, Theorem 4.6]). Therefore for
a non-amenable group G, it follows that G is strongly self-simulable if and only if the classes of
sofic G-subshifts and effectively closed by patterns G-subshifts coincide. Later we will show that no
amenable group is strongly self-simulable (Proposition 5.1 and Theorem B) and thus the previous
characterization stands for all finitely generated groups.

3. UFOs and extraterrestrial graphs

Let G = (V,E) be a graph. Given two finite subsets A,B of V , a matching is a relation M ⊂ A×B
such that the projection maps to each component are injective. A matching M is called complete if
it induces a bijection (i.e, every a ∈ A and b ∈ B occurs in a unique element of M). We say that a
matching M is by paths of length at most k if for every (u, v) ∈M we have dG(u, v) ≤ k.

Definition 3.1. Let G = (V,E) be a graph. An (m, k, r)-UFO is a triple (U,F,O) of disjoint finite
subsets of V such that:

(1) |U | ≥ m|F |;
(2) there is a complete matching between U and O by paths of length at most k;
(3) any path from U to O in G goes through a vertex in F or is of length at least r.
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Definition 3.2. We say that a graph G is extraterrestrial, if for all m ∈ N, there exists k ∈ N, such
that for all r ∈ N, there exists an (m, k, r)-UFO.

The acronym “UFO” means Under, Front and Over and is inspired by Figure 1.2 where a UFO is
drawn on the canonical Cayley graph of Z2. We remark that this is not equivalent to the notion of
UFO used in [17].

Example 3.3. Consider the Cayley graph of Zd generated by the canonical basis S = {v ∈ Zd :
∥v∥1 = 1}. For positive integers m, r put

• U = [0, r − 1]d−1 × [−3d−1m,−1]
• F = [−r, 2r − 1]d−1 × {0}
• O = [0, r − 1]d−1 × [1, 3d−1m]

The triple (U,F,O) forms a (m, 3d−1m+1, 2r+4)-UFO, see Figure 1.2 for the case m = 1, d = 2, r = 7.
We deduce that Cay(Zd, S) is extraterrestrial.

Next we will show that being extraterrestrial is an invariant of quasi-isometry for graphs of bounded
degree.

Definition 3.4. Two graphs G = (V,E) and G′ = (V ′, E′) are quasi-isometric if there exists a
function f : V → V ′ and positive real constants A, B and C such that

• f is a quasi-isometric embedding : for every v1, v2 ∈ V one has

1

A
dG(v1, v2)−B ≤ dG′(f(v1), f(v2)) ≤ AdG(v1, v2) +B.

• f(V ) is relatively dense: for every v′ ∈ V ′ there exists v ∈ V such that

dG′(v′, f(v)) ≤ C.

Next we give the proof of Theorem A, that is, that the property of being extraterrestrial is an
invariant of quasi-isometry for graphs of bounded degree.

Proof of Theorem A. Let G = (V,E) and G′ = (V ′, E′) be quasi-isometric graphs of bounded degree.
Suppose that G is extraterrestrial and let f : V → V ′ be a map which realizes the quasi-isometry
between G and G′ with associated constants A,B and C as in the definition.

Let D be the largest of the degrees of G and G′. It follows that the number of elements in a ball of
radius n centered on any vertex on any of both graphs is at most Dn. In particular, DAB is an upper
bound of the number of preimages of a vertex by f , as two vertices u, v ∈ V with the same image must
satisfy dG(u, v) ≤ AB.

Let (U,F,O) be an (m, k, r)-UFO of G. Define

F ′ = {v′ ∈ V ′ : dG(v
′, f(F )) ≤ α} with α = A2(1 +B + 2C) +B + C.

Define also U ′′ = f(U) \ F ′ and O′′ = f(O) \ F ′. Consider a complete matching M ⊂ U ×O between
U and O by paths of length at most k. Take a maximal subset M ′′ ⊂ M with the property that for
any pair (u1, o1), (u2, o2) ∈M ′′, then min(dG(u1, u2), dG(o1, o2)) > AB. Define

M ′ = {(f(u), f(o)) : (u, o) ∈M ′′ and (f(u), f(o)) ∈ U ′′ ×O′′}.
Notice that by the property we required on M ′′ the map f is injective in both of its projections and

thus it follows that M ′ is indeed a matching which satisfies |M ′| ≥ |M ′′| − 2|F ′|.
Finally, define U ′ and O′ as the projections ofM ′ onto the first and second coordinates, respectively.

With this definition, M ′ is a complete matching between U ′ and O′. Our aim is to prove that for m
large enough, the sets (U ′, F ′, O′) form an (m′, k′, r′)-UFO for some (m′, k′, r′) ∈ N3.
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(1) An element of V ′ has at most Dα elements at distance at most than α and so |F ′| ≤ |F |Dα.
Moreover, as each vertex in V ′ can have at most DAB preimages under f , it follows that

|M ′′| ≥ |M |
D2AB ≥ m|F |

D2AB .
By definition of U ′ and the above considerations, we have

|U ′| = |M ′| ≥ |M ′′| − 2|F ′| ≥ m|F |
D2AB

− 2|F ′| =
( m

D2AB+α
− 2

)
|F ′| ≥ m′|F ′|.

Where m′ =
⌊

m
D2AB+α − 2

⌋
(2) Given two adjacent vertices v1, v2 ∈ V , one has

dG′(f(v1), f(v2)) ≤ AdG(v1, v2) +B = A+B.

It follows that if there is a path of length less than k between v1 and v2, then there is path of
length less than k(A+B) between f(v1) and f(v2). Put k

′ = ⌈k(A+B)⌉, we deduce that the
set M ′ is a complete matching between U ′ and O′ by paths of length at most k′.

(3) Assume that there is a path v′0, v
′
1, . . . , v

′
ℓ that avoids F ′ of length ℓ in G′ between f(v0) =

v′0 ∈ U ′ and f(vℓ) = v′ℓ ∈ O′. Given two consecutive vertices of this path, there exists vi and
vi+1 such that f(vi) and f(vi+1) are at distance at most C of the two consecutive vertices v′i
and v′i+1, so dG′(f(vi), f(vi+1)) ≤ 2C + 1. We deduce that

dG(vi, vi+1) ≤ A(dG′(f(vi), f(vi+1)) +B) ≤ A((2C + 1) +B).

Thus there is a path in G between vi and vi+1 of size at most A(1 + B + 2C). Consider a
vertex v of this path, one has

dG′(v′i, f(v)) ≤ C + dG′(f(vi), f(v))

≤ C +AdG(vi, v) +B

≤ C +A(A(1 +B + 2C)) +B

= α.

Since v′i /∈ F ′, one has dG′(v′i, f(F )) > α so v is not in F . We deduce that there exists a
path from v0 to vℓ which avoids F and whose length is bounded by ℓA(1 + B + 2C). From

here we obtain that ℓA(1+B+2C) ≥ r, thus if we let r′ =
⌈

r
A(1+B+2C)

⌉
it follows that every

path in G′ between elements of O′ and U ′ which avoids F ′ has length at least r′.

Now we can prove the G′ is extraterrestrial. For m′ ∈ N, we choose m ∈ N such that m′ ≤⌊
m

D2AB+α − 2
⌋
. Consider k ∈ N such that G admits an (m, k, r)-UFO for any r ∈ N and put k′ =

⌈k(A+B)⌉. Let r′ ∈ N, consider r ∈ N such that r′ ≤
⌈

r
A(1+B+2C)

⌉
. Since G admits a (m, k, r)-UFO,

we deduce that G′ admits a (m′, k′, r′)-UFO. So G′ is extraterrestrial □

IfG is a finitely generated group and S, S′ are two finite symmetric sets of generators, then Cay(G, S)
and Cay(G, S′) are quasi-isometric. It follows that Cay(G, S) is extraterrestrial if and only if Cay(G, S′)
is extraterrestrial. This motivates the following definition.

Definition 3.5. A group G is extraterrestrial if Cay(G, S) is extraterrestrial for some (equivalently,
any) symmetric finite set of generators S.

Similarly, we remark that if H ⩽ G is a subgroup and S, S′ are two symmetric finite set of generators
of G, then the Schreier graphs Cay(G,H, S) and Cay(G,H, S′) are quasi-isometric, and thus we can
speak about the pair (H,G) being extraterrestrial.
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4. Extraterrestrial groups are not self-simulable

In this section, we will show Theorem B. To that end, we will require a technical lemma that shows
that for every set of generators S of a group G there is a configuration x ∈ {0, 1}G that distinguishes
locally all elements of G by their neighborhoods, furthermore, the size of said neighborhood is linear
with respect to the distance between the elements induced by S.

Lemma 4.1. There exists a universal constant A ≥ 1 such that for every infinite and finitely generated
group G, and every finite generating set S, there exists a configuration ξ ∈ {0, 1}G such that for every
integer k ≥ 1 and g, h ∈ G with dS(g, h) = k, there is t ∈ G with |t|S ≤ kA such that ξ(gt) ̸= ξ(ht).

Proof. It is shown in [3, Theorem 2.4] that if (si)i≥1 is an enumeration of G\{1G}, C > 0 is sufficiently
large (specifically, C ≥ 17 suffices) and (Ti)i≥1 is a sequence of finite subsets of G such that |Ti| ≥ Ci
and Ti ∩ siTi = ∅, then there is a configuration ξ where for each g ∈ G and each i ≥ 1 there is
t = t(g, i) ∈ Ti such that ξ(gt) ̸= ξ(gsit). Take A = 3⌈C⌉ and fix some set of generators S. It suffices
to show that we can choose an enumeration (si)i≥1 of G \ {1G} and a sequence of finite subsets Ti
with the properties above and such that Ti ⊂ BA|si|S for all i ≥ 1.

Fix an enumeration (si)i≥1 of G \ {1G} in such a way that if i ≤ j then |si|S ≤ |sj |S . In this way
we are sure that whenever |si|S = k, then i ≤ |Bk|.

For i ≥ 1 denote k = |si|S . We take Ti as any maximal (for inclusion) subset of BkA with the
property that Ti ∩ siTi = ∅. We claim that |Ti| ≥ A

3 |Bk| and thus that |Ti| ≥ Ci.
Indeed, suppose that 3|Ti| < A|Bk|. As G is infinite, we have |BkA| ≥ A|Bk| from which it follows

that 3|Ti| < |BkA| and thus that there exists g ∈ BkA \ (s−1
i Ti ∪ Ti ∪ siTi). Take T ′

i = Ti ∪ {g}. By
maximality of Ti we have that T ′

i ∩ siT
′
i ̸= ∅, thus either there are h, h′ ∈ T ′

i such that h = sih
′.

Clearly h ̸= h′ as si ̸= 1G. Furthermore, as Ti ∩ siTi = ∅, it follows that either h = g or h′ = g, but
neither of these cases can hold because of our choice that g /∈ (s−1

i Ti ∪ Ti ∪ siTi). □

We note that the value A = 51 works as the universal constant from Lemma 4.1.

4.1. The generalized mirror shift. We will construct, for every finitely generated group G, a G-
subshift XGM which is effectively closed by patterns but not sofic whenever G is extraterrestrial. We
call XGM the generalized mirror subshift because it is a geometric generalization of the classical mirror
shift construction from [21] discussed in the introduction. Variants of the mirror shift on nonabelian
groups appear also in [2, 8].

For the remainder of this section, fix a finitely generated group G and a finite symmetric set of
generators S such that 1G /∈ S. Take F (S) the free group generated by S and let ψ : F (S) → G be the
canonical epimorphism. We also fix an arbitrary order ≤ on S and consider the total order ⪯ on S∗

where words are first ordered by length and then lexicographically, that is: s1s2 . . . sn ≺ s′1s
′
2 . . . s

′
m if

and only if either n < m or n = m and for some k < n, s1s2 . . . sk = s′1s
′
2 . . . s

′
k and sk+1 < s′k+1.

Fix an integer A as in Lemma 4.1, consider an arbitrary alphabet Σ and take Λ = Σ× {0, 1}. We
will first define two types of patterns on alphabet Λ in F (S) which will be used in the definition of
XGM. For a reduced word g ∈ F (S) denote by |g| its word length. Furthermore, for T ⊂ F (S) and
p ∈ ΛT , denote by pΣ ∈ ΣT and p{0,1} ∈ {0, 1}T its projections, that is, the maps such that for every
t ∈ T we have p(t) = (pΣ(t), p{0,1}(t)).

For a positive integer k, let Bk = {g ∈ F (S) : |g| ≤ k}. For a pattern p ∈ ΛB(A+1)k and g, h ∈ Bk
we say that g, h are p-equivalent and write g ≃p h if for every t ∈ BkA, p{0,1}(gt) = p{0,1}(ht).

Definition 4.2. A pattern p ∈ ΛB(A+1)k is coherent if for every pair of p-equivalent g, h ∈ Bk we have
pΣ(g) = pΣ(h).
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Intuitively, we use the {0, 1}F (S) component as an oracle for an equivalence relation on Bk where
two elements g, h ∈ Bk are identified if the symbols in gBkA and hBkA coincide. The fundamental
observation is that Lemma 4.1 ensures that some configuration must encode the equivalence relation
on F (S) given by the word problem of G.

Now we choose Σ explicitly, namely, we take

Σ = {⋆, u, o} × {−,+}.

For T ⊂ F (S) and p ∈ ΛT , we denote by pΣ,A and pΣ,± the projections of pΣ to each component
of Σ respectively. Furthermore, write U(p) (respectively O(p)) for the set of positions g ∈ T where
pΣ,A(g) = u (respectively o).

For a coherent pattern p ∈ ΛB(A+1)k , we define a matchingM(p) ⊂ F (S)×F (S) with paths of length
at most k inductively. Let w1, . . . , wm be the sequence of elements of Bk \ {1F (S)} of length at most k
ordered according to ⪯. Take M0(p) = ∅ as the initial matching and A0(p) = (U(p) ∪ O(p)) ∩ Bk as
the initial set of available vertices.

Suppose that Mi−1(p) and Ai−1(p) have been constructed for some 1 ≤ i ≤ m. We set Mi(p) =
Mi−1(p), Ai(p) = Ai−1(p) and modify them as follows:

• First, we remove from Ai(p) all g ∈ Bk such that either g ∈ U(p) but gwi+1 /∈ Bk or g ∈ O(p)
but gw−1

i /∈ Bk.
• In lexicographic order: for every g, h ∈ Ai(p) such that h = gwi with g ∈ U(p) and h ∈ O(p),
we add (g, h) to Mi(p) and remove from Ai(p) all t such that either t ≃p g or t ≃p h.

Finally, we set M(p) = Mm(p). The intuition behind this procedure is that elements from the
quotient graph Bk/ ≃p are matched from U(p) to O(p) prioritizing according to the order on S∗. If
at some point some element could have potentially been matched with an element outside of Bk, we
remove it from the set of available vertices (as in a larger pattern it could have been matched to an
element outside). With this procedure, the matching M(p) has the following properties:

(1) The procedure to check if a pattern p is coherent and to construct M(p) are effective.
(2) M(p) is a matching by paths of length less than k between a subset of O(p) and a subset of

U(p).
(3) If k ≤ k′ and p ∈ ΛB(A+1)k , p′ ∈ ΛB(A+1)k′ are two coherent patterns such that p′|B(A+1)k

= p,

then M(p) ⊂ M(p′). Thus we can define Mk(y) for y ∈ ΛF (s) that does not contain non-
coherent patterns as the union over k ≥ 1 of M(y|B(A+1)k

).

Definition 4.3. A coherent pattern p ∈ ΛB(A+1)k is matched if for every pair (g, h) ∈ M(p) we have
pΣ,±(g) = pΣ,±(h).

With this, we can define YGM ⊂ ΛF (S) as the set of all configurations given by the following set of
forbidden patterns:

(1) Coherence rule: For all k ≥ 1, we forbid all patterns p ∈ ΛB(A+1)k which are not coherent.
(2) Matching rule: For all k ≥ 1, we forbid all patterns p ∈ ΛB(A+1)k which are coherent but are

not matched.

It is clear from the observation above that YGM ⊂ ΛF (S) is an effective subshift. Recall that we
denote by ψ : F (S) → G the canonical epimorphism and that for y ∈ ΛF (S) which is fixed by ker(ψ)
we can define ψ∗(y) ∈ ΛG given by ψ∗(x)(ψ(g)) = x(g) for every g ∈ G.

Definition 4.4. The generalized mirror shift is the set of configurations XGM ⊂ ΛG given by

XGM = {ψ∗(y) : y ∈ YGM and gy = y for every g ∈ ker(ψ)}.
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From Proposition 2.7 it follows that XGM is effectively closed by patterns. We shall give a brief
description of what some configurations in XGM look like.

First, take ξ ∈ {0, 1}G as in Lemma 4.1. This induces a configuration ξ̂ ∈ {0, 1}F (S) given by

ξ̂(g) = ξ(ψ(g)). Notice that by definition of ξ, we have that g, g′ ∈ F (S) satisfy that ξ̂(gt) = ξ̂(g′t) for
all t ∈ B|g′g−1| if and only if g′g−1 ∈ ker(ψ). From the coherence rule it follows that if y ∈ YGM is such

that y{0,1} = ξ̂, then the stabilizer of y is precisely ker(ϕ), and thus it induces a configuration x ∈ XGM

such that x{0,1} = ξ and for all g ∈ F (S), xΣ(ϕ(g)) = y(g). Moreover, from the matching rule, the
configuration y carries a matching M(y) ⊂ U(y) × O(y) and satisfies that for every (g, g′) ∈ M(y),
then yΣ,±(g) = yΣ,±(g

′). Note that this induces naturally a matchingM(x) = {(ψ(g), ψ(g′)) : (g, g′) ∈
M(y)} and thus for every (g, g′) ∈M(x) we have xΣ,±(g) = xΣ,±(g

′).

4.2. Proof of Theorem B. The result follows directly from the following theorem.

Theorem 4.5. Let G be a finitely generated extraterrestrial group. The generalized mirror shift on G
is effectively closed by patterns but not sofic.

Proof. Let G be an extraterrestrial group. Take the generalized mirror shift XGM on G and suppose it
is a factor of some G-SFT Y . Without loss of generality, we may assume that Y is S-nearest neighbor
and that the factor map ϕ : Y → XGM is a 1-block map.

We claim there exist two configurations y, y′ ∈ Y such that if we denote x = ϕ(y) and x′ = ϕ(y′)
then

(1) xΣ,A = x′Σ,A and x{0,1} = x′{0,1}, that is, x and x′ match on the {0, 1} layer and have the same

symbols {⋆, u, o}, in particular M(x) =M(x′).
(2) There exists (g1, g2) ∈M(x) such that xΣ,±(g1) = xΣ,±(g2) ̸= x′Σ,±(g2) = x′Σ,±(g1).

(3) There exists a set F ⊂ G such that
(a) y|F = y′|F .
(b) O(x) and U(x) are contained in distinct connected components of Cay(G, S) after remov-

ing F .

Let us first show that the existence of such configurations y, y′ leads to a contradiction.
Let W ⊂ G be the union of the connected components of U(x) in Cay(G, S) after removing F . This

means that the S-neighborhood of any g ∈ W is either in W or in F . By property (3a) and the fact
that Y is S-nearest neighbor, we can construct a new configuration y∗ ∈ Y such that y∗|W = y|W
and y∗|G\W = y′|G\W . Let x∗ = ϕ(y∗). As ϕ is a 1-block map, it follows that x∗|W = x|W and
x∗|G\W = x′|G\W . By property (1) we have that x∗Σ,A = xΣ,A and x∗{0,1} = x{0,1}, in particular we

deduce that M(x∗) =M(x) =M(x′).
Let (g1, g2) ∈ M(x∗) be the pair of elements from property (2). On the one hand, as x∗ ∈ XGM, we

have that x∗Σ,±(g1) = x∗Σ,±(g2). On the other hand, by property (3b) we get that x∗Σ,±(g1) = xΣ,±(g1)

and x∗Σ,±(g2) = x′Σ,±(g2). However by property (2) these two values are distinct, thus raising a
contradiction.

Now we show that the required configurations y, y′ do exist. Let ξ ∈ {0, 1}G be a configuration
which satisfies the hypothesis of Lemma 4.1. Let q be the size of the alphabet of Y and fix an integer
m > 2 log2(q). Since G is extraterrestrial, there exists k ∈ N such that for all r ∈ N there exists an
(m, k, r)-UFO (Ur, Fr, Or).

For each r ∈ N, let Wr be the set of all x ∈ XGM which satisfy the following properties

(1) x{0,1} = ξ.
(2) For all g ∈ G \ (Ur ∪Or), xΣ,A(g) = ⋆ and xΣ,±(g) = +.
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(3) For all g ∈ Ur, xΣ,A(g) = u.
(4) For all g ∈ Or, xΣ,A(g) = o.

In simpler words, Wr is the finite set of all configurations x that have the fixed value ξ on the
second component (and thus there are no non-trivial identifications in G), that satisfy U(x) = Ur and
O(x) = Or, and that are constant equal to (⋆,+) everywhere else. Notice that all x ∈ Wr have the
same induced matching, which we will call Mr, and that thus the only difference between elements of
Wr are the symbols {−,+} on Ur ∪Or.

Let Mr,k be the subset of Mr which consists of pairs (g, g′) ∈ Ur × Or given by paths of length at
most k. We claim that 2|Mr,k| ≥ |Ur|. Indeed, as (Ur, Fr, Or) is a UFO, it follows that there exists a
matchingM ′ of Ur to Or by paths of length at most k. If 2|Mr,k| < |Ur|, there would exist (g, g′) ∈M ′

such that neither g nor g′ occurs in Mr,k, but this is not possible as Mr,k is constructed by greedily
matching vertices by lexicographic order.

From the computation above, the fact that |Ur| ≥ m|Fr| and m > 2 log2(q) it follows that

2|Mr,k| ≥ 2
|Ur|
2 ≥ 2

m|Fr|
2 > q|Fr|.

From the inequality above, it follows that there exist x1, x2 ∈ Wr and y1, y2 ∈ Y with ϕ(y1) = x1,
ϕ(y2) = x2 such that

(1) There is (g, g′) ∈Mr,k such that x1Σ,±(g) = x1Σ,±(g
′) ̸= x2Σ,±(g

′) = x2Σ,±(g).

(2) y1|Fr
= y2|Fr

.

Define yr = g−1y1 and y′r = g−1y2. Take (y, y′) ∈ Y × Y as any limit point of the sequence
(yr, y

′
r)r∈N. We claim that (y, y′) satisfies the requirements.

First, by construction, for each r we have that ϕ(yr)Σ,A = ϕ(y′r)Σ,A and ϕ(yr){0,1} = ϕ(y′r){0,1}. By
compactness it follows that ϕ(y)Σ,A = ϕ(y′)Σ,A and ϕ(y){0,1} = ϕ(y′){0,1}.

Second, by construction we have that for each r there is h ∈ Bk such that (1G, h) ∈ M(ϕ(yr))
and ϕ(yr)Σ,±(1G) = ϕ(yr)Σ,±(h) ̸= ϕ(y′r)Σ,±(h) = ϕ(y′r)Σ,±(1G). This property passes again by
compactness to (y, y′).

Finally, Let F ⊂ G be the set of all positions where y and y′ coincide and map to a ⋆, that is

F = {g ∈ G \ (U(ϕ(y)) ∪ O(ϕ(y′))) : y(g) = y′(g)}.
Suppose by contradiction that there is a path from a vertex in (U(ϕ(y)) to some vertex in (O(ϕ(y))

in Cay(G, S) after removing F . Take t ≥ 0 large enough such that said path is of length at most t and
such that it is contained in Bt. By compactness, for all r large enough along a subsequence we have
that (yr, yr′) coincide with (y, y′) on Bt, thus we get a path from a vertex in (U(ϕ(yr)) to some vertex
in (O(ϕ(yr)) of length t that avoids the elements in g ∈ G where yr(g) = y′r(g

′). But by construction
yr and y′r coincide in gFr, thus we get a path from gUr to gOr of length at most t that avoids gFr.
This contradicts the fact that (Ur, Fr, Or) is an (m, k, r)-UFO for any r > t. □

The following consequence is immediate from the definitions in Section 2.2.

Corollary 4.6. Finitely generated extraterrestrial groups are not strongly self-simulable. Furthermore,
if such a group is recursively presented, then it is not self-simulable.

We note that in the case of groups that are not recursively presented, we do not obtain that extrater-
restrial groups are not self-simulable, with the original definition of [8]. In fact, the example below
provides an example of a (non-recursively presented) extraterrestrial group which is self-simulable.

Example 4.7. Let G be any finitely generated amenable simple group whose word problem is not
Π0

2. Such a group G is obtained from the derived subgroup of the topological full group of a minimal
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Z-subshift X. Specifically, in [27] it is shown that these groups are finitely generated simple groups
and that there are uncountably many examples. In [23], they are shown to be amenable.

The statement on the word problem follows from the fact that there are uncountably many finitely
generated amenable simple groups. Alternatively, one may show using the formulas in [27] that the
word problem is equivalent to the complement of the language of the subshift X under conjunctive
reductions (reducing instances of one problem, by a Turing machine, to a finite conjunction of instances
of the other problem). This is explained in more detail in [28, 19], though in slightly different settings.
It is well-known that the language of a subshift can be of any complexity whatsoever, so certainly one
can surpass Π0

2.
By [8, Proposition 2.10], any finitely generated group which admits a faithful computable action on

a Π0
1 subset of {0, 1}N has a Π0

2 word problem, hence (since G is simple) the only computable actions
of G are given by the trivial map on a Π0

1 set.
Consider Γ = G×G× Z. By the argument above, the only computable actions of Γ on Π0

1 subsets
are lifts of computable Z-actions. By the main result of [6] every such lift is the topological factor of a
Γ-SFT. Hence it follows that Γ is self-simulable and amenable. We shall later show in Proposition 5.1
that every amenable group is extraterrestrial.

5. Examples of extraterrestrial groups

The purpose of this section is to give examples of extraterrestrial groups and which thus satisfy the
conclusion of Theorem B

5.1. Amenable and multi-ended groups. In [2] it is shown that amenable groups (Theorem 2.16 of
[2]) and multi-ended groups (Theorem 2.17 of [2]) with decidable word problem are not self-simulable.
We provide short alternative proofs showing that those groups are extraterrestrial, these proofs hold
even if the word problem is undecidable.

Recall that a discrete group G is amenable if and only if for every ε > 0 and K ⋐ G there is F ⋐ G
such that |FK \ F | ≤ ε|F |.

Proposition 5.1. Finitely generated infinite amenable groups are extraterrestrial.

Proof. Let m ≥ 1 be a positive integer and fix a finite symmetric set of generators S for G which
contains the identity. As G is amenable, it follows that there exists U ⋐ G such that |US \U | ≤ 1

m |U |.
Take F = US \ U and let O ⊂ G \ US be any set of size |U | (this is possible since G \ US is

infinite). We have that |O| = |U | ≥ m|F | and that U and O lie on distinct components of Cay(G, S)
after removing F . If we let k = max{dS(g, g′) : g ∈ U and g′ ∈ O}, it follows that (U,F,O) is an
(m, k, r)-UFO for every r ≥ 1 and thus G is extraterrestrial. □

Recall that the number of ends of a finitely generated group G is the limit as n→ ∞ of the number
of infinite connected components that occur in Cay(G, S) (for some set of generators S) after removing
the ball of radius n. Alternatively, it is the number of equivalence classes of rays in Cay(G, S), where
two rays r1 and r2 are said to be equivalent if there exists a ray that contains infinitely many vertices
of both r1 and r2. It is well known that the number of ends of a group does not depend upon the
choice of generators. We say that G is multi-ended if it has more than one end. Equivalently, G is
multi-ended if for some finite set of generators S, there exists F ⋐ G such that Cay(G, S) has at least
two infinite components after removing F .

Proposition 5.2. Multi-ended groups are extraterrestrial.
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Proof. If G is multi-ended, there exists a finite subset F such that Cay(G, S) has more than one
infinite connected component after removing F . Given m ∈ N, take U in a connected component
of Cay(G, S) \ F such that |U | ≥ m|F | and O in an other infinite connected component such that
|U | = |O|. Take k = max{dS(g, g′) : g ∈ U and g′ ∈ O}. It follows that there exists a matching
between U and O by paths of length less than k. Moreover, there is no path from U to O which avoids
F . We deduce that for any r ∈ N, (U,F,O) is a (m, k, r)-UFO. Thus G is extraterrestrial. □

5.2. Amenable extensions of multi-ended graphs. In [9], we prove that the group Z× F2 is not
self-simulable. It is an example of one ended non-amenable group which is not self-simulable. Using
the language of Schreier graphs, we can state a generalization of this example.

Theorem 5.3. Let G be a finitely generated group and H ⩽ G an amenable subgroup. If for some
symmetric generating set S of G, the Schreier graph Sch(G,H, S) is extraterrestrial, then so is G.

Note that the choice of S does not matter, as being extraterrestrial is quasi-isometry invariant.

Proof. Let π : G → H\G be the canonical projection map given by π(g) = Hg. For m ∈ N, define
κ(m) to be minimal such that for every r ∈ N, there exists an (m,κ(m), r)-UFO in Sch(G,H, S).

Now, fix m ∈ N. Let (Ur, Fr, Or) be a (2m,κ(2m), r)-UFO in Sch(G,H, S). Choose U ′
r ⊂ G such

that π|U ′
r
is a bijection onto Ur. Now, by the definition of distance in the Schreier graph, there exists

O′
r such that π|O′

r
is a bijection onto Or and there is a complete matching with paths of length at

most κ(2m) between U ′
r and O′

r.
Also choose F ′

r arbitrarily so that π|F ′
r
is a bijection onto Fr. Let now

Kr = {h ∈ H : there exists u ∈ U ′
r and f ∈ F ′

r such that dS(u, hf) ≤ r}.
In other words, Kr is the set of heights of elements in the fibers of Fr that are at distance at most r
from U ′

r. Note that, as both U ′
r and F ′

r are finite, we also have that Kr is finite.
As H is amenable, there exists a finite set T ⋐ H such that |TKr \ T | ≤ |T |. We define

U = TU ′
r, O = TO′

r and F = TKrF
′
r.

By our previous definition, we have |U | = |U ′
r||T | = |Ur||T | and |F | = |TKr||F ′

r| ≤ 2|T ||Fr|. Since
(Ur, Fr, Or) is a (2m,κ(2m), r)-UFO, |Ur| ≥ 2m|Fr|, and so |U | ≥ m|F |.

As by construction there is a complete matching M ′ with paths of length at most κ(2m) between
U ′
r and O′

r, it follows that there is also a complete matching M with paths of length at most κ(2m)
between U and O. More explicitly, we may take M = {(hu, ho) : (u, o) ∈M ′, h ∈ T}.

Finally, let u = hu0 ∈ U with h ∈ T and u0 ∈ U ′
r and consider a path (hui)0≤i≤r in Cay(G, S)

such that hur ∈ O. As any path in G projects onto a path in Sch(G,H, S) and since (Ur, Fr, Or)
is a (2m,κ(2m), r)-UFO, there exists i0 ∈ {1, . . . , r} for which hui0 ∈ Hf for some f ∈ F ′

r. But if
hui0 = h′f with h′ ∈ H, then dS(u1, h

−1h′f) = i0 ≤ r and thus it must be that h−1h′ ∈ Kr. We
conclude that hui0 ∈ TKrF

′
r = F . This means that any path of length at most r between U and O

must cross F , and so (U,F,O) is a (m,κ(2m), r)-UFO. □

Corollary 5.4. Let 1 → H → G →π K → 1 be a short exact sequence where H is amenable, G is
finitely generated and K is extraterrestrial. Then G is extraterrestrial.

Proof. For any finite generating set S of G, the Schreier graph Sch(G,H, S) is isomorphic to the Cayley
graph Cay(K, π(S)). In particular, it is extraterrestrial. By Theorem 5.3, G is extraterrestrial. □

Corollary 5.5. Let G be a finitely generated group, and H ≤ G an amenable subgroup. If for some
generating set S, the Schreier graph Sch(G,H, S) is multi-ended, then G is extraterrestrial.
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Proof. This is an immediate consequence of Theorem 5.3 and Proposition 5.2. □

We will say that a group admits an amenable cut if it satisfies the hypotheses of Corollary 5.5.
All known examples of groups that are not self-simulable fall under this corollary. However, there are
cases where it is more natural to construct UFOs geometrically, as we will see in the case of hyperbolic
surface groups. As a particular case of this previous corollary, the result of [8, Proposition 3.10] which
states that Z× F2 is not self-simulable falls into the following corollary.

Corollary 5.6. Let G = H × K such that H is amenable and K is not one-ended. The group G is
extraterrestrial.

Proof. Consider the short exact sequence 1 → H → G →π K → 1 where π is the natural projection to
the second coordinate. If K is zero-ended, then it is finite and so G is amenable. By Proposition 5.1,
it is extraterrestrial. Otherwise, K is multi-ended and so by Proposition 5.2 it is extraterrestrial. We
conclude with Corollary 5.4. □

5.3. Amalgamated free products and HNN extensions. In this section we will provide natural
conditions under which amalgamated free products and HNN extensions are extraterrestrial.

Given groups G1,G2,H and embeddings ϕ1 : H → G1, ϕ2 : H → G2 the amalgamated free product
of G1 and G2 along H is given by

G1 ∗H G2 = ⟨G1,G2 | ϕ1(h) = ϕ2(h) for all h ∈ H}.
A normal form for an amalgamated free product can be obtained as follows. For i ∈ {1, 2}, choose

a set of representatives Ti of the cosets ϕi(H)\Gi which contains the identity. A normal form is a
sequence x0, . . . , xn such that x0 ∈ ϕ1(H) and for j ≥ 1 each xj is either in T1 \ {1} or T2 \ {1} in an
alternating way. Every element is equal to a normal form, and distinct normal forms correspond to
distinct elements, see [25].

Proposition 5.7. Let G1,G2,H be finitely generated groups with H amenable. Let ϕ1 : H → G1 and
ϕ2 : H → G2 be proper embeddings. Then the amalgamated free product G1 ∗H G2 is extraterrestrial.

Proof. Take S1, S2 finite symmetric set of generators of G1,G2 respectively and take S = S1 ∪ S2. It
is clear that S generates G1 ∗H G2. For each i ∈ {1, 2} choose a set of representatives Ti of the cosets
ϕi(H)\Gi which contains the identity. As the embeddings are proper, we have that |Ti| ≥ 2.

By Corollary 5.5 it suffices to show that the Schreier graph Sch(G1 ∗HG2,H, S) is multi-ended. Take
g1 ∈ T1 \{1} and g2 ∈ T2 \{1}. From the structure of the normal forms, it is easy to show that for any
n ∈ N, ϕ1(H)(g1g2)

n and ϕ1(H)(g2g1)
n lie in distinct connected components of Sch(G1 ∗H G,ϕ1(H), S)

after removing ϕ1(H). Thus the rays (ϕ1(H)(g1g2)
n)n∈N and (ϕ1(H)(g2g1)

n)n∈N are non equivalent in
Sch(G1 ∗H G2,H, S), and it is hence multi-ended. □

We remark that Proposition 5.7 may fail if one of the embeddings is not proper. For instance,
if we take G1 = H = Z, ϕ1 the identity, G2 = F2 × F2 and ϕ2 : Z → F2 × F2 any embedding,
then G1 ∗H G2

∼= F2 × F2 which is not extraterrestrial (due to Theorem B and the fact that it is
self-simulable).

Next we consider the case of HNN-extensions. Let G be a group, H1,H2 two subgroups of G and
ϕ : H1 → H2 an isomorphism. The HNN-extension of G relative to ϕ is the group

G∗ϕ = ⟨G, t | t−1ht = ϕ(h) for all h ∈ H1⟩.
In the presentation above we call t the stable generator. We shall need the following lemma of Britton
whose proof can be found for instance in [25].
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Lemma 5.8 (Britton’s lemma). Let n ≥ 1 and g = g0t
ϵ1g1 . . . t

ϵngn ∈ G∗ϕ where each gi ∈ G and
ϵi ∈ {−1,+1}. If g = 1G∗ϕ , then there exists a subword of the form t−1git with gi ∈ H1 or tgjt

−1 with
gj ∈ H2.

This can be refined to a normal form (with unique representations for elements), but this lemma
suffices for our purposes.

We obtain the following proposition.

Proposition 5.9. Let G be a finitely generated group and ϕ : H1 → H2 an isomorphism between
amenable subgroups of G. Then G∗ϕ is extraterrestrial.

Proof. Let t be the stable generator of G∗ϕ, F a finite generating set of G and let S = F ∪ {t, t−1}.
Recall that for some word w on the generators we write w for the corresponding element in the group.

Consider the Schreier graph Sch(G∗ϕ,H1, S). Notice that if we remove the vertex H1, the rays
{H1t

n}n≥1 and {H1t
−n}n≥1 lie in the same connected component as H1t and H1t

−1 respectively, thus
it suffices to show that H1t and H1t

−1 lie in distinct connected components.
Let x1 . . . xn ∈ S∗ be such that H1tx1 . . . xn = H1t

−1. It follows that there is a ∈ H1 such that

atx1 . . . xnt = 1G∗ϕ .

By Britton’s lemma, either there exists a subword of w0 = atx1 . . . xnt of the form tϵxt−ϵ with x ∈ F ∗

such that either ϵ = −1 and x ∈ H1, or ϵ = 1 and x ∈ H2. It follows that we may replace any of these
words by some word in F ∗ and obtain another word which represents 1G∗ϕ and has one less occurrence
of both t and t−1. Iteratively define wi+1 from wi by doing the leftmost possible replacement as above.

As the number of pairs of t, t−1 is reduced with each iteration, it follows that there is some k ≥ 0
such that there is a prefix uk of wk that has the form atxt−1 with x ∈ H2. In particular, atxt−1 ∈ H1.
Write wk = ukvk the replacements described above and note that, as we are replacing a word on
F , the word we are going to replace is either completely contained in uk or vk, thus we may write
wk−1 = uk−1vk−1 by performing the replacement in the corresponding portion. Note that uk = uk−1.
Iterating this procedure we obtain a decomposition w0 = u0v0 such that u0 = uk ∈ H1. Furthermore,

u0 ends with t−1, thus it is a strict prefix of w0. Therefore any path from H1t to H1t
−1 must cross

H1. It follows that Sch(G∗ϕ,H1, S) is multi-ended, and so by Corollary 5.5, G is extraterrestrial. □

Example 5.10. Given m,n ∈ Z\{0}, the Baumslag-Solitar group BS(m,n) is the group given by the
presentation

BS(m,n) = ⟨a, b | bamb−1 = an⟩.
BS(m,n) can be seen as the HNN-extension of Z = ⟨a⟩ relative to the isomorphism ϕ : ⟨am⟩ → ⟨an⟩
that sends am to an. This group acts cocompactly by automorphisms without inversions and with
infinite cyclic edge and vertex stabilizers on its Bass-Serre tree. In Figure 5.1 we show the Bass-Serre
tree in the case m = 1, n = 2.

From the cases of amalgamated free products and HNN-extensions, we can deduce a general propo-
sition about groups acting on trees. For this, we introduce the notion of graph of groups. A graph of
groups is the data of

(1) An oriented graph G = (V,E) with origin and end maps o, t : E → V and inversion map
i : E → E.

(2) A family of vertex groups (Gv)v∈V .
(3) A family of edge groups (He)e∈E with monomorphisms ψe,o : He → Go(e) and ψe,t : He → Gt(e).
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b−1⟨a⟩

⟨a⟩

b⟨a⟩ ab⟨a⟩

b2⟨a⟩ bab⟨a⟩ ab2⟨a⟩ abab⟨a⟩

Figure 5.1. A finite portion of the Bass-Serre tree of BS(1, 2)

Then, if T is a covering tree of G, the fundamental group of the graph of groups is the group generated
by the vertex groups (Gv)v∈V and additional generators se for every e ∈ E subjected to the following
relations.

(1) ∀e ∈ E, si(e) = s−1
e .

(2) ∀e ∈ T, se = 1.
(3) ∀e ∈ E,∀x ∈ Ge, s−1

e ψe,o(x)se = ψe,t(x).

The choice of a covering tree does not change the fundamental group up to isomorphism [30, §5,
Proposition 20].

Example 5.11. The fundamental group of a segment of groups

G1 G2H
is the free product with

amalgamation G1 ∗H G2. The fundamental group of a loop of groups
G

H is the HNN-extension

G∗ψe,t◦ψ−1
e,o .

Fundamental groups of graphs of groups hence are a generalization of amalgamated free products
and HNN-extensions, moreover, they are built inductively from these two constructions.

If G acts cocompactly by automorphisms without edge inversions on a tree T , then there exists a
surjective graph morphism π : T → T/G, and T/G is finite. Since G acts without edge inversions,
an element that stabilizes an edge also stabilizes its ends. Hence, for every e ∈ E(T ), there are
monomorphisms ψe,o and ψe,t from Stab(e) to the stabilizers of its ends. We can then endow G = T/G
with a graph of groups structure by setting Gπ(v) = Stab(v) for every v ∈ V (T ) and Gπ(e) = Stab(e)
for every e ∈ E(T ) with the monomorphisms induced by the ψe,o, ψe,t. The structure theorem of
groups acting on trees [30, §5, Theorem 13] states that the graph of groups thus defined has G as a
fundamental group.

Proposition 5.12. Let G be a finitely generated group. Suppose that G acts cocompactly by automor-
phisms without edge inversions on a tree. Suppose further that no vertex is fixed by G and that edge
stabilizers are amenable. Then G is extraterrestrial.

Proof. By the structure theorem of groups acting on trees, G may be realized as the fundamental
group of a finite graph of groups with amenable edges. As no vertex is fixed by G, we can also observe
that G is not a vertex group of this graph of groups. But since fundamental groups of graphs of groups
are built inductively by amalgamated free products and HNN-extensions, it follows that either G is an
HNN-extension over an amenable subgroup, or it is an amalgamated free product over an amenable
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subgroup. In this case, since G is not a vertex group of the graph of groups, this amenable subgroup
must be a proper subgroup. We conclude with Proposition 5.7 and Proposition 5.9. □

We remark that since edge stabilizers inject in vertex stabilizers, it follows from this result that if
the infinite group G acts co-compactly by automorphisms without edge inversions and with amenable
vertex stabilizers on a tree, then G is extraterrestrial. Indeed, if a vertex is universally fixed, then G is
infinite and amenable and we conclude by Proposition 5.1, and if not, then G verifies the condition of
Proposition 5.12. We also note that the proof of Proposition 5.12 also shows that fundamental groups
of graphs of groups with at least one amenable edge that embeds properly, are extraterrestrial.

An immediate corollary of Proposition 5.12 is the following.
A generalized Baumslag-Solitar group is a group that has a faithful cocompact action on a tree by

automorphisms, without edge inversions and with infinite cyclic edge and vertex stabilizers.

Corollary 5.13. Generalized Baumslag-Solitar groups are extraterrestrial.

5.4. Groups quasi-isometric to the hyperbolic plane. In this section we show that any finitely
generated group which is quasi-isometric to the hyperbolic plane is extraterrestrial. We will first
provide a direct proof.

Definition 5.14. The pentagon model is the graph with vertices Z2, and edges

{{(m,n), (m+ 1, n)} : m,n ∈ Z} ∪ {{(m,n), (2m,n− 1)} : m,n ∈ Z}.

Figure 5.2. A finite portion of the pentagon model.

In Figure 5.2 a representation of the pentagon model is shown. It is well known that the pentagon
model is quasi-isometric to the hyperbolic plane H = {z ∈ C : Im(z) > 0} with the usual hyperbolic
metric. An explicit quasi-isometry from the vertices of the pentagon model to H is given by

(m,n) 7→ m2n + 2ni.

Lemma 5.15. The pentagon model is extraterrestrial.

Proof. Let m, r ∈ N be arbitrary. An (m, 6m+ 1, r)-UFO is given by

U = {(h, v) ∈ Z2 : −3m ≤ h < 0 and 0 ≤ v < r},
F = {(0, v) ∈ Z2 : −r ≤ v ≤ 2r − 1},
O = {(h, v) ∈ Z2 : 0 < h ≤ 3m and 0 ≤ v < r}.
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Indeed, we have |U | = 3mr and |F | = 3r, thus |U | ≥ m|F |. A matching by paths of length at most
6m + 1 is given by M = {

(
(−h, v), (h, v)

)
∈ U × O : 0 < h ≤ 3m and 0 ≤ v < r}, the paths are

given by just increasing the first coordinate one by one. Finally, notice that any path from U to O
must necessarily contain a vertex with horizontal coordinate 0. If said path avoids F , then this vertex
necessarily has vertical coordinate either smaller than −r or larger than m + r. As each edge in this
graph modifies the vertical coordinate at most by one, said path has length at least r. □

Proposition 5.16. Let G be a finitely generated group which is quasi-isometric to the hyperbolic plane
H. Then G is extraterrestrial.

Proof. Let S be a generating set for G. As both the pentagon model and Cay(G, S) are quasi-
isometric to H, it follows that the pentagon model is quasi-isometric to Cay(G, S). By Theorem A
and Lemma 5.15 we deduce that Cay(G, S) is extraterrestrial. □

A Fuchsian group is a discrete subgroup of PSL(2,R). These groups act faithfully on the hyperbolic
plane by Möbius transformations. In particular, when they act cocompactly, they give a natural class
of groups which are finitely generated and quasi-isometric (by the Schwarz-Milnor lemma) to H. We
obtain the following corollary

Corollary 5.17. Every cocompact Fuchsian group is extraterrestrial.

Another interesting class of groups which we can completely classify are fundamental groups of
surfaces. In the case of surfaces which are not closed (that is, either they are not compact or they have
boundary), the fundamental group is free and thus is extraterrestrial by Proposition 5.2. For closed
surfaces we may discard the case of non-orientable surfaces, as they admit an orientable 2-cover and
thus their fundamental groups are commensurable to the fundamental group of an orientable surface.
Therefore, the only remaining case is when the surface is closed and orientable and the only remaining
parameter is the genus g. If g ≤ 1 the fundamental group is amenable and thus is extraterrestrial
by Proposition 5.1. Finally, if g ≥ 2 the fundamental group is given by

π1(Σg) = ⟨a1, b1, ..., ag, bg | [a1, b1] . . . [ag, bg] = 1⟩.

See for instance [26, Chapter 4]. These groups are all commensurable for g ≥ 2 and quasi-isometric to
the hyperbolic plane, thus by Lemma 5.15 we obtain the following corollary.

Corollary 5.18. The fundamental group of any 2-manifold is extraterrestrial.

5.5. An amenable cut in the surface group. We now give an alternative proof that the fun-
damental group of a closed orientable surface of genus g = 2 (from now on, the surface group) is
extraterrestrial. This has the advantage of showing explicitly that this group admits an amenable cut
in the sense of Corollary 5.5. Before giving a proof, let us outline how one can “see this immediately”
in the previous proof. Surface groups are hyperbolic, and in a hyperbolic group G, every element of
infinite order will define a quasi-geodesic, i.e. n 7→ gn is a quasi-isometric embedding of Z into G,
see [10, Corollary 3.10].

Thus, if we pick any torsion-free element g, then ⟨g⟩ induces a quasi-geodesic in the pentagon model.
It is easy to convince oneself that such a quasi-geodesic must roughly cut the space into two parts. Now
one just has to find elements of the group such that right translation by them moves one respectively
to the left and right side of the path. It is easy to convince oneself that these exist (one may also
construct this explicitly using the Cayley graph depicted in [1] and perform an analogous argument
directly there).
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For the precise proof, we essentially directly obtain the statement from the literature, though it
takes a bit of work to translate everything to our setting. Specifically, we will use a theorem from [29].
Thus, we need to recall the definition of ends used in [29], as it is slightly different from ours. Let G
be a group and C a subgroup. Let C\G denote the quotient of G by the left action of C. Then G
acts on the right on C\G. Define Z2(C\G) as the Z2-vector space of subsets of C\G under symmetric
difference, and Z2(C\G) as the subspace of vectors with finite support (i.e. the support consists of
finitely many cosets). Define now E(C\G) = Z2(C\G)/Z2(C\G) and let C0(G, E(C\G)) = E(C\G)
and C1(G, E(C\G)) = {ϕ : G → E(C\G)} be the usual cochain groups. Take the canonical map
∂1 : C0(G, E(C\G)) → C1(G, E(C\G)) where for ϕ ∈ E(G, C) and g ∈ G we have

∂1(ϕ)(g) = gϕ · ϕ.

Set the 0-th homology group as H0(G, E(C\G)) = ker(∂1).

Definition 5.19. e(G, C) is the dimension, as a Z2-vector space, of the group H0(G, E(C\G)).

Lemma 5.20. e(G, C) is the number of ends of the Schreier graph of G with respect to C.

Proof. The elements ϕ ∈ H0(G, E(C\G)) are precisely the elements of E(C\G) which satisfy that for
all g ∈ G then gϕ · ϕ = ϕ. That is, it is the vector space of subsets of C\G (modulo finite differences)
which are invariant under right translation (modulo finite differences).

Take some finite symmetric generating set S of G and consider the Schreier graph Γ = Sch(G, C, S).
Thus in terms of the Schreier graph, e(G, C) is the dimension of the vector space of subsets of the
Schreier graph (modulo finite differences) which are invariant under right translation (modulo finite
differences).

Suppose there are at least k ends in Sch(G, C, S), then we can find a finite subset of the Schreier
graph D ⊂ C\G such that Sch(G, C, S) has at least k infinite connected components after removing D.
The characteristic functions of these components are elements of H0(G, E(C\G)) which are linearly
independent, thus e(G, C) ≥ k. On the other hand, suppose that the dimension is at least k, and let
v1, . . . , vk ∈ H0(G, E(C\G)) be linearly independent. We can find a finite subset D of C\G outside
which the vi are closed under S-translations (i.e, for i ∈ {1, . . . , k and s ∈ S take Di,s as the finite set
of elements where vi differs from svi and then take D as the union of the Di,s). Thus, their supports
must be formed out of connected components of Sch(G, C, S) after removing D. For the dimension to
be at least k, we need at least k connected components. □

Proposition 5.21. The surface group has an amenable cut.

Proof. Lemma 2.2 in [29] states that if G is the fundamental group of a closed surface F and C is the
fundamental group of a compact, incompressible subsurface X of F , then e(G, C) equals the number
of boundary components of X. Recall that e(G, C) is just the number of ends of the Schreier graph
of C, so it suffices to find an incompressible subsurface X in the genus 2 closed surface F , such that
X has two boundary components, and the fundamental group of X is amenable. Here, incompressible
means that every boundary component does not bound a disc.

Such X is shown in Figure 5.3: there are clearly two boundary components, and π1(X) = Z. □
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