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Abstract. We study an abstract group of reversible Turing machines. In our model, each machine is
interpreted as a homeomorphism over a space which represents a tape filled with symbols and a head
carrying a state. These homeomorphisms can only modify the tape at a bounded distance around
the head, change the state and move the head in a bounded way. We study three natural subgroups
arising in this model: the group of finite-state automata, which generalizes the topological full groups
studied in topological dynamics and the theory of orbit-equivalence; the group of oblivious Turing
machines whose movement is independent of tape contents, which generalizes lamplighter groups
and has connections to the study of universal reversible logical gates; and the group of elementary
Turing machines, which are the machines which are obtained by composing finite-state automata and
oblivious Turing machines. We show that both the group of oblivious Turing machines and that of
elementary Turing machines are finitely generated, while the group of finite-state automata and the
group of reversible Turing machines are not. We show that the group of elementary Turing machines
has undecidable torsion problem. From this, we also obtain that the group of cellular automata (more
generally, the automorphism group of any uncountable one-dimensional sofic subshift) contains a
finitely-generated subgroup with undecidable torsion problem. We also show that the torsion problem
is undecidable for the topological full group of a full Zd-shift on a non-trivial alphabet if and only if
d ě 2.
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1. Introduction

This article is the extended version of the conference paper [4]. The main new results that did not
appear in the conference paper are that elementary Turing machines are finitely generated, and that
automorphism groups of uncountable sofic Z-shifts have finitely-generated subgroups with undecidable
torsion problem.

1.1. Turing machines and their generalization. Turing machines have been studied since the 30s
as the standard formalization of the abstract concept of computation. However, more recently, Turing
machines have also been studied in the context of dynamical systems. In [25], two dynamical systems
were associated to a Turing machine, one with a “moving tape” and one with a “moving head”. After that,
there has been a lot of study of dynamics of Turing machines, see for example [18, 37, 23, 13, 12, 19, 14].
Another connection between Turing machines and dynamics is that they can be used to describe
“effectively closed” zero-dimensional dynamical systems. A particularly interesting case is that of
subshifts whose forbidden patterns are enumerated by a Turing machine. These subshifts are called
effectively closed, or Π0

1 subshifts, and especially in multiple dimensions, they are central to the topic
due to the strong links known between SFTs, sofic shifts and Π0

1-subshifts, see for example [17, 10, 3].
An intrinsic notion of Turing machine computation for these subshifts on general groups was proposed
in [2], and a similar study was performed with finite state machines in [35, 34].

In all these papers, the definition of a Turing machine is (up to mostly notational differences and
switching between the moving tape and moving head model) the following: A Turing machine is a
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function T : ΣZ ˆQ Ñ ΣZ ˆQ defined by a local rule fT : Σ ˆQ Ñ Σ ˆQˆ t´1, 0, 1u by the formula

T px, qq “ pσ´dpx̃q, q1q if fT px0, qq “ pa, q1, dq,

where σ : ΣZ Ñ ΣZ is the shift action given by σdpxqz “ xz´d, x̃0 “ a and x̃|Zzt0u “ x|Zzt0u. In this
paper, such Turing machines are called classical Turing machines. This definition (as far as we
know) certainly suffices to capture all computational and dynamical properties of interest, but it also
has some undesirable properties: The composition of two classical Turing machines – and even the
square of a classical Turing machine – is typically not a classical Turing machine, and the reverse of a
reversible classical Turing machine is not always a classical Turing machine.

In this paper, we give a more general definition of a Turing machine, by allowing it to move the head
and modify cells at an arbitrary (but bounded) distance on each timestep. With the new definition, we
get rid of both issues: With our definition,

‚ Turing machines are closed under composition, forming a monoid, and
‚ reversible Turing machines are closed under inversion, forming a group.

We also characterize reversibility of classical Turing machines in combinatorial terms, and show what
their inverses look like. Our definition of a Turing machine originated in the yet unpublished work of
M. Schraudner and the last author, where the group of such machines was studied on general subshifts
(with somewhat different objectives). The same definition was given in 1991 by Moore [31] under the
name “generalized shifts”.

These benefits of the definition should be compared to the benefits of allowing arbitrary radii in
the definition of a cellular automaton: If we define cellular automata as having a fixed radius of, say,
3, then the inverse map of a reversible cellular automaton is not always a cellular automaton, as the
inverse of a cellular automaton may have a much larger radius, see [9]. Similarly, with a fixed radius,
the composition of two cellular automata is not necessarily a cellular automaton.

We give our Turing machine definitions in two ways, with a moving tape and with a moving head,
as done in [25]. The moving tape point of view is often the more useful one when studying one-step
behavior and invariant measures, whereas we find the moving head point of view easier for constructing
examples, and when we need to track the movement of multiple heads. The moving head Turing
machines are in fact a subset of cellular automata on a particular kind of subshift. The moving tape
machine on the other hand is a generalization of the topological full group of a subshift, which is an
important concept in particular in topological dynamics and the theory of orbit equivalence. For the
study of topological full groups of minimal subshifts and their interesting group-theoretic properties,
see for example [15, 16, 20]. The (one-sided) SFT case is studied in [30]. We shall show that our two
Turing machine models yield isomorphic monoids, and isomorphic groups in the case of reversible
Turing machines.

1.2. Our results and comparisons with other groups. In Section 2, we define our models and
prove basic results about them. In Section 2.3, we define a natural uniform measure on these spaces
and use it to show that injectivity and surjectivity are both equal to reversibility in our model.

Our results have interesting counterparts in the theory of cellular automata: One of the main
theorems in the theory of cellular automata is that on a large class of groups (the surjunctive groups,
see for instance Section 3 of [8]) injectivity implies surjectivity, and (global) bijectivity is equivalent
to having a cellular automaton inverse map. Furthermore, one can attach to a reversible one- or
two-dimensional cellular automaton its “average drift”, that is, the speed at which information moves
when the map is applied, and this is a homomorphism from the group of cellular automata to a subgroup
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of Qd under multiplication (where d is the corresponding dimension), see [21]. In Section 3 we use the
uniform measure to define an analog, the “average movement” homomorphism for Turing machines.

In Section 3, we define some interesting subgroups of the group of reversible Turing machines. First,
we define the local permutations – Turing machines that never move the head at all –, and their
generalization to oblivious Turing machines where movement is allowed, but is independent of the tape
contents. The group of oblivious Turing machines can be seen as a kind of generalization of lamplighter
groups. It turns out that the group of oblivious Turing machines is finitely generated. Our proof relies
strongly on the existence of universal reversible logical gates, see [1].

We also define the group of (reversible) finite-state machines – Turing machines that never modify
the tape. This group is not finitely generated, but we give a natural infinite generating set for it.
Finite-state machines with a single state exactly correspond to the topological full groups of full shifts,
and in this sense our definition of a reversible finite-state machine can be seen as a generalization of
the topological full group on a full Zd-shift.

Our original motivation for defining these subgroups – finite-state machines and local permutations –
was to study the question of whether they generate all reversible Turing machines. Namely, a reversible
Turing machine changes the tape contents at the position of the head and then moves, in a globally
reversible way. Thus, it is a natural question whether every reversible Turing machine can actually
be split into reversible tape changes (actions by local permutations) and reversible moves (finite-state
automata).

We call the join of finite-state machines and local permutations elementary Turing machines, and
show that not all Turing machines are elementary, as Turing machines can have arbitrarily small average
movement, but elementary ones have only a discrete sublattice of possible average movements. However,
we show that every reversible classical Turing machine (and thus all its iterates) is elementary.

A reason why elementary Turing machines are so interesting is that, while we show that the group
of reversible Turing machines is not finitely generated (Theorem 3.11), we have that the group of
elementary Turing machines on a one-dimensional tape is finitely generated, for any fixed alphabet size
and number of states.

Theorem 1.1. The group of elementary Turing machines on n symbols, k states and dimension 1 is
finitely generated for every n, k ě 1.

In Section 4, we show that the group of Turing machines is recursively presented and has a decidable
word problem, but that its torsion problem (the problem of deciding if a given element has finite order)
is undecidable in all dimensions. In fact, we show that the finitely-generated group of elementary
Turing machines has an undecidable torsion problem in the purely group-theoretic sense. The proof is
based on simulating classical Turing machines with elementary ones on a fixed alphabet and state set,
with a simulation that preserves finite orbits. The result follows because the periodicity of reversible
Turing machines is undecidable [23].

Theorem 1.2. The torsion problem of the group of elementary Turing machines on n symbols, k states
and dimension d is undecidable for every n ě 2, k ě 1 and d ě 1.

As an application of the former result, we obtain that there is a finitely-generated group of reversible
cellular automata on a full shift (thus on any uncountable sofic shift), which has undecidable torsion
problem. This follows from an “almost-embedding” of the group of Turing machines into the group of
cellular automata – there is no actual embedding for group-theoretic reasons, but we show that the
almost-embedding we construct preserves the decidability of the torsion problem.
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Corollary 1.3. Let X be an uncountable sofic Z-subshift. Then there is a finitely generated subgroup
of AutpXq which has undecidable torsion problem.

For finite-state machines, we show that the torsion problem is decidable in dimension one, but is
undecidable in higher dimensions; again we construct a finitely-generated subgroup where the problem
is undecidable. The proof in the one-dimensional case is based on a simple pigeonhole argument, while
in the higher-dimensional case undecidability is a corollary of the undecidability of the snake tiling
problem [22].

Theorem 1.4. Consider the group G of finite-state machines on n ě 2 symbols, k ě 1 states and
dimension d ě 1,

(1) The torsion problem of G is decidable if d “ 1.
(2) G contains a finitely generated subgroup with undecidable torsion problem when d ě 2.

Furthermore, we show that the decidability result holds for finite-state machines running on an
arbitrary sofic subshift and that in fact their finiteness problem is decidable meaning we can decide
whether a given finitely-generated subgroup is finite or not (which implies the decidability of their
torsion problem). As a special case of our results, we obtain the following statement about topological
full groups.

Corollary 1.5. Let d ě 2. The topological full group of a full Zd-shift on at least two symbols contains
a finitely generated subgroup with undecidable torsion problem.

We note that our group is very similar to the Thompson-Brin group 2V [6, 5], the main difference
being that elements of 2V can erase and add symbols to the tape; indeed RTMp2, 1q can be seen
naturally as a subgroup of 2V, consisting of elements that do not use this addional functionality.
Our group is not isomorphic to any of the Thompson-Brin groups nV, as they are finitely generated.
Thompson’s V has a decidable torsion problem, but that of 2V is not, also due to the undecidability of
periodicity of reversible Turing machines.

1.3. Preliminaries. In this section we present general definitions and fix the notation which is used
throughout the article. The review of these concepts will be brief and focused on the dynamical aspects.
For a more complete introduction the reader may refer to [28]. We restrict our setting to finitely
generated and torsion-free abelian groups Zd, although, just like with cellular automata [8], the idea of
a Turing machine directly generalizes to general groups. All of the results of this and the following
section directly generalize for arbitrary countable groups G in place of Zd.

Let A be a finite alphabet. The set AZd

“ tx : Zd Ñ Au equipped with the shift action σ : ZdˆAZd

Ñ

AZd defined by pσv⃗pxqqu⃗ “ xu⃗´v⃗ is a full shift. Thus σv⃗ shifts cell contents in direction v⃗, or equivalently
moves the origin of x to ´v⃗. The elements a P A and x P AZd are called symbols and configurations
respectively. Configuration x P AZd is periodic if σv⃗pxq “ x for some non-zero v⃗ P Zd, and it is
eventually periodic if there exists a periodic configuration y P AZd that differs from x only in finitely
many positions. With the discrete topology on A the set of configurations AZd is a compact metrizable
space, a generating metric is given by dpx, yq “ 2´ inft|v⃗| : v⃗PZd, xv⃗‰yv⃗u where |v⃗| is the taxicab norm
|v⃗| “

řd
i“1 |v⃗i|.

This topology has the sets rasv⃗ “ tx P AZd : xv⃗ “ a P Au as a subbasis. A support is a finite
subset F Ă Zd. Given a support F , a pattern with support F is an element p of AF . The cylinder
generated by p in position v⃗ is rpsv⃗ “

Ş

u⃗PF rpu⃗sv⃗`u⃗. For simplicity, we write rps “ rps⃗0.

Definition 1.6. A subset X of AZd is a subshift if it is topologically closed and σ-invariant, that is,
for every v⃗ P Zd we have σv⃗pXq Ă X.

4



Equivalently, X is a subshift if and only if there exists a set of patterns F that defines it.

X “
č

pPF,v⃗PZd

AZd

zrpsv⃗.

Any such F which defines X is called a set of forbidden patterns for X.
For a subshift X Ă AZd and a finite support F Ă Zd we define the language LF pXq of support F

of X as the set of patterns p P AF such that rps X X ‰ ∅. The language of X is the union LpXq of
LF pXq over all finite F Ă Zd. We denote p < X iff p P LpXq. For an individual configuration x P AZd

we denote p < x iff x P rpsv⃗ for some v⃗ P Zd, and we say that pattern p occurs in x.
Let X,Y be subshifts over alphabets A and B respectively. A continuous Zd-equivariant (i.e. shift-

commuting) map ϕ : X Ñ Y between subshifts is called a morphism. A well-known theorem of Curtis,
Lyndon and Hedlund which can be found in full generality in [8] asserts that morphisms are equivalent
to maps defined by local rules as follows: There exists a finite F Ă Zd and Φ: AF Ñ B such that for
every x P X, ϕpxqv⃗ “ Φpσ´v⃗pxq|F q. If ϕ is an endomorphism (that is, X “ Y ) then we refer to it as a
cellular automaton. A cellular automaton is said to be reversible if there exists a cellular automaton
ϕ´1 such that ϕ ˝ ϕ´1 “ ϕ´1 ˝ ϕ “ id. It is well known that reversibility is equivalent to bijectivity, see
Section 1.10 of [8].

Throughout this article we use the following notation inspired by Turing machines. We denote by
Σ “ t0, . . . , n´ 1u the set of tape symbols and Q “ t1, . . . , ku the set of states. We also use the symbols
n “ |Σ| for the size of the alphabet and k “ |Q| for the number of states. Given a function of the form
f : Ω Ñ A1 ˆ . . .ˆAm we denote by fi the projection of f to the i-th coordinate.

2. Two models for Turing machine groups

In this section we define our generalized Turing machine model, and the group of Turing machines.
In fact, we give two definitions for this group, one with a moving head and one with a moving tape
as in [25]. We show that – except in the case of a trivial alphabet – these groups are isomorphic.1

Furthermore, both can be defined both by local rules and “dynamically”, that is, in terms of continuity
and the shift action. In the moving tape model we characterize reversibility as preservation of a suitably
defined measure.

2.1. The moving head model. In the moving head model, we will represent our space as ΣZd

ˆQˆZd.
That is, the product of the set of configurations ΣZd , a set of states Q and the possible positions of a
head Zd. The objects of this space are therefore 3-tuples px, q, v⃗q. In order to write this in a shorter
manner, we use the notation xv⃗

q instead of px, q, v⃗q.
Given a function

f : ΣFin ˆQ Ñ ΣFout ˆQˆ Zd,

where Fin, Fout are finite subsets of Zd, we can define a map Tf : ΣZd

ˆQˆZd Ñ ΣZd

ˆQˆZd as follows:
given xv⃗

q P ΣZd

ˆ Q ˆ Zd let p “ σ´v⃗pxq|Fin and fpp, qq “ pp̃, q̃, ˜⃗uq. Then we define Tf pxv⃗
qq :“ x̃v⃗`˜⃗u

q̃

where:

x̃u⃗ “

$

&

%

xu⃗ if u⃗´ v⃗ R Fout

p̃u⃗´v⃗ if u⃗´ v⃗ P Fout

Definition 2.1. A function T for which there is an f : ΣFin ˆQ Ñ ΣFout ˆQˆ Zd such that T “ Tf

is called a moving head pZd, n, kq-Turing machine, and f is its local rule. If there exists a
pZd, n, kq-Turing machine T´1 such that T ˝ T´1 “ T´1 ˝ T “ id, we say T is reversible.

1Note that the dynamics obtained from these two definitions are in fact quite different, as shown in [25, 26].
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This definition corresponds to classical Turing machines with the moving head model when d “ 1,
Fin “ Fout “ t⃗0u and f3px, qq P t´1, 0, 1u for all x, q. An illustration of how a moving head Turing
machine acts can be seen in Figure 1. Note that σ´v⃗pxq|F is the F -shaped pattern “at v⃗”. We do not
write x|v⃗`F because we want the pattern we read from x to have F as its domain.

Note that one of these machines could be defined by several different local functions f , and that
the third component of f has finite range. Also, given f : ΣFin ˆ Q Ñ ΣFout ˆ Q ˆ Zd we can define
F :“ Fin Y Fout Y f3pΣFin ˆ Qq and f 1 : ΣF ˆ Q Ñ ΣF ˆ Q ˆ F such that Tf “ Tf 1 . This motivates
the following definition: The minimal neighborhood of T is the minimum set for inclusion F for
which there is f : ΣF ˆQ Ñ ΣF ˆQˆ F such that T “ Tf . This minimum always exists as the set of
finite subsets of Zd which work for this definition is closed under intersections.

As Zd is finitely generated, we can also use a numerical definition of radius in place of the neighborhood:
Let Bpv⃗, rq be the set of u⃗ P Zd such that |u⃗´ v⃗| ď r. By possibly changing the local rule f , we can
always choose Fin “ Bp⃗0, riq and Fout “ Bp⃗0, roq for some ri, ro P N, without changing the Turing
machine Tf it defines. The minimal such ri is called the in-radius of T , and the minimal ro is called
the out-radius of T . We say the in-radius of a Turing machine is ´1 if there is no dependence on
input, that is, the neighborhood Bp0d, riq can be replaced by the empty set. The maximum value of |v⃗|

for all v⃗ P f3pΣF ˆQq is called the move-radius of T . Finally, the maximum of all these three radii is
called the radius of T . In this terminology, classical Turing machines are those with in- and out-radius
0, and move-radius 1.

q1

q2

fp , q1q “ p , q2, p1, 1qq Fin “ Fout “ tp0, 0q, p1, 0q, p1, 1qu

Tf

Figure 1. The action of a moving head machine Tf .

Definition 2.2. We denote by TMpZd, n, kq the set of pZd, n, kq-Turing machines and RTMpZd, n, kq

the set of reversible pZd, n, kq-Turing machines.

In some parts of this article we just consider d “ 1. In this case we simplify the notation and just
write RTMpn, kq :“ RTMpZ, n, kq and TMpn, kq :“ TMpZ, n, kq. Of course, we want TMpZd, n, kq to
be a monoid and RTMpZd, n, kq a group under function composition. This is indeed the case, and
one can prove this directly by constructing local rules for the inverse of a reversible Turing machine
and composition of two Turing machines. However, it is easier to extract this from the following
characterization of Turing machines as a particular kind of cellular automaton.

Let Xk be the subshift with alphabet QY t0u such that in each configuration the number of non-zero
symbols is at most one.

Xk “ tx P t0, 1, . . . , kuZ
d

: 0 R txu⃗, xv⃗u ùñ u⃗ “ v⃗u.

In the case where k “ 1 this subshift is often called the sunny-side up subshift. Notice that
X0 “ t0Zd

u consists of a single configuration and for non-negative integers i ă j we have Xi Ĺ Xj .
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Let also Xn,k “ ΣZd

ˆ Xk, where recall that we always set Σ “ t0, . . . , n ´ 1u. For the case d “ 1,
configurations in Xn,k represent a bi-infinite tape filled with symbols in Σ possibly containing a head
that has a state in Q. Note that there might be no head in a configuration.

More precisely, we interpret Xn,k as a compactification of ΣZd

ˆQˆZd by identifying xv⃗
q “ px, q, v⃗q P

ΣZd

ˆQˆ Zd with the point px, yq where yv⃗ “ q and yu⃗ “ 0 for u⃗ ‰ v⃗. We can now interpret Turing
machines as functions on Xn,k in the following way: For px, yq P Xn,k, if there is no v⃗ P Zd such that
yv⃗ ‰ 0 then T px, yq :“ px, yq. Otherwise apply T through the natural bijection.

For a subshift X, we denote by EndpXq the monoid of endomorphisms of X and AutpXq the group
of automorphisms of X. From the previous argument it follows that Turing machines are precisely
cellular automata on Xn,k with the additional property that “the configurations are only modified near
a head”. This is the content of the following proposition.

Proposition 2.3. Let n, k be positive integers and Y “ Xn,0. Then:

TMpZd, n, kq “ tϕ P EndpXn,kq : ϕ|Y “ id, ϕ´1pY q “ Y u

RTMpZd, n, kq “ tϕ P AutpXn,kq : ϕ|Y “ idu.

Proof. Consider a Turing machine T P TMpZd, n, kq seen as a function on Xn,k. A direct calculation
shows that T is shift-commuting and continuous, therefore T P EndpXn,kq. Also, T acts trivially on
Xn,0 so T |Y “ id and if a configuration has a head, it can only be shifted but not disappear, thus
T´1pY q “ Y . Moreover, if T P RTMpZd, n, kq, then T has a Turing machine inverse, thus a cellular
automaton inverse, and it follows that T P AutpXn,kq.

Conversely, let ϕ P EndpXn,kq, so that ϕpx, yqv⃗ “ Φpσ´v⃗px, yq|F q for some local rule Φ: pΣ ˆ

t0, . . . , kuqF Ñ Σ ˆ t0, . . . , ku and F a finite subset of Zd, where we may suppose 0⃗ P F .
As ϕ|Y “ id, we can deduce that Φpu, vq “ pu, vq⃗0 if v “ 0F . Therefore if px, yq P Xn,k, yv⃗ ‰ 0 and

we define Wv⃗ “ tu⃗ : v⃗ P u⃗ ` F u “ v⃗ ´ F we get that ϕpx, yq|ZdzWv⃗
“ px, yq|ZdzWv⃗

. We extend Φ to
rΦ: pΣ ˆ t0, . . . , kuqW0⃗`F Ñ pΣ ˆ t0, . . . , kuqW0⃗ by pointwise application of Φ. Note that W0⃗ “ ´F .

We can then define fϕ : ΣF ´F ˆQ Ñ Σ´F ˆQˆZd by using rΦ as follows: We set fϕpp, qq “ pp1, q1, u⃗q

if, after defining r P t0, . . . , kuF ´F such that r0⃗ “ q and 0 elsewhere, we have rΦpp, rq “ pp1, r1q and
r1 P t0, . . . , ku´F contains the symbol q1 ‰ 0 in position u⃗ (there is always a unique such position u⃗ as
ϕ´1pY q “ Y ). It can be verified that the Turing machine Tfϕ

is precisely ϕ, therefore ϕ P TMpG,n, kq.
If ϕ P AutpXn,kq then ϕ´1pY q Ą Y is implied by ϕ|Y “ id, and since the inverse automorphism ϕ´1

satisfies ϕ´1|Y “ id as well, we also have ϕ´1pY q Ă Y . Thus, ϕ is a Turing machine. Similarly, the
inverse map ϕ´1 is a Turing machine. Thus, in this case ϕ P RTMpZd, n, kq. □

Alternatively, in the previous statement we can just write TMpZd, n, kq “ tϕ P EndpXn,kq | ϕ|Y “

id, ϕ´1pY q Ă Y u, since ϕ´1pY q Ą Y is implied by ϕ|Y “ id.

Corollary 2.4. Let ϕ P TMpZd, n, kq. We have that ϕ P RTMpZd, n, kq if and only if ϕ is bijective.

Readers familiar with the theory of cellular automata may wonder if injectivity is enough, since
injective cellular automata on full shifts are surjective. This is not a priori clear since cellular automata
on nontransitive sofic shifts (such as Xn,k) can be injective without being surjective. We will, however,
later prove the stronger result that both injectivity and surjectivity are equivalent to bijectivity.

Clearly, the conditions of Proposition 2.3 are preserved under function composition and inversion.
Thus:

Corollary 2.5. Under function composition, pTMpZd, n, kq, ˝q is a monoid and pRTMpZd, n, kq, ˝q is
a group.
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We usually omit the function composition symbol, and use the notations TMpZd, n, kq and RTMpZd, n, kq

to refer to the corresponding monoids and groups.
An important corollary of Proposition 2.3 is that every result we prove about Turing machine groups

says something about cellular automata. In particular, if a group H embeds into RTMpZ, n, kq, then
H also embeds into AutpXn,kq, which implies that there exists a one-dimensional sofic subshift whose
automorphism group contains H.2

Before defining the second model for Turing machines, we introduce an extended model which will
be occasionally used in what follows. Given a subshift X Ă ΣZd we denote the set of moving-head
pZd, n, kq-Turing machines f which satisfy fpX ˆ Xkq Ă X ˆ Xk by TMpX, kq (where we omit the
group from the notation, since it is determined by X). And the set of reversible ones by RTMpX, kq.
This change basically amounts to replacing the full shift ΣZd in the definition by an arbitrary subshift X.
This will be used to make explicit which properties from X are required for our results, though our focus
is on the case where X “ ΣZd in which RTMpΣZd

, kq “ RTMpZd, n, kq for |Σ| “ n. Proposition 2.3 is
still valid in this extended context.

One use of this generalization is that it allows us to study Turing machines on a more robust class of
subshifts than just full shifts. For example, when studying Turing machines on transitive SFTs rather
than full shifts only, states can be eliminated, due to the following lemma.

Definition 2.6. Let X Ă ΣZ be a subshift and # R Σ. Write n
?
X for the shift space with points

tx P pΣ Y t#uqZ : there are k P t0, . . . , n´ 1u and y P X such that for every m P Z,

pxmn`k “ ym and for every j P t0, . . . , n´ 1uztku we have xmn`j “ #qu.

The subshift n
?
X is the space of configurations on Z where some configuration of X occurs on a

coset of nZ and the rest of the positions are filled with a special symbol #.

Lemma 2.7. Let X Ă AZ be a subshift. Then TMpX, kq is isomorphic to TMp
k
?
X, 1q as a monoid

and RTMpX, kq is isomorphic to RTMp
k
?
X, 1q as a group.

Proof. As the monoid of Turing machines can be seen as a submonoid of endomorphisms of a subshift,
it follows that they commute with the shift. More precisely, for each machine T and m⃗ P Z if we
interpret T acting on X ˆXk by endomorphisms, then we have that σm⃗ ˝ T ˝ σ´m⃗ “ T . In particular,
as non-# symbols appear at a bounded distance in each configuration of TMp

k
?
X, 1q, it suffices to

define a Turing machine in p
k
?
Xzr#s0q ˆ t1u ˆZ to completely determine its action over k

?
X ˆ t1u ˆZ.

Let ψ : X Ñ
k
?
X be defined by

ψpxqi “

#

#, if i ı 0 mod k, and
xi{k, otherwise.

Note that ψ defines a 1-to-1 map onto k
?
Xzr#s0.

Also, define η : Z ˆ Q Ñ Z by ηpv⃗, qq “ kv⃗ ` q ´ 1 which is clearly bijective. We can thus finally
define a bijection δ : X ˆQˆ Z Ñ p

k
?
Xzr#s0q ˆ t1u ˆ Z by δpxv⃗

qq “ ψpxq
ηpv⃗,qq

1 .
Now, given a machine T P TMp

k
?
X, 1q we define φpT q P TMpX, kq by φpT q “ δ´1 ˝ T ˝ δ. Note

that this is well-defined since T P TMp
k
?
X, 1q implies that T p

k
?
Xzr#s0 ˆX1q “

k
?
Xzr#s0 ˆX1 again

because non-#-symbols appear with bounded gaps, and since T is the identity map on points where
the head does not appear. By definition it is then clear that φpT ˝ T 1q “ φpT q ˝ φpT 1q and that φ is
1-to-1. We only need to show that φpT q P TMpX, kq and that φ is onto.

2In Section 4.3, we show that RTMpZ, n, kq also “almost” embeds into AutpΣZq.
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Firstly, it is clear that δ´1 ˝ T ˝ δ maps X ˆQˆ Z to itself, therefore the head cannot disappear.
We have that δ ˝ σm⃗ “ σk⃗m ˝ δ and thus φpT q is shift commuting.

φpT q ˝ σm⃗ “ δ´1 ˝ T ˝ δ ˝ σm⃗

“ δ´1 ˝ T ˝ σk⃗m ˝ δ

“ δ´1 ˝ σk⃗m ˝ T ˝ δ

“ σm⃗ ˝ δ´1 ˝ T ˝ δ

“ σm⃗ ˝ φpT q.

Since δ and T are continuous, and δ´1 is continuous on the image of δ, we have that φpT q is continuous
and shift invariant and therefore defines an endomorphism of X ˆXk which is an element of TMpX, kq.
Conversely, an analogous argument shows that for each T P TMpX, kq then the map T 1 defined as
T 1 “ δ ˝T ˝ δ´1 on k

?
Xzr#s0 ˆ t1u ˆZ (and by conjugating with a suitable power of σ on other points)

is in TMp
k
?
X, 1q and thus φpT 1q “ T , showing that φ is onto.

Finally, if T P RTMp
k
?
X, 1q then φpT q ˝ φpT´1q “ id and thus φpT q P RTMpX, kq. □

2.2. The moving tape model. Even though the moving head model is helpful when building examples,
it has a fundamental disadvantage: the space on which the machines act is not compact. From an
intuitive point of view, it means that a sequence of Turing machines could potentially move the head
to infinity and make it disappear. Or alternatively, in the point of view of seeing Turing machines as
endomorphisms as in Proposition 2.3 (which usually, e.g. in Kůrka [25], is directly what the moving
head model refers to), the space is compact, but there are uncountably many points that do not quite
represent Turing machine configurations.

It’s also possible to consider the position of the Turing machine as fixed at 0⃗, and move the tape
instead, to obtain the moving tape Turing machine model. In [25], where Turing machines are studied
as dynamical systems, the moving head model and moving tape model give non-conjugate dynamical
systems. However, the abstract monoids defined by the two points of view turn out to be equal, and we
obtain an equivalent definition of the group of Turing machines.

As in the previous section, we begin with a definition using local rules.
Given a function f : ΣFin ˆ Q Ñ ΣFout ˆ Q ˆ Zd, where Fin, Fout are finite subsets of Zd, we can

define a map Tf : ΣZd

ˆQ Ñ ΣZd

ˆQ as follows: If fpx|Fin , qq “ pp, q1, v⃗q, then Tf px, qq “ pσ´v⃗pyq, q1q

where

yu⃗ “

#

xu⃗, if u⃗ R Fout

pu⃗, if u⃗ P Fout,

Definition 2.8. Any function T : ΣZd

ˆ Q Ñ ΣZd

ˆ Q for which there is an f as above such that
T “ Tf is called a moving tape pZd, n, kq-Turing machine and f is its local rule. If there exists a
pZd, n, kq-Turing machine T´1 such that T ˝ T´1 “ T´1 ˝ T “ id we say T is reversible.

These machines also have the following characterization with a slightly more dynamical feel to it.
Say that two configurations x and y in ΣZd are asymptotic, and write x „ y, if there exists a finite
F Ă Zd such that x|ZdzF “ y|ZdzF . In order to be more specific, we write x „F y to claim that a
particular choice of F satisfies the property.

Lemma 2.9. Let T : ΣZd

ˆQ Ñ ΣZd

ˆQ be a function. Then T is a moving tape Turing machine if
and only if it is continuous, and for a continuous function s : ΣZd

ˆQ Ñ Zd and a finite F Ă Zd we
have T1px, qq „F σspx,qqpxq for all px, qq P ΣZd

ˆQ.
9



q1 q2

fp , q1q “ p , q2, p1, 1qq Fin “ Fout “ tp0, 0q, p1, 0q, p1, 1qu

Tf

Figure 2. The action of a moving tape machine Tf .

Proof. It is easy to see that Tf for any local rule f : ΣFin ˆ Q Ñ ΣFout ˆ Q ˆ Zd is continuous. The
projection to the third component of f gives the function ´s, and one can take F as the minimal
neighborhood of Tf .

For the converse, since s is a continuous function from a compact space to a discrete one we conclude
that the image of s is bounded. Furthermore it only depends on a finite set F0 of coordinates of x.
Since T is continuous, T px, qq|

F `spΣZd
ˆQq

depends only on a finite set of coordinates F1 of x. It is then
easy to extract a local rule

f : ΣF0YF1 ˆQ Ñ ΣF ´spΣZd
ˆQq ˆQˆ Zd,

for T . □

We call the function s in the definition of these machines the shift indicator of T , as it indicates
how much the tape is shifted depending on the local configuration around 0⃗. In the theory of orbit
equivalence and topological full groups, the analogs of s are usually called cocycles. Note that in the
definition using local functions, the third coordinate of the image indicates how much the head moves,
while the shift indicator shows how the configuration shifts, hence the minus sign next to s in the above
proof.

Remark 2.10. In the previous lemma it is not enough that T1px, qq „ σspx,qqpxq for all px, qq P ΣZd

ˆQ,
we need the configurations to be uniformly asymptotic to each other (with a fixed F Ă Zd). Indeed, let
Q “ t1u and consider the function T : ΣZ ˆQ Ñ ΣZ ˆQ defined by pT1px, 1qqi “ x´i if xr´|i|`1,|i|´1s “

02i´1 and txi, x´iu ‰ t0u, and pT1px, 1qqi “ xi otherwise. Clearly this map is continuous, the constant
map spx, qq “ 0⃗ gives a shift-indicator for it and T1px, qq „ x for every x P ΣZd . However, T is not
defined by any local rule since it can modify the tape arbitrarily far from the origin.

As for moving head machines, it is easy to see (either by constructing local rules or by applying the
dynamical definition) that the composition of two moving tape Turing machines is again a moving tape
Turing machine. This allows us to proceed as before and define their monoid and group.

Definition 2.11. We denote by TMfixpZd, n, kq and RTMfixpZd, n, kq the monoid of moving tape
pZd, n, kq-Turing machines and the group of reversible moving tape pZd, n, kq-Turing machines respec-
tively.

Now, let us show that both models are equivalent in group-theoretical terms. First, we define the
natural monoid epimorphism Ψ: TMpZd, n, kq Ñ TMfixpZd, n, kq that shifts the configurations so that
the head remains at the origin:

10



Definition 2.12. Let T P TMpZd, n, kq. We define ΨpT q P TMfixpZd, n, kq as the moving tape Turing
machine such that

ΨpT qpx, qq “ pσ´v⃗pyq, rq when T px0⃗
qq “ yv⃗

r .

In other terms, define the shift equivalence relation ” on the moving head space ΣZd

ˆQˆ Zd by
xu⃗

q ” σv⃗pxqu⃗`v⃗
q for all x P ΣZd , q P Q and u⃗, v⃗ P Zd. Then for T P TMpZd, n, kq, ΨpT q is the action

induced by T on the quotient ΣZd

ˆQˆ Zd{”. Note that for any two ”-classes U and V , if T pUq Ă V

then T |U : U ÝÑ V is a bijection. As we shall see, this shows that Ψ preserves the injectivity and the
surjectivity of Turing machines.

Proposition 2.13. T is injective (surjective) if and only if ΨpT q is injective (surjective, respectively).

Proof. If T is not injective then T pc1q “ T pc2q for some c1 ‰ c2. Because T is injective in each ”-class,
c1 ı c2. Hence there are two distinct ”-classes with the same image so that ΨpT q is not injective.
Conversely, if ΨpT q maps two distinct ”-classes into the same class, there are c1 ı c2 such that
T pc1q ” T pc2q. Because T is surjective in ”-classes, there is c1

1 ” c1 such that T pc1
1q “ T pc2q, so T is

not injective.
If T is surjective then clearly every ”-class has a pre-image so that ΨpT q is surjective. And if ΨpT q

is surjective then every ”-class has a pre-image, and because T is surjective in ”-classes, every element
of every ”-class has a pre-image, that is, T is surjective. □

The function Ψ is clearly always monoid epimorphism. It is not injective in the trivial case n “ 1:
Indeed, we have that RTMfixpZd, 1, kq is isomorphic to the symmetric group on k symbols, and
TMfixpZd, 1, kq is isomorphic to the monoid of all functions from t1, . . . , ku to itself. Therefore both
of these groups are finite when n “ 1. On the other hand, clearly Zd embeds into RTMpZd, 1, kq and
TMpZd, 1, kq as the shifts are non-trivial elements of these groups. Next, we show that in most other
cases Ψ is injective.

Intuitively, in order to also have Zd embed into the monoid of moving tape Turing machines, we
need the configuration space to admit configurations with a certain degree of aperiodicity. We shall see
that this is indeed the only obstruction and obtain as a corollary that for every n ě 2 the map Ψ is an
isomorphism.

Definition 2.14. A subshift X Ă ΣZd is said to be locally aperiodic if for every x P X, every finite
F Ă Zd and every non-zero v⃗ P Zd there exists y P rx|F s such that σv⃗pyq ‰ y.

For example, the sunny-side up subshift X1 Ă t0, 1uZ is locally aperiodic because every non-empty
cylinder contains a configuration with exactly one occurrence of 1, and such a configuration is non-
periodic. But this means that the morphism Ψ of Definition 2.12 is not necessarily injective even on
reversible Turing machines over locally aperiodic subshifts. Consider, for example, the single state
machine T P TMpX1, 1q that maps, for some fixed v⃗ P Z,

x0⃗
1 ÞÑ

#

x0⃗
1, if x0 “ 0,
σv⃗pxqv⃗

1, if x0 “ 1.

This machine shifts the configuration and the position by v⃗ if the cell under the head contains the
unique 1 of the configuration, and does not do anything if the cell contains symbol 0. The Turing
machine is clearly reversible, and ΨpT q is the identity regardless of the choice of vector v⃗.

To guarantee injectivity of Ψ we define an even more restrictive variant of local aperiodicity:

Definition 2.15. A subshift X Ă ΣZd is strongly locally aperiodic if for every x P X, every finite
F Ă Zd and every non-zero v⃗ P Zd there exists y P rx|F s such that yu⃗ ‰ yu⃗`v⃗ for some u⃗ such that
u⃗, u⃗` v⃗ R F .

11



Obviously X “ t0, . . . , n´ 1uZ
d is strongly locally aperiodic whenever n ě 2. With this definition

we have the following.

Lemma 2.16. Let X Ă ΣZd be strongly locally aperiodic. We have that

TMfixpX, kq – TMpX, kq

RTMfixpX, kq – RTMpX, kq.

Proof. Consider again the epimorphism Ψ: TMpZd, n, kq Ñ TMfixpZd, n, kq and suppose there exist a
pair T ‰ T 1 in TMpX, kq such that ΨpT q “ ΨpT 1q. Let x0⃗

q be such that T px0⃗
qq ‰ T 1px0⃗

qq. Denoting by
W “ F YF 1 the union of the neighborhoods F of T and F 1 of T 1 we get that T and T 1 can be described
by rules of the form fT px|W , qq “ pp, r, v⃗q and fT 1 px|W , qq “ pp1, r1, v⃗1q. Denote by xrps and xrp1s the
configuration where the symbols of x in the support W have been replaced by p and p1 respectively.
Clearly ΨpT q “ ΨpT 1q implies that r “ r1 and σ´v⃗pxrpsq “ σ´v⃗1

pxrp1sq.
If v⃗ “ v⃗1 then also xrps “ xrp1s, which contradicts T px0⃗

qq ‰ T 1px0⃗
qq. So we must have v⃗ ‰ v⃗1. As

X is strongly locally aperiodic, there exists y P rx|W s such that yu⃗ ‰ yu⃗`v⃗1´v⃗ for some position
u⃗ that satisfies u⃗, u⃗ ` v⃗1 ´ v⃗ R W . As y|W “ x|W , we have that ΨpT qpy, qq “ pσ´v⃗pyrpsq, rq and
ΨpT 1qpy, qq “ pσ´v⃗1

pyrp1sq, r
1q. Then ΨpT q “ ΨpT 1q implies that yrps “ σv⃗´v⃗1

pyrp1sq, which is not true in
position u⃗. □

A non-trivial full shift ΣZd is strongly locally aperiodic, and thus Lemma 2.16 gives the following
corollary.

Corollary 2.17. If n ě 2 then:

TMfixpZd, n, kq – TMpZd, n, kq

RTMfixpZd, n, kq – RTMpZd, n, kq.

The previous result means that apart from the trivial case n “ 1 where the tape plays no role, we
can study the properties of these groups using any model.

2.3. The uniform measure and reversibility. Consider the space ΣZd

ˆQ. Let µ be the product
of the uniform Bernoulli measure on ΣZd and the uniform discrete measure on Q. That is, µ is the
measure such that for every finite F Ă Zd and p P ΣF , we have

µprps ˆ tquq “
1

kn|F |
.

Theorem 2.18. Let T P TMfixpZd, n, kq. Then the following are equivalent:
(1) T is injective.
(2) T is surjective.
(3) T P RTMfixpZd, n, kq.
(4) T preserves the uniform measure (µpT´1pAqq “ µpAq for all Borel sets A).
(5) µpT pAqq “ µpAq for all Borel sets A.

Proof. Let T be arbitrary, and let F be its minimal neighborhood. Consider the cylinders Ci “ rpisˆtqu

where pi P ΣF , q P Q. These cylinders form a clopen partition of ΣZd

ˆ Q into kn|F | cylinders of
measure 1

kn|F | .
Now, because F is the minimal neighborhood of T , T is a homeomorphism from Ci onto Di “ T pCiq,

and Di is a cylinder set of the form rp1s ˆ tq1u for some p1 P Σv⃗`F , q1 P Q, which must be of the
same measure as Ci as the domain v⃗ ` F of p1 has as many coordinates as the domain F of p. Note
that Di is not necessarily a cylinder centered at the origin, and the offset v⃗ is given by the shift-
indicator. Now, observe that injectivity is equivalent to the cylinders Di “ T pCiq being disjoint.
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Namely, they must be disjoint if T is injective, and if they are disjoint then T is injective because
T |Ci

: Ci Ñ Di is a homeomorphism. Surjectivity on the other hand is equal to ΣZd

ˆQ “
Ť

i Di, since
Ť

i Di “
Ť

i T pCiq “ T pΣZd

ˆQq.
Now, it is easy to show that injectivity and surjectivity are equivalent: If T is injective, then

the Di are disjoint, and µp
Ť

i Diq “
ř

i µpDiq “ 1, so we must have
Ť

i Di “ ΣZd

ˆ Q because
ΣZd

ˆ Q is the only clopen set of full measure. If T is not injective, then for some i ‰ j we have
Di XDj ‰ ∅. Then D “ Di XDj is a nonempty clopen set, and thus has positive measure. It follows
that µp

Ť

i Diq ď
ř

i µpDiq ´µpDq ă 1, so
Ť

i Di Ĺ ΣZd

ˆQ. Of course, since injectivity and surjectivity
are equivalent, they are both equivalent to bijectivity, and thus to reversibility of T .

The argument given above in fact shows that reversibility is equivalent to preserving the uniform
Bernoulli measure in the forward sense – if T is reversible, then µpT pAqq “ µpAq for all clopen sets A,
and thus for all Borel sets, while if T is not reversible, then there is a disjoint union of cylinders C YD

such that µpT pC YDqq ă µpC YDq.
For measure-preservation in the usual (backward) sense, observe that the reverse of a reversible

Turing machine is reversible and thus measure-preserving in the forward sense, so a reversible Turing
machine must itself be measure-preserving in the traditional sense. If T is not reversible, then
µpT pC Y Dqq ă µpC Y Dq for some disjoint cylinders C and D large enough that T |C and T |D are
measure-preserving homeomorphisms. Then for E “ T pCq X T pDq we have µpT´1pEqq ě µppT´1pEq X

Cq Y pT´1pEq XDqq “ 2µpEq. □

Remark 2.19. The proof is based on showing that every Turing machine is a local homeomorphism
and preserves the measure of all large-radius cylinders C in the forward sense µpT pCqq “ µpCq. Note
that preserving the measure of large-radius cylinders in the forward sense does not imply preserving the
measure of all Borel sets (or even all cylinders), in general. For example, the machine with n ě 2, k “ 1
which turns the symbol in F “ t⃗0u to 0 without moving the head satisfies µprpsq “ µpT rpsq for any
p P ΣS with S Ą F . But µpΣZd

ˆQq “ 1 and µpT pΣZd

ˆQqq “ µpr0sq “ 1{2.

Remark 2.20. Using Proposition 2.13 and Theorem 2.18 we see that also under the moving head
model injectivity and surjectivity are equivalent.

We can also use the uniform measure to define the average movement of a Turing machine.

Definition 2.21. Let T P TMfixpZd, n, kq with shift indicator function s : ΣZd

ˆQ Ñ Zd. We define
the average movement αpT q P Rd as

αpT q :“ Eµpsq “

ż

ΣZd
ˆQ

spx, qqdµ,

where µ is the uniform measure on ΣZd

ˆQ. For T in TMpZd, n, kq we define α as the application to
its image under the canonical epimorphism Ψ from Definition 2.12, that is, αpT q :“ αpΨpT qq.

Of course, as spx, qq depends only on finitely many coordinates of x, this integral is actually a finite
sum over the cylinders p P ΣF for some finite F Ă Zd, and thus we have αpT q P Qd for all T . The
following lemma shows that in fact α is an homomorphism.

Lemma 2.22. The map α : RTMfixpZd, n, kq Ñ Qd is a group homomorphism.
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Proof. If T1, T2 P RTMfixpZd, n, kq then since reversibility implies measure-preservation, we have

αpT1 ˝ T2q “ EµpsT1˝T2 q

“ EµpsT1 ˝ T2 ` sT2 q

“ EµpsT1 ˝ T2q ` EµpsT2 q

“ EµpsT1 q ` EµpsT2 q

“ αpT1q ` αpT2q.

where EµpsT1˝T2 q “ EµpsT1 ˝ T2 ` sT2 q holds because sT1˝T2 px, qq “ sT1 pT2px, qqq ` sT2 px, qq for all
px, qq P ΣZd

ˆQ. □

3. Subgroups and generators

In this section we study several subgroups of RTMpZd, n, kq. The main result of this section is that
there is a finitely-generated subgroup of “elementary Turing machines”. In the following sections, we
show that in pure computability terms, these are able to simulate general Turing machines.

The group of elementary Turing machines ELpZd, n, kq is the subgroup of reversible Turing machines
which is generated by the union of two natural subgroups: LPpZd, n, kq, the group of local permutations
and RFApZd, n, kq, the group of reversible finite-state automata. These two groups separately capture
the dynamics of changing the tape and moving the head. We also define the group of oblivious Turing
machines OBpZd, n, kq as an extension of LPpZd, n, kq where arbitrary tape-independent moves are
allowed.

The main results we prove about these subgroups are the following, when n ě 2:
‚ RFApZd, n, kq is not finitely generated (Theorem 3.5),
‚ RTMpZd, n, kq is not finitely generated (Theorem 3.11).
‚ RFApX, 1q is generated by “orbitwise shifts” and “controlled position swaps” for any one-

dimensional subshift X (Theorem 3.28),
‚ OBpZd, n, kq is finitely generated (Theorem 3.18),
‚ ELpZ, n, kq is finitely generated (Theorem 1.1).

For the definitions of “orbitwise shifts” and “controlled position swap’, see Section 3.3. For any class
CLpZd, n, kq of Turing machines with moving head we denote by CLfixpZd, n, kq the corresponding class
of moving tape machines, that is, the image of the class under the morphism Ψ from Definition 2.12.

3.1. Definitions of subgroups.

3.1.1. Oblivious Turing machines. For v⃗ P Zd, define the machine Tv⃗ which does not modify the state
or the tape, and moves the head by the vector v⃗ on each step. Denote SHIFTpZd, n, kq “ xtTv⃗uv⃗PZd y.
Clearly SHIFTpZd, n, kq – Zd. Define also SPpZd, n, kq as the state-permutations: Turing machines
that never move and only permute their state as a function of the tape.

Definition 3.1. We define the group LPpZd, n, kq of local permutations as the subgroup of Turing
machines in RTMpZd, n, kq whose shift-indicator is trivial, that is, the constant function x ÞÑ 0⃗.

We define also OBpZd, n, kq “ xSHIFTpZd, n, kq,LPpZd, n, kqy, the group of oblivious Turing
machines.

In other words, LPpZd, n, kq is the group of reversible machines that do not move the head, and
OBpZd, n, kq is the group of reversible Turing machines whose head movement is independent of the
state and the tape contents. Note that in the definition of both groups, we allow changing the state as
a function of the tape, and vice versa, thus SPpZd, n, kq ď LPpZd, n, kq.
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Remark 3.2. The restricted wreath products H ≀ Zd where H is a finite group are sometimes called
generalized lamplighter groups, the original lamplighter group being Z{2Z ≀ Z. Thus, OBpZd, n, kq

can be seen as a doubly generalized lamplighter group, since the subgroup of OBpZd, n, kq generated
by the local permutations LPpZd, n, 1q with radius 0 and SHIFTpZd, n, 1q is isomorphic to the wreath
product Sn ≀ Zd of the symmetric group Sn. Further on we show that, similar to lamplighter groups,
OBpZd, n, kq is also finitely generated.

3.1.2. Finite-state automata.

Definition 3.3. We define the group RFApZd, n, kq of reversible finite-state automata as the group
of reversible pZd, n, kq-Turing machines that do not change the tape. That is, the local rules are of the
form fpp, qq “ pp, q1, v⃗q for all entries p P ΣF , q P Q.

Similarly, for a subshift X Ă ΣZd we let RFApX, kq be the subgroup machines in RTMpX, 1q that
do not change the tape.

This group is “orthogonal” to OBpZd, n, kq in the following sense,

RFApZd, n, kq X LPpZd, n, kq “ SPpZd, n, kq

RFApZd, n, kq X OBpZd, n, kq “ xSPpZd, n, kq,SHIFTpZd, n, kqy

Remark 3.4. It follows directly from the definitions that the group RFApZd, n, 1q is isomorphic to the
topological full group of the full Zd-shift on n symbols as defined in [15]. Similarly, if we fix a subshift
X, then RFAfixpX, 1q is isomorphic to the topological full group of the shift action on X. The subscript
“fix” is only needed when X is not strongly locally aperiodic, see Lemma 2.16.

As usual, the case n “ 1 is not particularly interesting, and we have that RFApZd, 1, kq “

RTMpZd, 1, kq. In the general case the group is more interesting.

Theorem 3.5. Let n ě 2. Then RFApΣZd

, n, kq is not finitely generated.

Proof. We prove this in the moving-tape model. For v⃗ P Zd, let Perv⃗pΣZd

q be the set of configurations
of ΣZd whose stabilizer under the shift action contains v⃗Zd. Let Zě2 be the set of integers t ě 2.
Let ϕ : RFAfixpΣZd

, n, kq Ñ pZ{2ZqZě2 be the parity homomorphism where ϕpT qt is the sign of the
permutation T performs on the finite set Perpt,t,...,tqpΣZd

q ˆQ.
As the image of a finitely generated group under a homomorphism is also finitely generated, it

suffices to show that ϕpRFAfixpΣZd

, n, kqq is not finitely generated. It suffices thus to prove that for any
finite m ě 2 the restriction of ϕpRFAfixpΣZd

, n, kqq to pZ{2Zqt2,...,mu is surjective. From here it clearly
follows that ϕpRFAfixpΣZd

, n, kqq is not finitely generated.
Let t ě 2 and v⃗ “ pt, t, . . . , tq P Zd. Let Tt be the machine which in state q ‰ 1 acts trivially, and if

q “ 1 does the following: Let e⃗ “ e⃗1 “ p1, 0, . . . , 0, 0q be the first canonical basis vector. For u⃗ P Zd let
Au⃗ “ u⃗` t0, . . . , t´ 1u ˆ ¨ ¨ ¨ ˆ t0, . . . , t´ 1u. Then, on configuration x P ΣZd ,

‚ if the restriction of x to A0⃗ contains a unique 1 which is at 0⃗, and is otherwise identically zero,
shift the configuration by ´e⃗,

‚ if the restriction of x to Ae⃗ contains a unique 1 which is at e⃗, and it otherwise identically zero,
shift the configuration by e⃗,

‚ otherwise do nothing.
The machine Tt is an involution and thus is reversible. From this construction it follows that

ϕpTtqt “ 1 and ϕpTtqt1 “ 0 for all 2 ď t1 ă t.
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Now, let y P pZ{2Zqt2,...,mu. Let M1 “ id. Iteratively for 2 ď j ď m construct

Mj “

$

&

%

Mj´1 if yj “ ϕpMj´1qj

Tj ˝Mj´1 if yj ‰ ϕpMj´1qj

As ϕ is a homomorphism it follows that ϕpMmq “ y and therefore the restriction of ϕpRFAfixpΣZd

, n, kqq

to pZ{2Zqt2,...,mu is surjective. □

We shall introduce a new point of view on finite-state machines, which we call the permutation
model. This model be helpful in the upcoming proof that elementary Turing machines are finitely
generated. In this model, we associate to every Turing machine in RFAfixpZd, n, kq an automorphism of
pΣ ˆ pZ{2ZqQqZ

d . The main idea behind this correspondence is that given T P RFAfixpZd, n, kq, every
configuration x P ΣZd induces an action over Zd ˆQ, namely, a head pointing at some position in Zd in
state q would move to a new pair (position,state) in Zd ˆQ after applying T . As T is reversible, this
induces a permutation over Zd ˆ Q which can be applied simultaneously to an arbitrary number of
heads, which can in turn be represented as a configuration in ppZ{2ZqQqZ

d . We make this embedding
precise in the proof of the following proposition.

Proposition 3.6. The group RFAfixpZd, n, kq embeds into AutpAZd

q for |A| “ n2k.

Proof. Note that any pair pT, xq P RFAfixpZd, n, kq ˆ ΣZd induces a permutation σT,x over Zd ˆ Q.
Namely, let s be the shift-indicator of T , and let

σT,xpv⃗, qq “ pv⃗ ´ spσ´v⃗pxq, qq, T2pσ´v⃗pxq, qqq

We identify A as the alphabet Σ ˆ pZ{2ZqQ and thus the configurations of AZd can be seen as pairs
px, yq P ΣZd

ˆ ppZ{2ZqQqZ
d .

Finally, let φ : RFAfixpZd, n, kq Ñ AutpAZd

q be the map defined by φpT q “ ϕT where:

pϕT q1px, yqv⃗ “ xv⃗,

pϕT q2px, yqσx,T pv⃗,qq “ 1 if and only if ypv⃗,qq “ 1.

That is, ϕT does not modify the ΣZd tape, and for every position pv⃗, qq P Zd ˆQ marked with a one,
we interpret it as a Turing machine head in state q in position v⃗ and mark in the image the state and
position it would end up after applying T . This is clearly a cellular automaton on ΣZd

ˆ ppZ{2ZqQqZ
d

as the shift indicator of T has a finite radius.
We claim φ is an embedding. A direct computation shows that the permutation induced by T1 ˝ T2

is just σT1,x ˝ σT2,x thus showing that φ is a homomorphism. Now, if T1 ‰ T2 there is some pair px, qq

where they act differently. If we consider the configuration px, yq where y0d,q “ 1 and 0 elsewhere.
Clearly ϕT1 px, yq ‰ ϕT2 px, yq. Therefore φ is injective. □

Definition 3.7. For any T P RFAfixpZd, n, kq the automorphism ϕT P ΣZd

ˆ pZ{2ZqZ
d

ˆQ obtained by
appling the embedding of the previous proof is called the permutation model of T .

The permutation model has the remarkable property of being linear in the second component.
Namely, given T P RFAfixpZd, n, kq and its permutation model ϕpT q, we have that for any x P ΣZd and
y, z P pZ{2ZqZ

d
ˆQ we have

ϕT px, y ` zq “ px, pϕT q2px, yq ` pϕT q2px, zqq,

where the sum is computed coordinate-wise.
It is known that the automorphism group of any nontrivial full shift embeds in the automorphism

group of any uncountable sofic shift [32]. Thus we have the following corollary:
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Corollary 3.8. If X is an uncountable sofic Z-subshift, then RFApZ, n, kq embeds into AutpXq. In
particular RFApZ, n, kq embeds into AutpAZq for any |A| ě 2.

3.1.3. Elementary Turing machines.

Definition 3.9. The group of elementary Turing machines ELpZd, n, kq is the group generated by
finite-state machines and local permutation, that is

ELpZd, n, kq :“ xRFApZd, n, kq,LPpZd, n, kqy.

The group of elementary Turing machines is generated by machines which either do not change the
tape or do not move the head, and its aim is to approximate the group RTMpZd, n, kq using simple
building blocks. In other words, it can be understood as a sufficiently rich class of Turing machines
which can be constructed from simple atoms. For instance, Langdon’s ant [27] is an example of a
machine in ELpZ2, 2, 4q.

Clearly the group LPpZd, n, kq is not finitely generated because it is locally finite and infinite. We
have also shown that RFApZd, n, kq is not finitely generated and will soon show that RTMpZd, n, kq is
not finitely generated. However, we are later going to show that both OBpZd, n, kq and ELpZ, n, kq are
finitely generated.

Before studying these machines, we show that RTMpZd, n, kq is not finitely generated. This proof
uses the average movement homomorphism α defined in Section 2.3.

Lemma 3.10.
αpRTMpZd, n, kqq “

A ei

knj
: j P N, i P t1, . . . , du

E

ď pQd,`q

Proof. Consider the pZ, n, kq-Turing machine TSURF,m given by the local function f : Σt0,...,mu ˆ Q Ñ

Σt0,...,mu ˆQˆ Z which is defined as follows: For a P Σ and q ă k let fp0ma, qq “ p0ma, q ` 1, 0q and
fp0ma, kq “ pa0m, 1, 1q. Otherwise fpu, qq “ pu, q, 0q. This machine is reversible, and satisfies that
αpTSURF,mq “ 1{knm. This machine can easily be extended to a pZd, n, kq-Turing machine with average
movement p1{knm, 0, . . . , 0q, and an analogous construction yields a Turing machine with the exact
same movement in other coordinates. Thus we obtain that

A ei

knj
: j P N, i P t1, . . . , du

E

ď αpRTMpZd, n, kqq.

To obtain the equality, observe that the integral
ş

ΣZd
ˆQ

spx, qqdµ defining the average movement is
a finite sum over cylinders, the contribution of each cylinder is an integer vector, and the measure of a
cylinder is in the group generated by 1

knj . Thus every element in αpRTMpZd, n, kqq can be written as a
finite sum of ei

knj . □

The image under the homomorphism α of pRTMpZd, n, kqq computed above is not finitely generated
whenever n ě 2, therefore we conclude that RTMpZd, n, kq cannot be finitely generated for n ě 2.

Theorem 3.11. For n ě 2, the group RTMpZd, n, kq is not finitely generated.

Although α is not a homomorphism on TMpZd, n, kq, using Theorem 2.18 we obtain that TMpZd, n, kq

cannot be finitely generated either.

Theorem 3.12. For n ě 2 the monoid TMpZd, n, kq is not finitely generated.

Proof. Let T P RTMpZd, n, kq. As T is injective, we conclude that if T “ Tn ˝ ¨ ¨ ¨ ˝ T1 then T1 is also
injective. By Theorem 2.18 this means that T1 is reversible, which in turn implies T2 is injective and so on.
Therefore, if TMpZd, n, kq is generated by S, then there exists S1 Ă S such that xS1y “ RTMpZd, n, kq.
But every such S1 is infinite by Theorem 3.11 and thus S must also be infinite. □
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In the remainder of the section we study how close ELpZd, n, kq is to RTMpZd, n, kq. We also give a
natural infinite generating set for RFApX, kq for every Z-subshift X. Later on we show that ELpZ, n, kq

is finitely generated which implies that ELpZ, n, kq is strictly contained in RTMpZ, n, kq. However, we
will first provide a simple proof of that fact which works in any dimension.

Proposition 3.13. Let 1
kZ “ t n

k | n P Zu. We have that

αpRFApZd, n, kqq “ αpELpZd, n, kqq “

ˆ

1
k
Z

˙d

.

In particular, ELpZd, n, kq is strictly contained in RTMpZd, n, kq.

Proof. Clearly αpT q “ 0 for every T P LPpZ, n, kq, so the first equality holds. Let us then consider
average movement values of finite-state automata. The machine Tj that increments the state by 1 on
each step (modulo the number of states) and walks one step along the jth axis whenever it enters the
state 1, has αpTjq “ p0, . . . , 0, 1{k, 0, . . . , 0q. We obtain

ˆ

1
k
Z

˙d

“ xαpTjqLj ď dy ď αpRFApZd, n, kqq.

Next, let us show that for every finite-state machine T , we have αpT q P p 1
kZqd. For this, consider

the behavior of T on the all-zero configuration. Given a fixed state q, T moves by an integer vector v⃗q,
thus contributing 1

k v⃗q to the average movement. Let v⃗ “
ř

qPQ
1
k v⃗q be the average movement of T on

the all-zero configuration.
We claim that αpT q “ v⃗. Note that by composing T with a suitable combination of the machines Tj

and their inverses, it is enough to prove this in the case v⃗ “ 0⃗. Now, for a large m, Let p P Σt´m,...,mu
d

be a pattern, u⃗ P t´m, . . . ,mud a position and q P Q a state. Complete p to a configuration xp P ΣZd

by writing 0 in every cell outside t´m, . . . ,mud. Write αmpT q for the average movement of T for the
finitely many choices of p, u, q. Formally, if sT is the shift indicator of T :

αmpT q “
1

kp2m` 1qdnp2m`1qd

ÿ

p,u,q

sT pσ´u⃗pxpq, qq.

As m Ñ 8, it is easy to show that αmpT q Ñ αpT q, as the movement vector of T is distributed correctly
in all positions except at the border of t´m, . . . ,mud which grows as opmdq.

On the other hand, for any fixed p P Σt´m,...,mu
d the average movement of T on xp started from a

random state and a random position is 0⃗, that is,
ÿ

u,q

sT pσ´u⃗pxpq, qq “ 0⃗.

This follows from the fact that T P RFApZd, n, kq and thus the action is simply a permutation of the
set of position-state pairs and the fact that v⃗ “ 0⃗. From here we conclude that the sum restricted to
u P t´m, . . . ,mud is opmdq. It follows that αpT q “ limαmpT q “ 0⃗. □

3.2. The oblivious Turing machines are finitely generated. In this section, we show that
OBpZd, n, kq is finitely generated. Our proof is based on the existence of strongly universal reversible
gates for permutations of Am, which can be found in [1, 38] for the binary alphabet case, and generalized
to other alphabets in [7]. We need a finite generating set for permutations of Qˆ Σm, and hence the
proof in [7] has to be adjusted to account for non-homogeneous alphabet sizes (that is, due to possibly
having n ‰ k).

Let us remark that the case n “ 1 is trivial: The group LPpZd, 1, kq is finite and SHIFTpZd, 1, kq is
generated by the single step moves. We hence assume that n ě 2.

The following result was proved in [7] (Lemmas 3 and 5):
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Lemma 3.14. Let H “ pV,Eq be a connected undirected graph.
(a) The transpositions ps tq for ts, tu P E generate SympV q, the set of permutations of the vertex

set.
(b) Let ∆ Ă SympV q be a set of permutations of V that contains for each edge ts, tu P E a 3-cycle

px y zq where ts, tu Ă tx, y, zu. Then ∆ generates AltpV q, the set of even permutations of the
vertex set.

Let m ě 1, and consider permutations of Qˆ Σm. Controlled swaps are transpositions ps tq where
s, t P Qˆ Σm have Hamming distance one. Controlled 3-cycles are permutations ps t uq where the
Hamming distances between the three pairs are 1, 1 and 2.

Let us denote by Cp2q
m and Cp3q

m the sets of controlled swaps and 3-cycles in SympQˆΣmq respectively.
Let H “ pV,Eq be the graph with vertices V “ Qˆ Σm and edges ts, tu that connect elements s and t
having Hamming distance one. This is a connected undirected graph, so we get from Lemma 3.14(b)
that the controlled 3-cycles generate all its even permutations:

Lemma 3.15. Let n ě 2 and m ě 1. The group AltpQˆ Σmq is generated by Cp3q
m .

Let ℓ ď m, and let f be a permutation of Qˆ Σℓ. We can apply f on 1 ` ℓ coordinates of Qˆ Σm

(including the first), while leaving the other m´ ℓ coordinates untouched. More precisely, the prefix
application f̂ of f on Qˆ Σm, defined by

f̂pq, s1, . . . , sℓ, . . . , smq “ pf1pq, s1, . . . , sℓq, . . . , fℓ`1pq, s1, . . . , sℓq, sℓ`1, . . . , smq,

applies f on the first 1 ` ℓ coordinates. To apply it on other choices of coordinates we conjugate f̂ using
rewirings of symbols. For any permutation π P Sympt1, . . . ,muq we define the rewiring permutation
of Qˆ Σm by

rπ : pq, s1, . . . , smq ÞÑ pq, sπp1q, . . . , sπpmqq.

It permutes the positions of the m tape symbols according to π. Now we can conjugate the prefix
application f̂ using a rewiring to get f̂π “ r´1

π ˝ f̂ ˝rπ, we call f̂π an application of f in the coordinates
πp1q, . . . , πpℓq. Let us denote by

rf sm “ tf̂π | π P Sympmqu,

the set of permutations of Qˆ Σm that are applications of f . For a set P of permutations we denote
by rP sm the union of rf sm over all f P P .

Note that if n is even and f P SympQˆ Σℓq for ℓ ă m then rf sm only contains even permutations.
The reason is that the coordinates not participating in the application of f carry a symbol of the even
alphabet Σ. The application rf sm then consists of an even number of disjoint permutations of equal
parity – hence the result is even. In contrast, for the analogous reason, if n is odd then rf sm only
contains odd permutations whenever f is itself is an odd permutation.

Lemma 3.16. Let m ě 6, and let Gm “ xrC
p2q

4 smy be the group generated by the applications of
controlled swaps of Qˆ Σ4 on Qˆ Σm. If n “ |Σ| is odd then Gm “ SympQˆ Σmq. If n is even then
Gm “ AltpQˆ Σmq.

Proof. For even n, by the note above, rC
p2q

4 sm Ă AltpQˆΣmq, and for odd n there are odd permutations
in rC

p2q

4 sm. So in both cases it is enough to show AltpQ ˆ Σmq Ă Gm. We also note that, obviously,
rGm´1sm Ă Gm.

Based on the decomposition in Figure 3, we first conclude that any controlled 3-cycle f of Qˆ Σm

is a composition of four applications of controlled swaps of Qˆ Σm´2. In the figure, the components of
Q ˆ Σm have been ordered in parallel horizontal wires, the Q-component being among the topmost
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three wires. Referring to the symbols in the illustration, the gate on the left is a generic 3-cycle
ppszabcdw ptzabcdw qszabcdwq where one of the first three wires is the Q-component, a, b, c, d P Σ and
w P Σm´6. The proposed decomposition consists of two different controlled swaps p1 and p2 applied
twice in the order f “ p1p2p1p2. Because p1 and p2 are involutions, the decomposition amounts to
identity unless the input is of the form xyzabcdw where x P tp, qu and y P ts, tu. When the input is of
this form, it is easy to very that the circuit on the right indeed amounts to the required 3-cycle. We
conclude that Cp3q

m Ă xrC
p2q

m´2smy, for all m ě 6. By Lemma 3.15,

(1) AltpQˆ Σmq “ xCp3q
m y Ă xrC

p2q

m´2smy.

=

z

b

p

s s t

p q p q

s t
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Figure 3. A decomposition of a controlled 3-cycle of QˆΣm on the left into a sequence
of four applications of controlled swaps of Qˆ Σm´2 on the right. The ordering of the
wires is such that topmost three wires contain the Q-component and the two wires
changed by the 3-cycle (one of which may or may not be the Q-component). Black
circles are control points: the gate computes the identity unless the wire carries the
symbol indicated at the left of the wire or next to the control point.

We proceed by induction on m. The base case m “ 6 is clear: By (1),

AltpQˆ Σ6q Ă xrC
p2q

4 s6y “ G6.

Consider then m ą 6 and suppose that Gm´1 is as claimed. If n is odd then, by the inductive
hypothesis,

rC
p2q

m´2sm Ă rSympQˆ Σm´1qsm Ă rGm´1sm Ă Gm.

By (1) then AltpQˆ Σmq Ă xrC
p2q

m´2smy Ă Gm. As pointed out above, Gm contains odd permutations
(all elements of rC

p2q

4 sm are odd), so Gm “ SympQˆ Σmq as claimed.
If n is even then an application of a permutation of Qˆ Σm´2 on Qˆ Σm is also an application of

an even permutation of Qˆ Σm´1 on Qˆ Σm. (For this reason we left two non-controlling wires for
the gates on the right side of Figure 3.) By this and the inductive hypotheses,

rC
p2q

m´2sm Ă rAltpQˆ Σm´1qsm Ă rGm´1sm Ă Gm,

so, by (1), we have the required AltpQˆ Σmq Ă Gm. □

Corollary 3.17. rSympQˆ Σmqsm`1 Ă xrSympQˆ Σ4qsm`1y for all m ě 5.

Proof. If n is even then rSympQˆΣmqsm`1 Ă AltpQˆΣm`1q and if n is odd then rSympQˆΣmqsm`1 Ă

SympQˆ Σm`1q. In either case, the claim follows from Lemma 3.16 and C
p2q

4 Ă SympQˆ Σ4q. □

In Corollary 3.17, arbitrary permutations of Qˆ Σm are obtained as projections of permutations of
Qˆ Σm`1. The extra symbol is an ancilla that can have an arbitrary initial value and is returned back
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to this value in the end. Such an ancilla is called a “borrowed bit” in [38]. It is needed in the case of
even n to facilitate implementing odd permutations of Qˆ Σm.

Now we are ready to prove the following theorem.

Theorem 3.18. OBpZd, n, kq is finitely generated.

Proof. We construct a finite generating set A1 YA2 YA3. Let A1 contain the one step moves Tei
for

i “ 1, . . . , d. These clearly generate SHIFTpZd, n, kq.
Each T P LPpZd, n, kq is defined by a local rule f : ΣF ˆ Q Ñ ΣF ˆ Q ˆ t⃗0u with a finite F Ă Zd.

To have injectivity, we clearly need that π : pp, qq ÞÑ pf1pp, qq, f2pp, qqq is a permutation of ΣF ˆQ. We
denote T “ Pπ. Let us fix an arbitrary E Ă Zd of size 4, and let A2 be the set of all Pπ P LPpZd, n, kq

determined by π P SympΣE ˆQq.
For any permutation α of Zd with finite support, we define the cell permutation machine Cα : pp, qq ÞÑ

pp1, qq, where p1
v⃗ “ pαpv⃗q for all v⃗ P Zd. These are clearly in LPpZd, n, kq. We take A3 to consist of the

cell permutation machines Ci “ Cp0 eiq that, for each i “ 1, . . . , d, swaps the contents of the currently
scanned cell and its neighbor with offset ei.

Observe that A1 and A3 generate all cell permutation machines Cα. First, conjugating Ci with
Tv⃗ P SHIFTpZd, n, kq gives the cell permutation machine Cα “ T´1

v⃗ CiTv⃗ for the transposition α “

pv⃗ v⃗ ` eiq. Such transpositions generate all permutations of Zd with finite support: This follows from
Lemma 3.14(a) by considering a finite connected grid graph containing the support of the permutation.

Consider then an arbitrary Pπ P LPpZd, n, kq, where π P SympΣF ˆ Qq. We can safely assume
|F | ě 5. Let us pick one ancilla v P ZdzF and denote F 1 “ F Y tvu. By Corollary 3.17, Pπ is a
composition of machines of type Pρ for ρ P SympΣH ˆQq where H Ă F 1 has size |H| “ 4. It is enough
to be able to generate these. Let α be a permutation of Zd that exchanges E and H, two sets of
cardinality four. Then C´1

α PρCα P A2, which implies that Pρ is generated by A1 YA2 YA3. □

3.3. Generators for finite-state automata on any one-dimensional subshift. In this section,
we show that while finite-state automata are not finitely generated on the one-dimensional full shift,
the group of finite-state automata has a natural generating set on every one-dimensional subshift.

We shall show that a generating set for this group is composed of two types of objects: there is
a (possibly infinite rank) abelian group that translates orbits and is an abstracted notion of average
movement, and a collection of elements with zero average-movement which is generated by “controlled
position swaps” which are similar in spirit to the controlled swaps of the previous section. We show
this result for the topological full group (one state) and will extend it to the case of multiple states
using Lemma 2.7.

Similar results are known for topological full groups of minimal systems (see for example [29, 16]).
The main additional issue is with average movement, which does not actually apply in our main
application of the full shift. Usually aperiodicity is assumed when studying topological full groups,
but periodic points do not pose any problems, except for the small issue that without strong local
aperiodicity we might not have RFAfixpX, kq – RFApX, kq. We study RFApX, kq, understanding that
the groups are the same in all cases we are actually interested in.

As suggested, we begin by showing that on any Z-subshift, there is a natural generalization of the
average-movement homomorphism which measures the average movement separately on every orbit.
This homomorphism coincides with the average-movement α when X “ ΣZ, and on minimal subshifts
it corresponds to the index map defined for topological full groups [15].

The results of this section will rely strongly on our subshifts being one-dimensional. Our analogue
of the index map will be based on counting heads to the left and right of some interval, which is not
straightforward to generalize to the multidimensional case.
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Suppose for the rest of this section that X denotes a one-dimensional subshift. In this section, we
write RFApXq “ RFApX, 1q. We can see the shift σ as an element of RFApXq defined by σpxi

1q “ xi´1
1 .

Let „1
n be the relation on the language LnpXq of words of length n appearing on X defined by

u „1
n v if there exists x P X such that u and v occur in x. Let „n be the transitive closure of „1

n. We
write „ for „n the equivalence relation induced by the collection of „n for every n P N.

Definition 3.19. A subshift X Ă ΣZ is weakly chain-transitive if for every n P N and u, v P LnpXq

we have u „ v.

We use the prefix “weak” to distinguish this notion from other (stronger) notions of chain-transitivity
in the literature such as the one found in [24].

For any subshift X, let pX Ă
ś

n LnpXq{„n be the image of X under the factor map πpxqn “

xr0,n´1s{ „n. Considering pX as a dynamical system with a trivial Z-action, it is easy to see that
π : X Ñ pX is a factor map: xr0,n´1s „ xr´1,n´2s for all x P X and n P N, so πpσpxqq “ πpxq “ idpπpxqq.
Notice that X is weakly chain-transitive if and only if pX is a singleton.

Recall from Definition 2.6 that given a subshift X Ă ΣZ, we define a subshift k
?
X Ă pΣ Y t#uqZ

where configurations of X occur in a coset of kZ and all other positions are filled with the symbol #.

Lemma 3.20. Let X be a weakly chain-transitive subshift. Then k
?
X is weakly chain-transitive.

Proof. Let u1, v1 be two words of the same length in k
?
X. Then possibly by extending u1 and v1 we

may write them as subwords of words u2 and v2 of the form

u1 < u2 “ #n´1u1#k´1u2#k´1u3 ¨ ¨ ¨un#k´1,

v1 < v2 “ #k´1v1#k´1v2#k´1v3 ¨ ¨ ¨ vn#k´1,

for some n P N and words u, v in LnpXq. Since X is weakly chain-transitive, there is a finite chain
u “ w0 „ w1 „ ¨ ¨ ¨ „ wk “ v such that wi and wi`1 occur in the same point of X for all i. Then the
corresponding interspersed versions of the wi give a chain between u2 and v2, and thus between u1 and
v1. □

Definition 3.21. We say that T P RFApXq is an orbitwise shift if for every x P X there exists k P Z
such that

T pxi
1q “ xi´k

1 for every i P Z.

An abstract orbitwise shift is a continuous function f : X Ñ Z such that fpxq “ fpσpxqq for all
x P X. Write OSpXq and AOSpXq for the group of orbitwise shifts and the group of abstract orbitwise
shifts respectively.

Note that orbitwise shifts form a subgroup of RFApXq, and abstract orbitwise shifts form a group
under pointwise addition. Orbitwise shifts are a much smaller group than RFApXq in general. For
example OSpXq is always abelian, while one can show that RFApXq may contain a free group on two
generators, see for example [11] or [4].

Lemma 3.22. The abstract orbitwise shifts are precisely the continuous functions f : X Ñ Z that
factor through pX in the sense that f “ g ˝ π for some continuous map g : pX Ñ Z.

Proof. Suppose that f “ g ˝ π for some g : pX Ñ Z. Then f is continuous as the composition of two
continuous functions, and

fpxq “ gpπpxqq “ gpπpσpxqqq “ fpσpxqq,

so f is an abstract orbitwise shift.
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On the other hand, if f : X Ñ Z is continuous and fpxq “ fpσpxqq, then the map g : pX Ñ Z given
by the formula gpπpxqq “ fpxq for all x P X is well-defined: suppose not, and that πpxq “ πpyq and
fpxq ‰ fpyq. Since f is continuous and X is compact, fpzq depends only on finitely many coordinates
of z, that is, there exists n such that fpzq “ fpz1q whenever zt´n,...,nu “ zt´n,...,nu. Since πpxq “ πpyq,
u “ xt´n,...,nu and v “ yt´n,...,nu are connected by a finite chain u “ w0 „ w1 „ ¨ ¨ ¨ „ wk “ v such
that wi and wi`1 occur in the same configuration of X for all 0 ď i ă k.

Since the image of f is determined by the restriction to the central 2n` 1 coordinates, we can write
ni “ fpwiq for this unique value. Now, since fpzq “ fpσpzqq for all z P X, it is easy to see that in fact
ni “ ni`1 for all i, by moving along orbits of points connecting the words wi and wi`1. This shows
that g is well-defined. Furthermore, as the image of f is determined by the restriction to the central
2n` 1 coordinates, it follows easily that g is continuous. □

We shall now define our analogue of the index map. Let T P RFApXq and let ϕ :“ ϕT be its
permutation model, so that ϕ is an automorphism of X ˆ pZ{2ZqZ. Let r P N such that the biradius of
ϕ is bounded by r (i.e., the maximum of radii of ϕ and ϕ´1 is bounded by r as an automorphism). Let
u P LpXq such that |u| ě 4r and let px, yq P X ˆ pZ{2ZqZ be a configuration where

(1) x|t0,...,|u|´1u “ u

(2) ym “ 1 if and only if r ď m ă |u| ´ r.
Recall that the automorphism ϕ preserves the number |y´1p1q|, therefore ϕ2px, yq also has |u| ´ 2r

heads. We define

Lϕpuq “ |ϕpx, yq´1p1q X t0, . . . , 2r ´ 1u| ´ r and Rϕpuq “ |ϕ2px, yq´1p1q X t|u| ´ 2r, . . . , |u| ´ 1u| ´ r.

This definition is best explained informally. Count the number of heads on the left side of the
coordinate 2r (exclusive) of u after applying ϕ and call this L˚

ϕpuq. Let R˚
ϕpuq be the number of heads

on the right side of coordinate |u| ´ 2r (inclusive). We clearly have L˚
ϕpuq `R˚

ϕpuq “ 2r, as ϕ permutes
the heads on any configuration and since its biradius is r, coordinates in r2r, |u| ´ 2r ´ 1s all contain
heads. Then Lϕpuq “ L˚

ϕpuq ´ r and Rϕpuq “ R˚
ϕpuq ´ r satisfy that Lϕpuq ` Rϕpuq “ 0. For an

illustration in the case where ϕ is the permutation model associated to the square of the shift, see
Figure 4.
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Figure 4. For T “ σ2 its permutation model ϕσ2 moves the heads to the right twice.
If we choose r “ 4 we observe that the sum of the red zones is 2r, the blue zone
remains unchanged, Lϕpuq “ ´2 and Rϕpuq “ 2.

Definition 3.23. Let X be a Z-subshift, T P RFApXq and let ϕ be its permutation model. The head
index map of X and T is the map HT : X Ñ Z given by

HT pxq “ lim
nÑ8

Lϕpx|t0,...,n´1uq.
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Notice that the function HT is well defined, as the values of Lϕ stabilize after n ě 4r, where r is the
biradius of ϕ. It is also noteworthy that choosing any value r1 greater than the biradius r does not
change the value. Indeed, as ϕ only permutes the heads in a finite radius, any head which is at the left
of 2r1 at a distance greater than the biradius will necessarily stay left of 2r1 , and thus will not change
the value Lϕpuq “ L˚

ϕpuq ´ r1 as the difference r1 ´ r is accounted for on L˚
ϕpuq.

Lemma 3.24. Let X be a Z-subshift. For every T P RFApXq we have that HT P AOSpXq and the
map γ : RFApXq Ñ AOSpXq defined by γpϕT q “ HT is a homomorphism. This homomorphism splits
with section β : AOSpXq Ñ RFApXq defined by βpfqpxq “ σfpxqpxq, and βpAOSpXqq “ OSpXq, so β

gives an isomorphism between AOSpXq and OSpXq.

Proof. Consider an arbitrary ϕ in the permutation model acting on X ˆ pZ{2ZqZ with biradius r. We
first claim that if |u| ě 4r and au < X, then Lϕpauq “ Lϕpuq. To see this, note that all heads except
the leftmost new one map exactly as before, and thus R˚

ϕpauq “ R˚
ϕpuq. As R˚

ϕpvq ` L˚
ϕpvq “ 2r for

every v P LpXq we conclude that L˚
ϕpauq “ L˚

ϕpuq and thus Lϕpauq “ Lϕpuq. Symmetrically, one shows
that Lϕpuaq “ Lϕpuq.

Suppose now that u, v < x P X. Let w < x be any word containing both u and v, and apply
the observation of the previous paragraph repeatedly to get Lϕpuq “ Lϕpwq “ Lϕpvq. It follows that
HT pxq “ HT pσpxqq for all x. The function HT is continuous because the limit stabilizes after n ą 4r.
We conclude that HT P AOSpXq.

To see that γpT q “ HT is a homomorphism, we need the following stronger fact about Lϕ: fix
m P N and let px, yq P X ˆ pZ{2ZqZ be a configuration where xr0,|u|´1s “ u where |u| ě m ` 4r, and
let y “ ...000.0rv1|u|´|v|´r000... where v P pZ{2Zqm is any word of length m. Then the number of
heads in ϕ2px, yq|t0,...,m`2r´1u is |v´1p1q| ` r `HT pxq. To see this, simply fill in the gaps of v (turn its
0-symbols to 1-symbols). At each step, the number of heads in the image increases by one, and the
head is always added among the coordinates in t0, . . . ,m` 2r ´ 1u since ϕ has biradius r. After filling
the gaps in v, we have m` r `HT pxq heads in ϕ2px, yq|t0,...,m`2r´1u by the definition of Lϕ.

Now, computation of γpT ˝ T 1qpxq can be done by first applying ϕ1 “ ϕT 1 on the left side of a long
word u in x, with heads positioned suitably on coordinates of u, and then applying ϕ “ ϕT to the
resulting scattered set of heads. By the previous paragraph, we see that γ is a homomorphism, that is,
γpT ˝ T 1qpxq “ γpT qpxq ` γpT 1qpxq for all x P X. The map β is well-defined essentially by the definition
of AOSpXq, and it is clearly a section for γ. □

As mentioned, the homomorphism γ generalizes the index map defined on elements of the topological
full group. It is well-known that the index map is Z-valued in the minimal case. This is true more
generally for all weakly chain-transitive subshifts, because for a weakly chain-transitive subshift the
maximal invariant symbolic factor is trivial.

Lemma 3.25. If X is weakly chain-transitive, then its orbitwise shifts are precisely the shifts.

Proof. Since pX is a singleton, Lemma 3.22 implies that AOSpXq – Z and therefore β ˝ γ must map
every element of RFApXq to a power of σ by the definition of β. □

A clear example where the previous lemma holds is the full Z-shift ΣZ. Given any T P RFAfixpXq,
we can compose T with orbitwise shifts in order to force the average movement to be zero in every
orbit, that if, to obtain T P RFAfixpXq such that γpT q is identically zero. Therefore, it only remains to
find a way to generate all elements of RFAfixpXq with have no average movement on any orbit.
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Definition 3.26. Let u, v P Σ˚, a P Σ. A reversible finite-state automaton T “ Tu,a,v P RFApXq

is a controlled position swap if T ppxu.avyq
j
1q “ pxu.avyq

1´j
1 for j P t0, 1u, and T pzq “ z for all

z P X ˆX1 whose image these rules do not determine.

Lemma 3.27. Let u, v P Σ˚, a P Σ. Then the controlled position swap Tu,a,v is well-defined and in
RFApXq whenever uav is non-unary (i.e., when uav R tau˚).

Proof. The cylinders ru.avs and rua.vs have empty intersection when uav is non-unary. Thus, the
conditions under which we move the head do not overlap, and the finite-state machine Tu,a,v is
well-defined. It is clearly an involution, thus invertible. □

More generally, given a clopen set C Ď X, we define the map TC P RFApXq, which we call a
clopen-controlled position swap.

TCpxi
1q “

$

’

&

’

%

xi`1
1 if σ´ipxq P C

xi´1
1 if σ´i`1pxq P C

x otherwise

As above, these maps are well-defined for any clopen set C such that C X σpCq “ ∅. Any such TC

can be obtained as a composition of finitely many controlled position swaps, since clopen sets can be
written as a finite union of cylinder sets.

Theorem 3.28. Let X be a subshift. Then RFApXq is generated by orbitwise shifts and controlled
position swaps.

Proof. For T P RFApXq, let PT Ă tp0, 0qu Y Z2
` be the set of all pairs pm, kq such that there exists

x P X and i P Z such that T pxi`j
1 q “ xi`j`m

1 for all 0 ď j ă k. Order these pairs lexicographically (m
is more significant). The order type is a suborder of 1 ` ω2 – ω2, thus well-founded. It is now enough
to prove that, whenever T has zero average movement,

(1) PT has a maximal element MT ,
(2) if MT ą p0, 0q, there exists controlled position swap T 1 such that MT ˝T 1 ă MT , and
(3) T is the identity map if and only if MT “ p0, 0q.

Namely, by well-foundedness we must reach p0, 0q in finitely many steps by iterating the second item,
and by the third we have reached the identity map.

Fix now T P RFApXq. To see that a maximum MT “ pm, kq exists, first observe that PT ‰ H since
p0, 0q P PT . Next, for pm, kq P PT the local rule of T clearly gives a finite upper bound on m. Finally, if
m is maximal and pm, kq P PT for arbitrarily large k, then m ą 0 (since PT Ă tp0, 0qu Y Z2

` by choice),
and by compactness there exists a configuration x P X satisfying T pxi

1q “ xi`m
1 for all i P Z, thus

average movement on x is clearly nonzero.
Suppose now that MT “ pm, kq ą p0, 0q. Now, let C Ă X be the set of configurations x such that

@i P r´k ` 1, 0s : T pxi
1q “ xi`m

1 . Observe that x P C ùñ T px1
1q “ x1`j

1 where j ď m ´ 2, namely
j ď m ´ 1 by the maximality of k, and j “ m ´ 1 would contradict bijectivity of T . Clearly C is a
clopen set, and C X σpCq “ ∅ because k ą 0. We let T 1 “ TC .

Consider now an arbitrary point x P X and i P Z.
(1) If σ´ipxq R C and σ´i`1pxq R C, then pT ˝ T 1qpxi

1q “ T pxi
1q.

(2) If σ´ipxq P C, then pT ˝ T 1qpxi
1q “ T pxi`1

1 q.
(3) If σ´i`1pxq P C, then pT ˝ T 1qpxi

1q “ T pxi´1
1 q.

Defining y, z P ZZ by yi “ j where T pxi
1q “ xi`j

1 and zi “ j where pT ˝ T 1qpxi
1q “ xi`j

1 , the
difference between y to z is precisely that all subsequences of the form mkj P Zk`1 are replaced by
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2 ´1 3 3 0 ´4 3 0 ´5 ´1 0 3 3 3 3 ´4 ´3 ´5 1 ´1

2 ´1 3 3 3 ´4 3 3 ´5 ´1 ´6 3 3 3 ´3 2 ´3 ´5 1 ´1

Figure 5. The composition T ˝ T 1 illustrated with m “ 3, k “ 4. The movement
of heads in the permutation model on a configuration x is shown, and values at the
nodes are those of y (central row) and z (top row). The four nodes forming mk are
highlighted. The configuration x determines these moves, but its contents are not
shown.

mk´1pj ` 1qpm ´ 1q. Since j ď m ´ 2, the run of ms become strictly shorter, and no symbols larger
than m are introduced, thus MT ˝T 1 ă MT are required. See Figure 5 for an illustration. □

Remark 3.29. In the proof above, only the part about non-zero average movement and orbitwise
shifts crucially depends on the properties of X. The other part does not: if T P RFApY q, T has average
movement zero (on Y ), and X Ă Y , then one can perform all choices in the proof canonically so that
decomposing T into controlled position swaps on Y and then restricting to X is equivalent to first
restricting to X and then applying our construction on X.

Let us use Lemma 2.7 to extract corollaries in the case where we have more than one state. If
k ě 2, then recall that the isomorphism between RTMpX, kq and RTMp

k
?
X, 1q simply uses the different

positions on #-segments to encode the state. Thus, moving a head one step to the right along a
contiguous segment of #-symbols corresponds to increasing the state by one. Moving a head from the
rightmost #-symbol to non-# symbol to the right of it means corresponds to changing the state to 1
and stepping to the right.

Thus, translating the previous result amounts to the following: Let X Ă ΣZ be a locally aperiodic
subshift and k ě 2. For u, v P Σ˚ and q P t1, . . . , k ´ 1u define the controlled state swap
fu,q,v P RFAfixpX, kq as

fu,q,vpx, q1q “ px, q2q

where q2 “ q1 if q1 R tq, q ` 1u or if xt´|u|,...,|v|´1u ‰ uv, and otherwise let q2 P tq, q ` 1uztq1u. For
u, v P Σ˚, a P Σ, define a stateful controlled position swap as fpxu.avy, kq “ pxua.vy, 1q and
fpxua.vy, 1q “ pxy.avy, kq for all tails x, y, and fpzq “ z for all points not of this form. This is a
well-defined involution for all u, v (since k ě 2).

Corollary 3.30. Let X be a weakly chain-transitive locally aperiodic subshift and k ě 2. Then
RFApX, kq is generated by the shift map, controlled state swaps, and stateful controlled position swaps.

3.4. Elementary Turing machines are finitely generated. In this section, we prove Theorem 1.1.
That is, we show that for any n, k ě 1 the group ELpZ, n, kq is finitely-generated.

Proof of Theorem 1.1. The case n “ 1 is easy. Suppose thus that n ě 2. Let X “ ΣZ. Since OBpXq is
finitely generated and OSpXq “ xσy, we only need to show that the controlled position swaps can be
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implemented when k “ 1, and that the stateful controlled position swaps and controlled state swaps
can be implemented when k ě 2. We work in the fixed-head model.

Suppose first that k “ 1. Let sℓ “ Tϵ,1,0ℓ . By conjugating with an element of OBpXq, these swaps
generate all controlled swaps where the left control is ϵ. Namely, to generate Tϵ,a,v where av is not
unary (see Lemma 3.27), conjugate sℓ where ℓ “ |v| with any local permutation mapping

fpx.avyq “ x.10ℓy and fpxa.vyq “ x1.0ℓy.

Such f exists because av is not unary and thus does not overlap with its 1-shift – simply map these
patterns correctly, and fill the permutation arbitrarily. Swaps at other positions are obtained by
conjugating with σ. Thus, we only need to show that sℓ can be decomposed into elements of OBpXq,
shifts, and finitely many controlled swaps. We do this by induction on ℓ.

We begin with a construction in the case when n is even. We begin with the intuitive description.
Since whether the head is on the coordinate 0 or 1 in the word 10ℓ can be checked locally, we can
consider the position to be just a binary digit c (so c “ 0 means we are on the zero-coordinate of a
word 10, c “ 1 means we are on the one-coordinate of such pattern, and otherwise we fix the point
anyway). Note that using elements of OBpXq, we can swap positions to the right of the pattern 10
independently of c. Thus, our controlled swaps may depend on positions arbitrarily far to the right
from the central 10, as long as they do not depend on more than a constant number of coordinates.

We begin with state cwb where c is the head position (either 0 or 1, marking whether we are on the
first or second coordinate of w), and w “ 10u where u P Σℓ´1 is the control word that we are checking
for value 0ℓ´1. The permutation is the following: First, flip c if b “ 0 (by moving b next to the initial
10 of w performing a small-radius controlled swap, and moving b back). Then add 1 (modulo n) to b
(by an element of OBpXq) if u “ 0ℓ´1. Then repeat these two steps n times. The end result is that c is
flipped once if u “ 0ℓ´1, since b “ 0 at exactly one of the c-flipping steps, and otherwise c is flipped
either 0 or n times and thus is not changed.

More precisely, define first g P RFApXq as the controlled swap Tϵ,1,00, that is,

gpx1.00yq “ x.100y, gpx.100yq “ x1.00y

and gpzq “ z for points not of this form. This is clearly in RFApXq, and we take it in our set of
generators. Also define h P OBpXq as any local permutation such that

hpx1.0ubyq “ x1.0buy, hpx.10ubyq “ x.10buy

for all u P Σℓ´1, b P Σ (and hpzq may be arbitrary for points not of this form), which is again well-defined
since no point is of both forms.

Now, defining f 1 “ h´1 ˝ g ˝ h we have

f 1px1.0u0yq “ x.10u0y, f 1px.10u0yq “ x1.0u0y

for all u P Σℓ´1 and f 1pzq “ z for points not of this form.
Next, define f2 P OBpXq by

f2px.10ℓbyq “ x.10ℓpb` 1qy, f2px1.0ℓbyq “ x1.0ℓpb` 1qy

for all b P t0, 1, . . . , n´ 1u (where increment is modulo n) and f2pzq “ z for all z P X not of this form.
Then pf2 ˝ f 1qn is our desired map.
Suppose then that n is odd. We will use the proof structure of [36]. Again, consider the input to

be c10ub where c P t0, 1u indicates the position of the head (either on the symbol 1 or the symbol 0
of the word 10 after c), and u P Σℓ´1 and b P Σ. We construct the machine by induction. Suppose
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we have already constructed a machine that flips c conditioned on u “ 0ℓ´1, and let us show how to
check b “ 0. First flip b between 0 and 1 if u “ 0ℓ´1 (and fix the value of b if b P Σzt0, 1u), using a
machine in OBpXq. Then flip the bit c if b “ 0 using a machine in RFApXq conjugated by a machine
in OBpXq, as above. Repeat these steps. The resulting machine g2 is in ELpXq and will flip c if and
only if b P t0, 1u and u P 0ℓ´1.

Now, conjugate the machine by affine translations: let h P OBpXq add 2 to the value of b. Then
h´

n´1
2 ˝ pg2 ˝ hq

n´1
2 will flip the value of c if and only if u “ 0ℓ´1 and b ‰ 0. Finally, flip c if u “ 0ℓ´1,

so that the resulting machine flips c if and only if ub “ 0ℓ.
The details of translation to machines in RFApXq and OBpXq are omitted, as they are similar as in

the case of an even alphabet.
In the case k ě 2, we need to perform controlled state swaps and stateful controlled position swaps

using finitely many elements of RFApXq and elements of OBpXq. The proof of controlled state swaps
is the same as the proof above, but now the bit c (which indicated the position above) indicates which
state we are in, out of the two we are swapping (and nothing happens if we are in neither state). The
proof of stateful controlled position swaps is also similar; and now the bit c is 0 if we are in state k,
and 1 if we are in state k, and in state 1 the control word is seen through an offset of one. □

4. Computability aspects

In this section we study the computability aspects of RTMpZd, n, kq. We begin the section by briefly
showing which properties of Turing machines are computable. In particular we prove that injectivity
and thus the reversibility of a machine in TMpZd, n, kq is decidable. This property, along with the
possibility to compute the rule of a composition and an inverse gives a recursive presentation for
RTMpZd, n, kq which has a decidable word problem.

In this context, we proceed to study the torsion problem of RTMpZd, n, kq and its subgroups, that
is, whether there exists an algorithm which given a description of T P RTMpZd, n, kq always halts and
accepts if and only if there exists n ě 1 such that Tn “ id. In this context we show that ELpZ, n, kq

has an undecidable torsion problem (Theorem 1.2). Furthermore, we use this result to show that
the automorphism group of any uncountable Z-subshift contains a finitely generated subgroup with
undecidable torsion problem (Corollary 1.3).

Finally, we study the torsion problem for RFApZd, n, kq. We show by a simple argument that
RFApZ, n, kq has a decidable torsion problem. Interestingly, the torsion problem in RFApZd, n, kq for
d ě 2 is undecidable. We present a detailed proof of this result which draws upon the undecidability
of the snake tiling problem [22]. These two results add up to the Theorem 1.4 we discussed in the
introduction.

4.1. Basic decidability results. First, we observe that basic management of local rules is decidable.

Lemma 4.1. Given two local rules f, g in the moving head model,
‚ It is decidable whether Tf “ Tg,
‚ We can effectively compute a local rule for Tf ˝ Tg,
‚ It is decidable whether Tf is injective,
‚ It is decidable whether Tf is reversible, and
‚ We can effectively compute a local rule for T´1

f when Tf is reversible.

Proof. For the first claim, let f : ΣF1 ˆQ Ñ ΣF2 ˆQˆZd and g : ΣF3 ˆQ Ñ ΣF4 ˆQˆZd and define
F “ F1 YF2 YF3 YF4. Extend the rules f, g so that they are defined as f 1, g1 : ΣF ˆQ Ñ ΣF ˆQˆZd

satisfying Tf “ Tf 1 and Tg “ Tg1 . If for some pp, qq P ΣF ˆQ f 1pp, qq ‰ g1pp, qq, then clearly Tf 1 ‰ Tg1 .
Otherwise, we have Tf 1 “ Tg1 .
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Finding a local rule for the composition of two Turing machines is a straightforward, if somewhat
tedious, exercise.

For the decidability of reversibility, we give a semi-algorithm for both directions. First, if Tf is
reversible, then it has a reverse Tg. We thus only need to enumerate local rules g, and check whether
Tf ˝ Tg “ id, which is decidable by using the two previously described procedures.

If Tf is not injective, then Tf px, yq “ Tf px1, y1q for some px, yq, px1, y1q P ΣZd

ˆXk with y0⃗ ‰ 0. If r is
the move-radius of f , then necessarily the nonzero position of y1 is at distance at most r from the origin
and xv⃗ “ x1

v⃗ for |v⃗| larger than the radius of Tf . Then we can assume xv⃗ “ x1
v⃗ “ 0 for all such v⃗. It

follows that if Tf is not injective, it is not injective on the finite set of configurations px, yq P ΣZd

ˆXk

where px, yqv⃗ “ 0 for all |v⃗| larger than the radius of Tf , which we can check algorithmically.
By Theorem 2.18, injectivity is equal to reversibility, so the decidability of the reversibility of a

Turing machine is a direct consequence of the previous argument.
Finally, if Tf is reversible, we can effectively construct a reverse Tf

´1 for it by enumerating all
Turing machines and outputting the first T 1 such that Tf ˝ T 1 “ T 1 ˝ Tf “ id. □

From the results above, we obtain that the set of all possible local rules f which generate reversible
actions Tf gives a recursive countable presentation of RTMpZd, n, kq. Furthermore, that presentation
has a decidable word problem.

Proposition 4.2. RTMpZd, n, kq admits a recursive presentation with decidable word problem.

Proof. The set of local rules giving moving head Turing machines can be recursively enumerated. Indeed,
consider the sequence of sets Λn “ t´n, . . . , nud indexed by n P N and list in some lexicographical order
all local rules f : ΣΛn ˆQ Ñ ΣΛn ˆQˆ Λn. For each n P N this is a finite set and thus all local rules
can be recursively listed as pfiqiPN. By Lemma 4.1 it is decidable which local rules define reversible
Turing machines, and thus one can run that algorithm on each fi to obtain a recursive enumeration
pfφpiqqiPN of all reversible moving head Turing machines. Also, using Lemma 4.1 one can reduce every
word fφpi1qfφpi2q ¨ ¨ ¨ fφpikq to some equivalent rule feq. It suffices to test the equality of feq with the
identity machine to decide the word problem of this presentation. □

4.2. The torsion problem of elementary Turing machines.

Definition 4.3. Let G be a group which is generated by S Ă G. The torsion problem of G is the set
of words w P S˚ for which there is n P Z` such that the element represented by wn is the identity of G.

If a group G is recursively presented, then the torsion problem is recursively enumerable. However,
the torsion problem may not be decidable even when G has decidable word problem. Many such
examples are known, and the main result of this section provides a new such example.

As discussed in the introduction, we say a moving head Turing machine is classical if its in- and
out-radii are 0, and its move-radius is 1. Here we characterize reversibility in classical Turing machines.
If T0 has in-, out- and move-radius 0, that is, T0 only performs a permutation of the set of pairs
ps, qq P ΣˆQ at the position of the head, then we say T0 P LPpZ, n, kq is a state-symbol permutation.
If T1 has in-radius ´1, never modifies the tape, and only makes movements by vectors in t´1, 0, 1u,
then T1 P RFApZ, n, kq is called a state-dependent shift.

If we consider the class of all classical Turing machines on some finite alphabet and number of states
then the torsion problem is undecidable. This result was shown by Kari and Ollinger in [23] –they
call it the periodicity problem in their setting– using a reduction from the mortality problem which in
turn they also prove to be undecidable following a reduction from the mortality problem of reversible
2-counter machines. In this section, we show that the torsion problem is also undecidable for elementary
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Turing machines with a fixed alphabet and number of states. We do this by reducing to the classical
machines. We begin by describing them in our setting.

Proposition 4.4. A classical Turing machine T P RTMpZ, n, kq is reversible if and only if it can be
expressed in the form T1 ˝ T0 where T0 is a state-symbol permutation and T1 is a state-dependent shift.
In particular, classical reversible Turing machines are in ELpZ, n, kq.

Proof. We only need to show that if T is reversible then it is of the stated form. Let fT : Σ ˆ Q Ñ

Σ ˆQˆ t´1, 0, 1u be a local rule for T in the moving tape model. We claim that if fT pa, qq “ pb, r, dq

and fT pa1, q1q “ pb1, r, d1q then d “ d1. Namely, if it is not the case, one can easily find two configurations
with the same image. There are multiple cases to consider which can all be treated similarly, for
instance, let x, y be a left and right infinite sequence of symbols of Σ respectively and suppose d “ 0
and d1 “ 1. In this case:

T ppxb1.ayq, qq “ pxb1.by, rq “ T ppx.a1byq, q1q.

Therefore contradicting the reversibility of T . Repeating this argument over all pairs d ‰ d1 we
obtain that the direction of movement is entirely determined by the output state. Of course, for T
to be injective, also fT must be injective, so the map g : Σ ˆ Q Ñ Σ ˆ Q defined by gpa, qq “ pb, rq

if fT pa, qq “ pb, r, dq is injective, thus a bijection. From here, the only remaining possibility is that
T0 is the permutation g, and T1 as the finite-state automaton with local rule fT1 pa, qq “ pa, q, dq if
fT pb, q1q “ pb1, q, dq for some pb, qq P Σ ˆQ. □

It follows that the inverse of a reversible classical Turing machine is always of the form T0 ˝ T1 where
T0 is a state-symbol permutation and T1 is a state-dependent shift. In the terminology of Section 3,
the theorem implies that all reversible classical Turing machines are elementary.

Now we are ready to prove Theorem 1.2, namely, that the torsion problem of ELpZd, n, kq is
undecidable for all n ě 2, k ě 1 and d ě 1.

Proof of Theorem 1.2. As ELpZ, n, 1q embeds into ELpZd, n, kq for every k, d ě 1, It is enough to prove
this for d “ 1 and k “ 1.

The machines constructed in [23] are already elementary, but their alphabets are not bounded
(note that these are classical Turing machines so there are only finitely many machines of any given
state-alphabet pair). However, one can simulate them with elementary Turing machines with fixed
alphabets. That is, given a classical reversible Turing machine T (on some finite alphabet and number
of states), one can construct a machine in ELpZ, n, 1q which is periodic if and only if T is. Our result
then follows from the main result of [23].

Let T be a given classical Turing machine with state set Q and tape alphabet Σ, and let fT be its
local rule. Note that in this proof we use Σ and Q for the alphabet and state set of T , rather than
those of the machines in ELpZ, n, 1q.

By Proposition 4.4 we have T “ T1 ˝ T0 where T0 is a state-symbol permutation and T1 is a
state-dependent shift. We can further assume that T1 does not use movement by 0: For each state q
that would move by 0 we introduce a new state q1, and modify shift T1 to move by ´1 in state q and by
`1 in state q1. We also modify state-symbol permutation T0 to enter always state instead q1, whenever
it would enter q, and to map pa, q1q ÞÑ pa, qq for all tape symbols a. In this way a single non-moving
step gets replaced by two steps moving to the right and to the left, respectively. Clearly the modified
machine is periodic if and only if the original one is. Let us denote by L Ă Q and R Ă Q the sets of
left and right moving states in T1. Then Q is the disjoint union of L and R

Let K be a symbol which is not in Q and m be such that nm ě |Σ ˆ pQ Y tKuq| so that we can
encode tape symbols (represented by pairs in Σ ˆ tKuq and state-symbol pairs as unique blocks of
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length m over the n letter alphabet. Pair pa, qq represents a tape cell containing a P Σ and being read
by the machine in state q P Q, while pa,Kq is a cell containing a P Σ and not currently read by the
machine. Take an arbitrary one-to-one encoding function Σ ˆ pQY tKuq Ñ t1, . . . , num. Let us denote
by ra, rs the encoding of pa, rq P pQY tKuq, a word of length m in the alphabet t1, . . . , nu.

The idea is that a configuration of T with tape content x P ΣZ, state q P Q and position p P Z is
represented as the encoded configuration with tape content x1 P t1 . . . , nuZ, where x1

rim,pi`1qmq
“ rxi,Ks

for i ‰ p and x1
rpm,pp`1qmq

“ rxp, qs, and with the stateless head in position pm. Notice that there
might be many configurations in t1, . . . , nuZ that are not valid encodings.

We construct an element of ELpZ, n, 1q that is a composition T 1
1 ˝ T 1

0 where T 1
0 P LPpZ, n, 1q and

T 1
1 P RFApZ, n, 1q are both involutions. Informally, the local permutation T 1

0 implements the state-
symbol permutation T0 on the encoded tape, including writing the new state in the correct position,
while the finite-state automaton T 1

1 simply moves the machine head m positions to the right or to the
left to scan the block containing the new state. We complete the local rules of T 1

0 and T 1
1 into involutions

that also perform the inverse steps, and act as identities in all other situations. This automatically
causes the machine to reverse its time direction and start retracing it steps backwards if it encounters a
non-valid pattern.

More precisely, the local permutation T 1
0 is defined with neighborhood F0 “ t´m, . . . , 2m´ 1u and

so that the local rule f0 is a permutation of t1, . . . , nuF0 . The machine sees three m-blocks: the current
block in the center and neighboring blocks on both sides. For every a, b, c, d P Σ and q, p P Q,

(1) if fT pa, qq “ pb, p,´1q then f0 swaps

rc,Ksra, qsrd,Ks ÐÑ rc, psrb,Ksrd,Ks,

(2) if fT pa, qq “ pb, p,`1q then f0 swaps

rc,Ksra, qsrd,Ks ÐÑ rc,Ksrb,Ksrd, ps.

All other patterns in t1 . . . , nuF0 are mapped to themselves. By the reversibility of T this f0 is a
well-defined involution.

The reversible single-state finite automaton T 1
1 uses the neighborhood F1 “ t´2m, . . . , 3m ´ 1u,

so the machine sees two blocks to the left and to the right from its current block. Its local rule is a
function f1 : t1, . . . , nuF1 ÝÑ Z where f1puq gives the head movement on tape pattern u.

(1) Let p P L. Then f1 maps, for all b, c, d P Σ,

˚ rc, ps rb,Ks rd,Ks ˚ ÞÑ ´m,

˚ ˚ rc, ps rb,Ks rd,Ks ÞÑ `m,

where ˚ represents any m-block in t1 . . . , num. In other words, if the machine sees a state p P L

on the block to its left and non-states K at its current block and the block on its right, the
machine moves left. If it sees a state p P L at its current block and K on the two blocks to its
right, it moves right. These moves are inverses of each other: if one is applicable now, the other
one is applicable on the next time step and it makes the machine return to its original position.

(2) Symmetrically, let p P R. Then f1 maps, for all c, b, d P Σ,

˚ rc,Ks rb,Ks rd, ps ˚ ÞÑ `m,

rc,Ks rb,Ks rd, ps ˚ ˚ ÞÑ ´m.

Also these moves are inverses of each other.
On all other patterns in t1 . . . , nuF1 the movement is by 0. Because L and R are disjoint, T 1

1 is
well-defined. It is also an involution.
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Machines T 1
0 and T 1

1 are so designed that T 1
1 ˝ T 1

0 simulates one step of T on valid encodings of its
configurations. It follows that if T is not periodic neither is T 1

1 ˝ T 1
0.

Suppose then that T 1
1 ˝ T 1

0 is not periodic. When iterating T 1
0 and T 1

1 alternatingly, if at any moment
either machine does not change the configuration then the iteration starts to retrace its steps back in
time. This follows from the fact that T 1

0 and T 1
1 are involutions. Any orbit containing two such changes

of time direction is periodic. By this and compactness, if T 1
1 ˝T 1

0 is not periodic, there exists a bi-infinite
orbit where each application of T 1

0 and T 1
1 changes the configuration. By the construction, the machine

locally only sees valid encodings. The orbit – in either forward or backward time direction – is then a
valid simulation of T on the portion of the tape that T sees. It follows that T has a non-periodic orbit
as well. □

Combining Theorem 1.2 and Theorem 1.1, we immediately obtain the following corollary.

Corollary 4.5. There is a finitely generated subgroup of RTMpZ, n, kq whose torsion problem is
undecidable.

4.3. The torsion problem of cellular automata. In this section, we show that there is a finitely
generated group of cellular automata whose torsion problem is undecidable. It is tempting to try to
prove this by constructing an embedding from ELpZ, n, kq to AutpAZq, but this is impossible: it is
well-known that AutpAZq is residually finite, however, the group of finitely supported permutations of
N embeds into LPpZ, n, kq and therefore ELpZ, n, kq can not be residually finite. Nevertheless, there
are standard ways to construct cellular automata from Turing machines, and we show that while one
cannot preserve the complete group structure, one can preserve torsion.

One could do this similarly as in the previous section, by showing directly that an automorphism
simulating a Turing machine will be periodic if and only if the Turing machine is. We will prove a
slightly stronger abstract result, namely we construct a map from ELpZ, n, kq to AutpAZq that preserves
some of the group structure of ELpZ, n, kq while adding only some “local” identities. To achieve this, it
seems we cannot use the same construction as in the previous section, as discussed below in Remark 4.9
discusses.

In the following, the free monoid generated by the elements of a group G is written G˚, and consists
of formal words w where wi P G for all i “ 1, . . . , |w|. For w P G˚, write w “ w1 ¨ w2 ¨ ¨ ¨w|w| P G for
the corresponding element of G.

Definition 4.6. Let G and H be groups and P be a group property. We say a function ϕ : G Ñ H

is P-preserving if the following holds: For every finite set F Ă G˚ the group xw | w P F y ď G has
property P if and only if the group xϕpw1qϕpw2q ¨ ¨ ¨ϕpw|w|q | w P F y has property P

We remark that P-preserving functions ϕ need not be morphisms as we do not ask that ϕpw1w2q “

ϕpw1qϕpw2q. We only demand that property P is preserved when applying ϕ to the symbols appearing
in the words in F .

In what follows we are going to use the property P of being finite. We use this property to extend
computability invariants such as the torsion problem of a group onto another group even if no embedding
from the first group to the second exists. This kind of extension obviously demands that the function ϕ
is in some way computable. We will say a function ϕ : G Ñ H is computable if both G and H have
decidable word problem for some fixed presentation and there is a Turing machine which turns any
word w in the presentation of G such that w “ g P G into a word u in the presentation of H such that
u “ ϕpgq P H.
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Lemma 4.7. Let G be a finitely generated group with undecidable torsion problem and generating set
S, and suppose there exists a computable finiteness-preserving function ϕ : G Ñ H. Then the subgroup
H 1 “ xtϕpsqusPSy ď H has undecidable torsion problem.

Proof. Suppose the group H 1 generated by the ϕpsq has decidable torsion problem and let w P S˚.
As ϕ is finiteness-preserving we have that xw̄y is finite if and only if xϕpw1qϕpw2q ¨ ¨ ¨ϕpw|w|qy is finite.
This means w has finite order in G if and only if ϕpw1qϕpw2q ¨ ¨ ¨ϕpw|w|q has finite order in H 1. We
can compute ϕpw1qϕpw2q ¨ ¨ ¨ϕpw|w|q from w and from the finite set tϕpsq|s P Su Ă H. Thus, the
algorithm to decide the torsion problem in H 1 can be used to decide the torsion problem in G, raising a
contradiction. □

The previous lemma indicates that in order to prove that AutpAZq contains a finitely generated
subgroup with undecidable torsion problem, we now simply need to provide a computable finiteness-
preserving map from ELpZ, n, kq into AutpAZq.

Lemma 4.8. Let A “ Σ2 ˆ ptÐ,Ñu YQˆ tÒ, Óuq. There is a computable finiteness-preserving map
ϕ : RTMpZ, n, kq Ñ AutpAZq.

Proof. The alphabet A consists of triples and thus AZ can be thought of as consisting of three tapes. The
two first tapes carry a configuration in ΣZ while the third tape has symbols in ptÐ,Ñu Y pQˆ tÒ, Óuqq

and deals with the heads and calculation zones. A head is represented by a tuple in Qˆ tÒ, Óu, where
Q is the set of states of the Turing machine and tÒ, Óu is the track the machine is in. If this value is Ò,
the head is on the first (“topmost”) tape and if it is Ó, on the second (“bottom”) tape. Ð means the
head is to the left of the current cell on the current zone (if the current zone contains a head), while Ñ

means the head is to the right.
A configuration in AZ is split into zones by the contents of the third tape. Namely, every finite

portion of the second track can be split uniquely into pieces of the forms Ñ˚ pq, aq Ð˚ and Ñ˚Ð˚

where pq, aq P Qˆ tÒ, Óu. We call these pieces zones, see Figure 6. To define the finiteness-preserving
map ϕ : RTMpZ, n, kq Ñ AZ it is enough to do so in every piece of this form.
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Figure 6. A finite word in A˚ is divided into zones by the third layer. The dashed
lines separate each zone and the colours indicate which tape is being pointed at by the
arrow next to the state.

Let T P RTMpZ, n, kq be a moving head Turing machine of radius r. We define ϕpT q P AutpAZq by
defining its action over each zone as follows: If the zone has no head or the zone is of size less than
2r ` 1, do nothing. Otherwise let u0, . . . , um´1 and v0, . . . , vm´1 be the words in the first and second
track respectively, pq, aq P Qˆ tÒ, Óu be the head and ℓ P t0, . . . ,m´ 1u the position of the head in the
third track. Using this information we can construct the configuration x P ΣZ given by:

xi “

$

&

%

uj if j “ pi mod 2mq P t0, . . . ,m´ 1u

v2m´j´1 if j “ pi mod 2mq P tm, . . . , 2m´ 1u
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Figure 7. Every zone is wrapped around as a conveyor belt, where ϕpT q acts as if it
were T seeing a periodic word.

And apply T to x, where the position of the head is on ℓ if a “ Ò and on 2m´ ℓ´ 1 otherwise. After
applying the Turing machine’s local rule, recode the result again updating the left and right arrows so
that the zone does not change its shape as shown in Figure 7. With this definition, in each bounded
zone ϕpT q induces a permutation of all possible heads and tape contents while on unbounded zones it
acts as T on an infinite configuration.

The map ϕpT q is clearly continuous and shift invariant and therefore ϕpT q P AutpAZq. Also, ϕ is
clearly a computable map. It suffices to show that ϕ preserves the property of being finite.

Consider F Ă RTMpZ, n, kq˚, and H “ xϕpw1qϕpw2q ¨ ¨ ¨ϕpw|w|q | w P F y generated in AutpAZq. If
xF y is infinite, just note that the action of ϕpT q over any configuration such that the third tape is a
single unbounded zone with a head, (that is . . . ÐÐÐ pq, Òq ÑÑÑ . . .) replicates exactly the behavior
of T on the first tape. Therefore each element of xF y will act differently over at least one configuration
of this form, implying that H is infinite. Conversely, if xF y is finite, consider the action over any zone
which is unbounded or larger than the maximum movement from the origin attained by a machine in
xF y. Obviously such a machine acts as the original machine, so the action on such zones satisfies the
same relations as the action of xF y. Consider then the zones whose length is bounded by a fixed length
h. The number of different machine actions on these zones is bounded as each action is a permutation
over a finite set, thus again the movement of the Turing machine head is bounded. Therefore H is
finite and a rough bound is |H| ď |xF y| ¨ p

ś

mďhp2kmn2mq!q □

Remark 4.9. The above is not the only possible construction for making cellular automata out of
Turing machines. For example in [23], one instead uses a direction bit, and flips the running direction of
the Turing machine (from forward to backward) if it hits a border of a computation zone. This roughly
corresponds to the construction in the previous section. This construction does not, at least without
some modifications, give a finiteness-preserving map in the sense of the definition above: Suppose f
and g are Turing machines satisfying no relations. Pick F “ tpf´1g´1q ¨ g ¨ fu (a formal product of
length 3 in G˚) in Definition 4.6. Since id “ pf´1g´1q ¨ g ¨ f is torsion as a Turing machine, we should
have that the corresponding cellular automaton ϕpf´1g´1q ˝ ϕpgq ˝ ϕpfq is. But on a configuration
where the direction bit points backwards in time, this cellular automata in fact simulates the Turing
machine g ˝ f ˝ g´1 ˝ f´1 which is of infinite order.

Using that ELpZd, n, kq is finitely generated and considering the restriction of the map of Lemma 4.7
to ELpZd, n, kq we obtain that:

Corollary 4.10. For some alphabet A with at least two symbols, there is a finitely generated subgroup
G ď AutpAZq with undecidable torsion problem.
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In Lemma 7 of [32], it is shown that for every finite set A, and every uncountable sofic subshift X,
we have that EndpAZq embeds into EndpXq. In particular AutpAZq embeds into AutpXq. Letting A
be the alphabet of Corollary 4.10 we obtain Corollary 1.3, that is, that the automorphism group of
every uncountable sofic Z-subshift contains a finitely generated subgroup G with undecidable torsion
problem.

4.4. The torsion problem of finite-state machines. The torsion problem of OBpZd, n, kq is not
of much interest, as an element of this group is periodic if and only if its shift component is 0d. The
group RFApZd, n, kq for n ě 2, however, is quite interesting. Namely, the decidability of the torsion
problem turns out to be dimension-sensitive as stated in Theorem 1.4. In this section we prove that
theorem in two parts, namely, the one-dimensional part is a corollary of Theorem 4.11 whereas the
multidimensional result is given in Theorem 4.12.

We first show that for d “ 1 the torsion problem is decidable. In fact, we obtain this from a more
general result. We say the finiteness problem of a group presentation is decidable if there exists a Turing
machine which on input a finite set of words in the presentation accepts if and only if the elements
of the group represented by those words span a finite subgroup. This generalizes the torsion problem
which can be regarded as the special case where the set is a singleton.

The proof we presented in the appendix of the conference version [4] contained errors, here we
present a new proof which is based on a strong form of the pigeonhole principle, namely the Ramsey
theorem. A dynamical proof of the same result is given in [33].

Theorem 4.11. Let X be a sofic Z-subshift. Then the finiteness problem of RFApX,n, kq is decidable
for every n, k ě 1.

Proof. Let F be a finite set of Turing machines represented by their local rules and n P N. By Lemma 4.1
given u, v P F˚ we can compute the relation „ where u „ v if and only if u “ v. A semialgorithm which
accepts if and only if xF y is finite computes the set Un “ p

Ť

mďn F
nq{ „ and accepts if Un “ Un`1 for

some n. In other words, the finiteness problem is recursively enumerable, it suffices thus to show it is
co-recursively enumerable.

For the other direction, we may assume that the movement of the machines in F only depends on
the current symbol under them, and the machines move by at most one cell on each step. To see this,
take a higher power presentation of X by a sufficiently large power p (see Section 1.4 of [28]), and
record the position in a cell modulo p in the state, so that the size of Q changes to kp.

Now, to each word u < X associate

ϕpuq : tÐ,Ñu ˆQ Ñ 2tÐ,ÑuˆQ,

where the interpretation of pd1, q1q P ϕpuqpq, dq is that, when entering the word u in state q by moving
in direction d, it is possible to apply a finite sequence of finite-state machines in F so that eventually
the machine exits u by moving in direction d1 in state q1. For example by pÑ, q1q P ϕpuqpÑ, qq we mean
that there exist f1, f2, . . . , fk P F such that

pfk ˝ ¨ ¨ ¨ ˝ f1qpq, x.uyq “ pq1, xu.yq

where x and y are tails such that xuy P X, and the head does not leave u during the “intermediate
steps”, i.e. for all 1 ď j ă k we have pfj ˝ ¨ ¨ ¨ ˝ f1qpq, xu1.u2yq where u “ u1u2 and |u1|, |u2| ą 0.

Recall that sofic Z-subshifts have a regular language [28] and thus have an associated syntactic monoid.
Associate to each nonempty u its class ψpuq in the syntactic monoid of LpXq. Write Ipuq “ pϕpuq, ψpuqq.
Then I is a semigroup homomorphism where defined in the sense that if uv < X then

Ipuvq “ pϕpuvq, ψpuvqq “ pϕpuqϕpvq, ψpuqψpvqq “ IpuqIpvq,
35



where maps ϕpuq P tÐ,Ñu ˆ Q Ñ 2tÐ,ÑuˆQ are given a semigroup structure by observing that the
possible ways one can exit uv after entering it from the left or right are entirely determined by the
corresponding information for u and v.

Now, by the Ramsey theorem, there exists N such that in every word w < X of length at least
N , there is a subword uv such that u and v are nonempty, and Ipuq “ Ipvq “ Ipuvq. To see this,
let w be such a word and color the 2-subset ti, ju Ă N by Ipwri,jsq. If N is large enough, there is a
monochromatic subset of size 3, which corresponds to the word uv. In particular, by the previous
paragraph it follows that

Ipuq “ Ipuvq “ IpuqIpvq “ IpuqIpuq “ Ipu2q ¨ ¨ ¨ “ Ipukq

for all k.3

If F generates an infinite group, then there are arbitrarily long words w that the head can walk over,
under a suitable application of elements of F . Otherwise, every long enough word blocks movement,
so F must generate a finite group. More precisely, we have arbitrarily long words w P X which are
traversable, meaning

pÑ, q1q P ϕpwqpÑ, qq or pÐ, q1q P ϕpwqpÐ, qq

for some q, q1 P Q.
If w has this property, then all its subwords do. It follows that if F generates an infinite group then

there is a traversable word u such that Ipuq “ Ipuuq. Once we find such a word u, we have uk < X for
all k and that each uk is traversable, thus F must be infinite. □

Before tackling the problem in the multidimensional case, we recall the snake tiling problem
introduced and shown to be undecidable in [22]. In this problem, a set T of square tiles with colored
edges which have an associated direction arrow is given, and the goal is to find a partial tiling of Z2 –
that is, some positions can be left without tiles – such that if among two adjacent tiles the arrow of one
points to the other then they share the same color on the adjacent edge. Furthermore we require that at
least one infinite path appears in the partial tiling while following the direction associated to the tiles.

For the next proof we are going to use a slightly modified version of the snake tiling problem,
which is also undecidable [22]. Instead of using Wang tiles with just an outgoing direction we are
going to use tiles which have both a left and right direction. Formally, let T be a finite set of tiles
with colored edges and functions left, right : T Ñ D where D “ tp1, 0q, p´1, 0q, p0, 1q, p0,´1qu which
satisfy leftptq ‰ rightptq for each t P T . We are going to ask for a partial tiling τ : Z2 Ñ T Y tϵu

such that there exists a function p : Z Ñ Z2 such that τpppnqq P T , ppn` 1q ´ ppnq “ rightpτpppnqqq

and ppnq ´ ppn` 1q “ leftpτpppn` 1qqq for all n P Z and all tiles match their non-ϵ neighbors along
the arrows. If a partial tiling τ with such a path exists, we say the instance pT, left, rightq of the
problem admits a snake.

One way to think about this version is that right arrows give instructions on how to walk to `8 in
this path, while left arrows point to ´8.

Theorem 4.12. For all n ě 2, k ě 1, d ě 2, there is a finitely generated subgroup of RFApZd, n, kq

whose torsion problem in undecidable.

Proof. For the rest of the proof we assume d “ 2. In the general case, the result follows from the
obvious fact that RFApZ2, n, kq embeds into RFApZd, n, kq.

3Alternatively, one can apply the well-known fact that every finite semigroup has an idempotent, but the argument of the
present paragraph makes it more explicit why one can pick the idempotent u in the language of X and so that it has the
traversability property.
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First, let us explain why, if we let the alphabet Σ be arbitrary and take the local rule of an element
f P RFApZ2, |Σ|, 2q, it is undecidable whether Tf is a torsion element in that group. We then explain
how to do this construction in the case of a fixed alphabet and number of states. Finally, we show
that the torsion problem still remains undecidable in a finitely generated subgroup of RFApZ2, n, kq for
every n ě 2 and k ě 1.

Consider an instance of our modified snake tiling problem pT, left, rightq where T is the set of tiles.
We choose |Σ| ą |T | and associate the first |T | symbols in Σ to the tiles in T and the rest to the empty
tile. We construct a local rule f which gives a non-torsion element Tf if and only if pT, left, rightq

admits a snake.
In this instance we ask for two states, we will call them direction bits Q “ tR,Lu standing for

right and left. The machine Tf has radius F “ tpi, jq P Z2 | |i| ` |j| ď 1u and acts as follows:
‚ Let t be the tile at p0, 0q. If t “ ϵ, do nothing.
‚ Otherwise:

– If the state is L. Check the tile in the direction leftptq. If it matches correctly with t

move the head to that position, otherwise switch the state to R.
– If the state is R. Check the tile in the direction rightptq. If it matches correctly with t

move the head to that position, otherwise switch the state to L
The machine Tf is reversible and its inverse is given by the machine which does the same but switches

the roles of R and L. If pT, left, rightq admits a snake, it suffices to consider the configuration in
ΣZ2

ˆXq that contains an infinite snake and such that the head of the machine is positioned somewhere
in the snake. Clearly Tf walks to infinity in that configuration without repeating positions, thus
showing that Tf is a non-torsion element (recall we are using the moving head model). Conversely, if
pT, left, rightq does not admit a snake, then there is an uniform bound on how far Tf can walk from
its starting position before encountering an error or entering a cycle and henceforth Tf has finite order.
This concludes the proof of undecidability of the torsion problem when the alphabet is arbitrary.

Now we explain how to pass to a fixed alphabet and how to avoid using states. For this we encode
the tiles into squares of size n ˆ n. By having the bottom left corner of the coding contain 1 1

1 1 and
having no two adjacent 1s elsewhere, we ensure that there is a unique way to “parse” a given tiling into
encodings of squares. Clearly, the movements of the machine Tf are now inflated by n and anything
which is not a valid coding of a tile is interpreted as the empty tile. Also, as there is a unique way to
parse correct squares, one can also use the position of the head in the bottom left corner to code the
states. Say, the lower left corner of 1 1

1 1 codes L and the lower right corner of p1, 0q codes R. Thus the
state change amounts to a shift by either p1, 0q or p´1, 0q.

The inconvenient part of the previous construction is that the subgroup of machines defined by it
is not necessarily finitely generated. Thus a priori it might be the case that every finitely generated
subgroup of RFApZ2, n, kq still has decidable torsion problem. In order to show this does not hold we
construct a finite set of machines which simulates the previous construction. For this we are going to use
a specific 7 ˆ 7 square coding which is shown on Figure 8. This coding is composed of three zones. The
outer zone consists of a ring of 1s of side length 7 which serves to code unambiguously the boundary
of the structure. The four bottom left 1s of this zone are used to code the states, this is obtained by
forcing the head of the machine to always stay in one of these positions modulo Z2{7Z2. The middle
zone consists of a ring of 0s of side length 5 which serves to separate the three zones so no ambiguity
is possible. Finally there is the inner zone consisting of a 3 ˆ 3 square containing a configuration in
t0, 1u9. Four of these bits l1, l2, r1, r2 serve to code two directions in D “ tp1, 0q, p´1, 0q, p0, 1q, p0,´1qu.
The rest of the bits are going to be specified later on.
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Figure 8. Basic coding of the construction. The outer ring of 1s (blue) codes the
boundary of the cell and the state. The middle ring of 0s separates the zones The
inner ring (green) codes the information.

For this construction we are going to use a two bit string s P t0, 1u2 as the set of states (which is to
be coded by the head position amongst the four fixed places in the outer ring of 1s). The first bit is the
direction bit, that is, it takes the role of L and R for the first construction. The second bit is the
auxiliary bit, whose role will become clear later on.

Let C be the set of all patterns of shape as in Figure 8 centered in one of four fixed positions in the
ring of 1s –that is, such that the support is of the form pr´i, 7 ´ is ˆ r0, 7sq XZ2 for some i P t0, 1, 2, 3u–.
We consider the following finite set of machines as our generating set S.

(1) tTv⃗uvPD that walks in the direction v⃗ P D independently of the configuration.
(2) Twalk that walks along the direction codified by l1, l2 or r1, r2 depending on the direction bit.
(3) tgcucPC that flips the direction bit if the current pattern is c P C,
(4) thcucPC that flips the auxiliary bit if the current pattern is c P C,
(5) tg`,cucPC that adds the auxiliary bit to the direction bit if the current pattern is c P C, and
(6) th`,cucPC that adds the direction bit to the auxiliary bit if the current pattern is c P C,

The machine Twalk is the only one which needs to be carefully defined. It acts similarly to Tf defined
in the beginning. Formally it does the following:

‚ If the pattern around the identity does not correspond to a c P C, do nothing.
‚ Otherwise:

– If the direction bit is 0 check the pattern centered in 7leftptq from the actual head position.
If it is a valid c1 P C in the same state and its two right bits code ´leftptq then move the
head by 7leftptq. Otherwise flip the direction bit to 1.

– If the direction bit is 1. Check the pattern centered in 7rightptq from the actual head
position. If it is a valid c1 P C in the same state and its two left bits code ´rightptq then
move the head by 7rightptq. Otherwise flip the direction bit to 0.

The machines Tv⃗ simply act as the shift by v⃗ P D which is clearly reversible. As xDy “ Z2 we have
that for every vector u⃗ P Z2 the machine Tu⃗ which moves the head by u⃗ belongs to xSy.

Let p˚ be a pattern consisting of the concatenation of patterns from c which are well aligned along the
columns and lines of 1s. More formally, for a finite F Ă Z2, p˚ is a pattern with support 7F ` ppr´i, 7 ´

isˆr0, 7sqXZ2q for some i P t0, 1, 2, 3u and such that for every v⃗ P F then σ´7v⃗pp˚q|pr´i,7´isˆr0,7sqXZ2 P C.
We define gp˚ and hp˚ as the machines which flip the direction bit and the auxiliary bit respectively if
they read p˚. We claim gp˚ , hp˚ P xSy. If p˚ is defined by some singleton F “ tv⃗u it suffices to note
that gp˚ “ T´7v⃗ ˝ gc ˝ T7v⃗ and hp˚ “ T´7v⃗ ˝ hc ˝ T7v⃗ for the appropriate c P C. Inductively, we can
choose v⃗ P F and separate p˚ as the disjoint union of the pattern p˚

F ztv⃗u
defined by F ztv⃗u, and the
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pattern p˚
v⃗ defined by v⃗ and thus write:

gp˚ “ pT´7v⃗ ˝ g`,c ˝ T7v⃗ ˝ hp˚

F ztv⃗u
q2, and hp˚ “ pT´7v⃗ ˝ h`,c ˝ T7v⃗ ˝ gp˚

F ztv⃗u
q2.

Consider an instance pT, left, rightq of the snake tiling problem. The information associated to
each tile t P T consists of a 4-tuple of colors pc1, c2, c3, c4q and the directions leftptq and rightptq.
Suppose the tiles of T are defined using N colors. Let M P N such that M2 ą log2pNq. We define for
each t P T a macrotile Mptq as a fixed square array of patterns of shape as in Figure 8 of side length
M (see Figure 9). We fix an enumeration of these patterns from the bottom left to the upper right as
tcju1ďjďM2 and denote the bit bi of cj as bi,j . We demand Mptq to satisfy the following properties:

‚ For i P t1, 2, 3, 4u the sequence of bits tbi,ju1ďjďM2 codifies the color ci.
‚ b5,1 “ 1 and for all j ą 1 the bit b5,j “ 0.
‚ The bits l1, l2 and r1, r2 of c1 code leftptq and rightptq respectively.
‚ If leftptq “ p1, 0q then for all 2 ď j ď M we have that l1, l2 and r1, r2 of cj code p1, 0q and

p´1, 0q respectively.
‚ If rightptq “ p1, 0q then for all 2 ď j ď M we have that l1, l2 and r1, r2 of cj code p´1, 0q and

p1, 0q respectively.
‚ If leftptq “ p0, 1q then for all 1 ď j ď M ´ 1 we have that l1, l2 and r1, r2 of c1`jM code p0, 1q

and p0,´1q respectively.
‚ If rightptq “ p0, 1q then for all 1 ď j ď M ´ 1 we have that l1, l2 and r1, r2 of c1`jM code

p0,´1q and p0, 1q respectively.
As M2 ą log2pNq it is possible to satisfy the first requirement. The rest are possible to satisfy as

leftptq ‰ rightptq . An example of such a macrotile is represented in Figure 9.

Mptq “

Figure 9. An example of macrotile Mptq of side M “ 6. The red arrows represent
the function leftptq “ p1, 0q while the blue arrows represent rightptq “ p0, 1q. The
bottom left black square represents b5,1 “ 1.

Associate all arrays of M ˆM codings which do not represent some t P T to the ϵ tile. Also, let M
be the set of all patterns given as an array of 3 ˆ 3 macrotiles which represent a valid local pattern of
the snake problem and such that the middle tile is not an ϵ tile and are centered in the bottom left
position of the middle macrotile.
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Consider the machine T˚ P xSy given by:

T˚ “ pTwalkqM ˝
ź

p˚PM
gp˚ ˝

ź

cPC

gc

We claim that T˚ is a torsion element if and only if pT, left, rightq does not admit a snake.
If pT, left, rightq admits a snake, it suffices to take a configuration with a snake, replace each tile

and ϵ in it by a corresponding macrotile and put the head of the machine in the lower left corner of
a macrotile belonging to the snake. The machine T˚ will first detect some pattern c P C, so exactly
one gc will flip the direction bit once. Then it will detect a valid pattern p˚ of the snake problem and
thus gp˚ will flip again the direction bit amounting to no action at all. Finally, pTwalkqM will just walk
towards the lower left corner of the next macrotile. As the initial configuration codes a snake, repeating
this procedure will make T˚ walk to infinity, and thus T˚ is not a torsion element.

For the converse, we need to analyze more carefully the behavior of T˚. First of all, if in the initial
configuration the head is not over a pattern c P C, then T˚ by definition acts trivially. Otherwise,
suppose the head is over a c P C. The application of

ś

p˚PM gp˚ ˝
ś

cPC gc can at most do a state
change, and thus the head still sees some c1 P C afterwards. Also, by definition of Twalk, the head will
always see an element of C after applying pTwalkqM . This means that the head will always be seeing a
pattern in C after applying T˚.

There are two possible behaviors of T˚ starting from a pattern in C. If the head is not over a valid
array of macrotiles in M then the direction bit is flipped by gc, the second part does nothing, and Twalk

is applied M times. Otherwise the direction bit is flipped two times, amounting to no flip at all and
Twalk is applied M times.

These two behaviors translate into the following: If the head is over a valid array of macrotiles in M
then T˚ can either move into another valid array (and correctly simulate the working of Tf defined
at first in the proof), or it can fall outside a valid array of macrotiles. It it does this, then another
application of T˚ undoes the last M steps of Twalk and changes the direction bit. Therefore the machine
continues to live inside a valid array of M and simulate Tf . In this case we can use the uniform bound
on the length of the snake to find a bound N such that pT˚qN acts trivially over all these configurations.
The only case remaining is when initially the head is not over an array in M and after one application
of T˚ it stays that way. In this case, we just have that pT˚q2 acts trivially over these configurations.
Thus showing that pT˚q2N “ id and thus T˚ is a torsion element of xSy. □

In the special case where k “ 1 the previous result can be expressed in dynamical terms. Namely,
RFApZd, n, 1q is exactly the topological full group of the full Z2-shift on n symbols. This yields
Corollary 1.5, that is, for every d ě 2 the topological full group of the full Z2-shift on n symbols
contains a finitely generated subgroup with undecidable torsion problem.
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