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1. Introduction

Let X be an effectively closed Z-subshift, that is, a set of bi-infinite words which can be described

by a recursively enumerable set of forbidden words. Consider the trivial extension of X to Z2,

that is, the Z2-subshift whose rows are elements of X and which is constant on every column. The

simulation theorem proven independently by Aubrun and Sablik [4] and Durand, Romaschenko

and Shen [14] shows that this trivial extension is a sofic Z2-subshift: it is the topological factor of

a Z2-subshift of finite type (SFT).

If we look at the class of Z2-subshifts whose restriction to Z×{0} coincides with a fixed Z-subshift

X, then the trivial extension is the most rigid element of this class: the choice of configuration from

X completely determines the Z2-configuration in the trivial extension. The least rigid member of

this class is the free extension, where each coset Z×{n} holds an arbitrary configuration from X.

While the trivial extension is very useful in preserving some dynamical properties from X, others,

such as the topological entropy, are preserved by free extensions [7, 23].

It turns out that in general, the free extension of an effectively closed Z-subshift is not sofic and

thus the analogue of the simulation result for free extensions does not hold when passing from Z
to Z2. In fact, it is an open question of Jeandel whether there exists a non-sofic effectively closed

Z-subshift whose free extension to Z2 is sofic. It is interesting to ask whether some analogue can

still hold if we replace Z2 by a different algebraic structure.

The goal of this article is to study simulation results for free extensions in the larger context of

finitely generated groups. More precisely, consider a group G and H 6 G a subgroup. The free

extension to G of an H-subshift X is the G-subshift X̃ whose configurations are those for which
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the restriction to every coset of H is a configuration from X. Notice that if X is a subshift defined

by a forbidden set of patterns F , then X̃ is defined by exactly the same set of forbidden patterns.

All of our results are for the case where G = H×K is the direct product of two groups H and K.

In this case we identify H with the subgroup H × {1K} 6 G, and thus the free extension of some

H-subshift X is the G-subshift X̃ whose configurations satisfy that for each k ∈ K their restriction

to H × {k} lies in X.

Our first result generalizes our previous observation that no simulation result can hold for free

extensions from H = Z to G = Z2 to the context where both H and G = H × K are finitely

generated amenable groups.

Theorem 1.1. Let H,K be two infinite and finitely generated amenable groups. There exists an

H-subshift which is effectively closed by patterns and whose free extension to G = H × K is not

sofic.

A subshift on a finitely generated group is “effectively closed by patterns” if there exists a

recursively enumerable list of pattern codings (where elements of the groups are encoded as words on

the generators) which describes it. It is a natural generalization of the natural notion of effectively

closed subshift for Z, see [1]. The proof of Theorem 1.1 is separated on two cases, one where H

has decidable word problem, and one where H satisfies a technical property. We finally show that

these two cases cover all groups.

The main result of this article is that as soon as the first group has decidable word problem

and we replace the second group by a non-amenable group, then every free extension becomes

automatically a sofic subshift.

Theorem 1.2. Let H be a finitely generated group with decidable word problem and N be a non-

amenable group. The free extension of every effectively closed H-subshift to G = H ×N is sofic.

We remark that in this result we do not require the group N to be finitely generated, or even

countable. For instance, we have that the free extension of every effectively closed Z-subshift to

Z× SL2(R) is a sofic subshift.

The proof of Theorem 1.2 is done in two steps. First, we construct in an arbitrary non-amenable

group N a subshift of finite type in which every configuration encodes a collection of pairwise

disjoint infinite binary trees which are rooted in every element of the group. This is done through

paradoxical decompositions and is a natural generalization of the technique we introduced in [9].

This allows us to associate every coset of a group H in H ×N with a product with a binary tree

H × {0, 1}∗. The second step of the proof constructs a rooted variant of a subshift of finite type

in H × {0, 1}∗ whose projection to the empty word H × {ε} coincides with the effectively closed

subshift on H. This construction is the most technical aspect of this paper and is explained with

details in Section 5.

The remainder of the paper is dedicated to exploring the applications of Theorem 1.2. An

immediate consequence is that if H is a finitely generated group with decidable word problem and
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N is a finitely generated non-amenable group. Then the trivial extension of every effectively closed

H-subshift to G = H ×N is also sofic (Corollary 6.1).

A second result concerns the simulation of more general effective actions than subshifts. Indeed,

the initial breakthrough (which preceeded [4, 14]) in this direction was a result of Hochman [18],

which showed that for every effectively closed action Z y X, that is, every homeomorphism of

a zero-dimensional space which can be described in a precise manner through a Turing machine,

there exists a Z3-subshift of finite type which factors onto the trivial extension of Z y X (the

Z3-action on X such that {0} × Z2 acts trivially and Z× {(0, 0)} acts isomorphically as Z y X).

This result established an important bridge between computability and higher-dimensional abelian

group actions, a remarkable illustration of this connection being the classification of entropies of

Zd-subshifts of finite type by Hochman and Meyerovitch [19].

A few results by the authors have extended the initial work of Hochman to actions by homeomor-

phisms of more general finitely generated groups in several ways [8, 6, 9]. Here we use Theorem 1.2

to provide the following new simulation theorem.

Theorem 1.3. Let H,N be finitely generated groups and G = N × H. Let H have decidable

word problem and N be non-amenable. For every effectively closed action N y X there exists a

G-subshift of finite type which factors onto the trivial extension of N y X to G.

The proof of this result uses Theorem 1.2 in conjunction with Toeplitz codings of effectively

closed sets. As a remarkable consequence of Theorem 1.3 we show that on every product H × N
of two finitely generated groups with decidable word problem where at least one of them is non-

amenable there exists a non-empty subshift of finite type for which the shift action is free. These

subshifts are usually called “strongly aperiodic”.

Theorem 1.4. Let N,H be infinite and finitely generated groups with decidable word problem and

suppose that N is non-amenable. The group H ×N admits a nonempty strongly aperiodic subshift

of finite type.

We remark that very recently a minimal strongly aperiodic SFT in Z×F2 was constructed in [3].

While our result covers a much larger class of groups, we do not obtain minimality.

The paper is organized as follows. In Section 2 we provide definitions for all the required com-

putability and dynamical notions, as well as present the basic results that we shall use without

reference later on. In Section 3 we prove Theorem 1.1 by constructing an explicit example in

each of the aforementioned cases. Next in Section 4 we construct the binary tree structure in an

arbitrary non-amenable group and use it to reduce the proof of Theorem 1.2 to the existence of

an ad-hoc SFT-like structure which we call “rooted SFT” (Definition 4.4). Section 5 is the core of

this article, where we provide the proof of Theorem 1.2 by constructing explicitly the rooted SFT

with the desired properties. In Section 6 we present the applications mentioned above. Finally,

in Section 7 we present a few questions we were not able to solve.

Acknowledgments: S. Barbieri was supported by the FONDECYT grant 11200037. M. Sablik

was supported by ANR project Difference (ANR-20-CE40-0002) and the project Computability of
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supported by the Academy of Finland project 2608073211.

2. Preliminaries

We denote by N the set of non-negative integers and use the notation A b B to denote that A is a

finite subset of B. For a group G, we denote its identity by 1G, and for a word w = w0w2 . . . wk−1 ∈
G∗ =

⋃
n∈NG

n, we denote by w the element of G which is obtained by multiplying the wi. We

denote by ε the empty word.

The word problem of a group G with respect to S b G is the language

WPS(G) = {w ∈ S∗ : w = 1G}.

Let S b G be a set which generates G. We say that G is recursively presented if WPS(G)

is a recursively enumerable language, that is, if there is a Turing machine which on input w ∈ S∗

accepts if and only if w = 1G. A group is said to have decidable word problem if WPS(G) is

decidable. If G is finitely generated the notions above do not depend upon the choice of S, as long

as it generates G.

Let G y X and G y Y be (left) actions by homeomorphisms of a group G on two compact

metrizable spaces X and Y . A map φ : X → Y is called a topological morphism if it is continuous

and G-equivariant, that is, if φ(gx) = gφ(x) for every g ∈ G and x ∈ X. A topological morphism

which is surjective is called a topological factor map. If there exists a topological factor map

φ : X → Y we say that G y Y is a topological factor of G y X, and that G y X is a

topological extension of Gy Y . If the topological morphism is a bijection, we say that Gy X

is topologically conjugate to Gy Y .

Given a short exact sequence 1→ K → G→ H → 1 of groups and an action H y X, the trivial

extension to G of H y X is the action Gy X so that the K-subaction of Gy X is trivial and

the quotient action G/K y X is isomorphic to H y X. In the case where G = H ×K, the trivial

extension to G of H y X is the action Gy X where {1H} ×K acts trivially and H × {1K}y X

is isomorphic to H y X with the canonical identification between H × {1K} and H.

2.1. Effectively closed actions. Let A be a finite set, for instance A = {0, 1}, and endow AN

with the product of the discrete topology on each coordinate (the prodiscrete topology). For a

word w = w0w1 . . . wn−1 ∈ A∗ we denote by [w] the cylinder set of all x ∈ AN such that xi = wi for

0 ≤ i ≤ n− 1. We say that a closed subset X ⊂ AN is effectively closed if there exists a Turing

machine which accepts w ∈ A∗ on input if and only if [w] ∩X = ∅.

Intuitively, a set X is effectively closed if there is an algorithm which provides approximations

of the complement of X as a union of cylinders. The next definition extends effectively closed sets

by adding the action of a finitely generated group on X.

Let X ⊂ AN, Gy X and S be a finite generating set of G which contains the identity. Consider

the alphabet AS and for y ∈ (AS)N and s ∈ S let πsy = {y(n)(s)}n∈N ∈ AN. Consider the set
4



Rep(Gy X,S) ⊂ (AS)N given by

Rep(Gy X,S) = {y ∈ (AS)N : π1Gy ∈ X, and for every s ∈ S, πsy = s(π1Gy)}.

We call Rep(Gy X,S) the set representation of Gy X determined by S.

Definition 2.1. Let G be a finitely generated group. We say an action Gy X is effectively closed,

if there is a generating set S b G such that the set representation Rep(G y X,S) is effectively

closed.

To readers who are familiar with the notion of computable (partial) function, an effectively closed

action can equivalently be defined as an action on an effectively closed set such that for every s ∈ S,

the map x 7→ sx is a computable partial function. For more on effectively closed actions we suggest

to read Section 2.2 of [9].

2.2. Shift spaces. Let A be a finite set and G be a group. The set AG = {x : G → A} equipped

with the left shift action Gy AG by left multiplication given by

gx(h) := x(g−1h) for every g, h ∈ G and x ∈ AG,

is the full G-shift. The elements a ∈ A and x ∈ AG are called symbols and configurations

respectively. Given F b G, a pattern with support F is an element p ∈ AF . We denote the

cylinder generated by p by [p] = {x ∈ AG : x|F = p} and note that the cylinders are a clopen base

for the prodiscrete topology on AG.

Definition 2.2. A subset X ⊂ AG is a G-subshift if and only if it is G-invariant and closed in

the prodiscrete topology.

If the context is clear, we drop the G from the notation and speak plainly of a subshift. Equiv-

alently, X is a subshift if and only if there exists a set of forbidden patterns F such that

X = XF := {x ∈ AG : gx /∈ [p] for every g ∈ G, p ∈ F}.

Definition 2.3. Let G be a group and H 6 G a subgroup. For an H-subshift X ⊂ AH we define

its free extension to G as the subshift X̃ ⊂ AG given by

X̃ = {x̃ ∈ AG : for every g ∈ G, {x(gh)}h∈H ∈ X}.

The notion of free extension is quite natural for subshifts. Indeed, if X ⊂ AH is given by a set of

forbidden patterns F , then its free extension X̃ is the G-subshift given by the same set of forbidden

patterns. Notice that configurations on X̃ consist on copies of configurations of X on every coset

of H.

An action G y X on a compact metrizable space is expansive if there is a constant C > 0 so

that whenever d(gx, gy) < C for every g ∈ G then x = y. It is a well known elementary fact that

an action G y X on a closed subset X ⊂ {0, 1}N is topologically conjugate to a G-subshift if and

only if the action is expansive.
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Definition 2.4. A subshift X ⊂ AG is a subshift of finite type (SFT) if there exists a finite

set of forbidden patterns F such that X = XF .

Definition 2.5. A subshift X ⊂ AG is a sofic subshift if it is the topological factor of an SFT.

It will be useful to describe topological morphisms between subshifts in an explicit way. The

following classical theorem provides said description. A modern proof for actions of countable

groups may be found in [12, Theorem 1.8.1].

Theorem 2.6 (Curtis-Lyndon-Hedlund [17]). Let G be a countable group and X ⊂ AG, Y ⊂ BG

be two G-subshifts. A map φ : X → Y is a topological morphism if and only if there exists a finite

set F b G and Φ: AF → B such that for every x ∈ X and g ∈ G then (φ(x))(g) = Φ((g−1x)|F ).

In the above definition, a map φ : X → Y for which there is Φ: AX → AY so that (φ(x))(g) =

Φ(x(g)) for every g ∈ G is called a 1-block map. If Y is the topological factor of an SFT X,

it is always possible to construct an SFT Z which is topologically conjugate to X and a 1-block

topological factor map φ̃ : Z → Y . Furthermore, if G is generated by a finite set S, one can ask that

Z is nearest neighbor with respect to S, that is, it is described by a set of forbidden patterns

whose supports are of the form {1G, s} where s is a generator of G. A proof of this elementary fact

can be found on [5, Proposition 1.7].

2.3. Effectively closed subshifts. It is often useful to give an explicit notion of effectively closed

in order to be able to work with the space AG instead of AN. Let G be a finitely generated group,

S a finite set of generators for G and A an alphabet. For any W b S∗, a map c : W → A is called

a pattern coding. The cylinder defined by a pattern coding c is given by

[c] =
⋂
w∈W

[c(w)]w.

A pattern coding can be thought of as pattern on free monoid S∗. It can be represented on

the tape of a Turing machine as a finite sequence of tuples {(w1, a1), (w2, a2), . . . , (wk, ak)} where

wi ∈ S∗, ai ∈ A and c(wi) = ai. A set C of pattern codings defines a G-subshift XC by setting

XC := {x ∈ AG : gx /∈ [c] for every g ∈ G, c ∈ C}.

Definition 2.7. A G-subshift X is effectively closed by patterns if there exists a recursively

enumerable set of pattern codings C such that X = XC.

A Turing machine which accepts a pattern coding c if and only if c ∈ C is said to define X = XC .

Note that neither C nor the Turing machine which defines X are unique.

It is not true in general that subshifts which are effectively closed by patterns coincide up to

topological conjugacy with effectively closed expansive actions. Every effectively closed expansive

action is topologically conjugate to an effectively closed subshift, but the converse only holds if

the group is recursively presented, see [9, Proposition 2.16]. Therefore if we consider recursively

presented groups (or groups with decidable word problem) we will simply refer to an “effectively
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closed subshift”, while beyond this class we will add “by patterns” if we mean this notion instead

of “topologically conjugate to an expansive effectively closed action”.

3. Product of two amenable groups

In this section we prove Theorem 1.1. We will proceed through the construction of two explicit

instances. One of them will work whenever the group H has decidable word problem, whereas the

second one will work when H satisfies a technical condition which we call “property (S)”. Finally,

we will show that these two cases cover all finitely generated groups.

Both of the constructions we present here are variations of a well-known example in the literature

due to Jeandel (unpublished) and called the “mirror shift”. This is an effectively closed Z2-subshift

which is not sofic and which has the property that one of its (non-expansive) Z-subactions can not

be realized as the topological factor of a subaction of any Z2-SFT. An interested reader can find

more about this mirror shift by reading [1, Section 2.4] and M. Hochman’s chapter in [10].

For the remainder of this section we fix two infinite and finitely generated groups H and K, and

finite symmetric sets of generators SH , SK which contain the identity for H and K respectively.

Consider the word metric in H with respect to SH . For n ∈ N, denote by Bn = {g ∈ H : |g| ≤ n}
the set of all elements at distance at most n from the identity in H.

For finite sets T b H and U b K, define ∂T = TSH \ T , ∂U = USK \ U and ∂(T × U) =

(TSH ×USK) \ (T ×U). Remark that as SH , SK were chosen so that they contain the identity, we

have that |∂T | = |TSH | − |T |, |∂U | = |USK | − |U | and |∂(T ×U)| = |∂T ||U |+ |∂U ||T |+ |∂T ||∂U |.

3.1. Property (S): the reflection shift. Let G be a group which is finitely generated by a sym-

metric set S b G and let A = {∗, 0, 1}. The reflection shift XR ⊂ AG is the set of configurations

determined by the set of forbidden pattern codings

C = {c : {ε, w,w−1} → A such that w ∈ S∗, c(ε) = ∗, and c(w) 6= c(w−1)}.

In simpler words, the reflection shift consists of all configurations x ∈ AG such that if x(g) = ∗
for some g ∈ G, then x(gh) = x(gh−1) for every h ∈ G, see Figure 1. Let us notice that this subshift

is always nonempty, as {0, 1}G ⊂ XR. It is also clear that the set of forbidden pattern codings C is

recursively enumerable, and thus XR is effectively closed by patterns.

The following notion was introduced and discussed in a mathoverflow thread by one of the

authors1 in the context of locally compact groups. In said reference the groups with the property

are called “splendid”. Here we give them the name “property (S)”.

Definition 3.1. A countable group G satisfies property (S) if for every finite subset F b G there

exists g ∈ G such that

gFg ∩ F = ∅.

1https://mathoverflow.net/questions/370239/splendid-groups
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0 1 1 1 0 1 0 0 1 1 1 0 1

1 1 0 1 0 1 1 0 1 1 0 0 1

0 1 1 0 0 0 0 0 1 0 0 0 0

1 1 0 0 0 1 0 0 1 0 0 0 1

1 1 0 0 0 1 0 0 1 0 0 0 1

0 1 0 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 ∗ 0 1 0 0 0 1

1 1 1 0 1 0 0 1 0 0 0 1 0

1 0 0 0 1 0 0 1 0 0 0 1 1

1 0 0 0 1 0 0 1 0 0 0 1 1

0 0 0 0 1 0 0 0 0 0 1 1 0

1 0 0 1 1 0 1 1 0 1 0 1 1

1 0 1 1 1 0 0 1 0 1 1 1 0

Figure 1. Part of a configuration of the reflection shift in Z2.

Proposition 3.2. Let H,K be infinite, finitely generated and amenable groups and suppose that

H satisfies property (S). Then the free extension of the reflection shift on H to G = H ×K is not

sofic.

Proof. Let us denote by X̃R ⊂ {0, 1, ∗}H×K the free extension to H ×K of the reflection shift on

H. Let Y ⊂ X̃R be the subshift given by

Y = {y ∈ X̃R : for every h ∈ H, k ∈ K, s ∈ SK we have y(h, k) = ∗ if and only if y(h, ks) = ∗}.

In other words, Y is the subset of all configurations of X̃R in which the symbols ∗ occur in

“columns” in the second group. That is, if the symbol ∗ occurs in some position (h, k), then it

occurs in all {h} ×K.

Suppose that X̃R is sofic. As K is finitely generated, it follows directly from its definition that

Y is sofic. Therefore there exists a finite set B, a nearest neighbor SFT Z ⊂ BH×K and a 1-block

topological factor map φ : Z → Y .

Now let ε > 0 such that

2ε+ ε2 <
log(2)

log(|B|)
.

As both H,K are amenable, there exists finite sets T b H and U b K such that |∂T | ≤ ε|T | and

|∂U | ≤ ε|U |. We will further choose T such that T = T−1. This can always be done, see [22,

Corollary 5.3] From our choice of ε we obtain that

2|T×U | = 2|T ||U | > |B||U ||T |(2ε+ε2) ≥ |B||T ||∂U |+|U ||∂T |+|∂T ||∂U | = |B||∂(T×U)|.

By our assumption that H has property (S), we obtain that there is g ∈ H such that gTg∩T = ∅
and thus as T was chosen symmetric we obtain that the sets gT and T−1g−1 are disjoint. Notice

that this implies that neither gT nor T−1g−1 may contain the identity.
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For any pattern p : gT × U → {0, 1} we construct a configuration yp ∈ Y whose restriction to

gT × U is p by letting

yp(h, k) =



∗ if h = 1H

p(h, k) if h ∈ gT, k ∈ U

p(h−1, k) if h ∈ T−1g−1, k ∈ U

0 otherwise.

For each p as above, let xp ∈ Z such that φ(xp) = yp. Notice that there are 2|T ||U | patterns p as

above but there are at most |B||∂(T×U)| possible restrictions of a configuration in Z to ∂(gT × U)

and thus by the pigeonhole principle there must exist two distinct patterns p, p′ such that

xp|∂(gT×U) = xp′ |∂(gT×U).

Fix some pair (t, u) ∈ gT × U such that p(t, u) 6= p′(t, u). As Z is nearest neighbor, it follows that

we may paste the restriction of xp′ at positions (H \ gT )× (K \ U) and xp at gT × U and obtain

a valid configuration in Z. Applying the map φ to said configuration we obtain y ∈ {0, 1, ∗}H×K

which satisfies that y(1H , u) = ∗, y(t, u) = yp(t, u) = p(t, u) but y(t−1, u) = yp′(t
−1, u) = yp′(t, u) =

p′(t, u). As p(t, u) 6= p′(t, u) we obtain that y /∈ Y , which contradicts the assumption that φ is a

topological factor map. We conclude that X̃R cannot be a sofic subshift. �

3.2. Decidable word problem: the ball mimic shift. Now we shall deal with the case where

H has decidable word problem.

Lemma 3.3. [Lemma 2.15 of [1]] Suppose the word problem of H is decidable. There exists two

recursively enumerable sequences u = (un)n∈N and v = (vn)n∈N of words in S∗H such that for every

n,m ∈ N, we have unBn ∩ vmBm = ∅ and 1H /∈
⋃
n∈N(unBn ∪ vnBn).

In simpler words, there is an algorithm which enumerates two sequences of words which represent

“centers” of pairwise disjoint balls of increasing radius such that no ball contains the identity. The

proof of Lemma 3.3 is straightforward and an explicit algorithm producing such sequences (using

as a subalgorithm one for the word problem of H) can be found in [1].

Let A = {∗, 0, 1} and fix two sequences u,v as in Lemma 3.3. For each n ∈ N let an = un

and bn = vn be the corresponding elements of H. The ball mimic shift XBM ⊂ AH is the set of

configurations x ∈ AH which satisfy the following property: if x(g) = ∗ for some g ∈ H, then for

every n ∈ N and h ∈ Bn we have x(ganh) = x(gbnh).

In simpler words, if the symbol ∗ occurs at some position g in x, then the restriction of x to

ganBn must mimic the restriction of x to gbnBn for every n ∈ N.

Lemma 3.4. Let H be finitely generated group with decidable word problem. The ball mimic shift

with respect to two sequences as in Lemma 3.3 is effectively closed (by patterns).
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Proof. Let u = (un)n∈N and v = (vn)n∈N the sequences that define XBM. Consider the set of pattern

codings

C = {c : {ε, unw, vnw} → A such that n ∈ N, w ∈ S∗, |w| ≤ n, c(ε) = ∗, and c(unw) 6= c(vnw)}.

As u,v are recursively enumerable, it follows that C is a recursively enumerable set of pattern

codings. It is immediate that XBM = XC . �

The next proof is very similar to the proof of Proposition 3.2, we give it for completeness.

Proposition 3.5. Let H,K be infinite, finitely generated and amenable groups and suppose that

H has decidable word problem. The free extension of the ball mimic shift on H to G = H ×K is

not sofic.

Proof. Let us denote by X̃BM ⊂ {0, 1, ∗}H×K the free extension to H ×K of the ball mimic shift on

H. Let Y ⊂ X̃BM be the subshift given by

Y = {y ∈ X̃BM : for every h ∈ H, k ∈ K, s ∈ SK we have y(h, k) = ∗ if and only if y(h, ks) = ∗}.

Suppose that X̃BM is sofic. As K is finitely generated, it follows that Y is sofic and thus there

exists a finite set B, a nearest neighbor SFT Z ⊂ BH×K and a 1-block topological factor map

φ : Z → Y .

Let ε > 0 such that

2ε+ ε2 <
log(2)

log(|B|)
.

As both H,K are amenable, there exists finite sets T b H and U b K such that |∂T | ≤ ε|T |,
|∂U | ≤ ε|U | and T = T−1. From our choice of ε we obtain that

2|T ||U | > |B||U ||T |(2ε+ε2) ≥ |B||T ||∂U |+|U ||∂T |+|∂T ||∂U | = |B||∂(T×U)|.

As T is finite, we can find n ∈ N such that T ⊂ Bn. Let p : T × U → {0, 1} be any pattern. As

anBn ∩ bnBn = ∅ and 1H /∈ anBn ∪ bnBn, we can construct the following map yp : H ×K → A.

yp(h, k) =


∗ if h = 1H

p(t, k) if k ∈ U and h ∈ {ant, bnt} for some t ∈ T

0 otherwise

It is clear by construction that yp ∈ Y . For each p as above, let xp ∈ Z such that φ(xp) = yp.

Notice that there are 2|T ||U | patterns as above but there are at most |B||∂(T×U)| possible restrictions

of a configuration in Z to ∂(anT × U) and thus by the pigeonhole principle there must exist two

distinct patterns p, p′ such that

xp|∂(anT×U) = xp′ |∂(anT×U).

Fix some pair (t, u) ∈ T ×U such that p(t, u) 6= p′(t, u). As Z is nearest neighbor, it follows that we

may paste the restriction of xp′ at positions (H\anT )×(K\U) and xp at anT×U and obtain a valid

configuration in Z. Applying the map φ to said configuration we obtain y ∈ {0, 1, ∗}H×K which
10



satisfies that y(1H , u) = ∗, y(ant, u) = yp(ant, u) = p(t, u) but y(bnt, u) = yp′(bnt, u) = p′(t, u). As

p(t, u) 6= p′(t, u) we obtain that y /∈ Y , which contradicts the assumption that φ is a topological

factor map. We conclude that X̃BM cannot be sofic. �

3.3. Proof of Theorem 1.1. By Propositions 3.2 and 3.5, we know that if H is a finitely generated

amenable group which has decidable word problem or satisfies property (S), then there exists an

H-subshift which is effectively closed by patterns and whose free extension to H ×K is not sofic.

We will now show that any finitely generated group which does not satisfy property (S) must

be virtually nilpotent. As every finitely generated virtually nilpotent group has decidable word

problem (see for instance [20, Theorem 4.6]), this is enough to prove Theorem 1.1.

Let us recall that a group G has the infinite conjugacy class property (ICC) if every non-trivial

element has infinitely many elements in its conjugacy class. A classical result of Duguid and

McLane [21, 13] (see [16] for a modern proof by Frisch and Ferdowsi) states that every infinite

finitely generated group is either virtually nilpotent or it admits an ICC quotient.

Lemma 3.6. If a group G admits a quotient H with property (S), then G has property (S).

Proof. Let φ : G → H be an epimorphism and let F b G. It follows that φ(F ) is also finite and

thus there exists h ∈ H such that hφ(F )h∩φ(F ) = ∅. Choose g ∈ G such that φ(g) = h, it follows

that φ(gFg) = hφ(F )h and thus gFg ∩ F = ∅ as well. �

Therefore, it suffices to show that groups with the ICC property have property (S). This is itself

a consequence of a result of Erschler and Kaimanovitch [15].

Proposition 3.7. [Proposition 4.25 of [15]] Let G have the ICC property. For every finite Z b G

there exist infinitely many g ∈ G such that the only solutions to the equation

gxgε = y

with ε ∈ {−1,+1} and x, y ∈ Z, are given (if they exist) by x = y = 1G.

With this proposition in hand, we can show that ICC groups have property (S).

Lemma 3.8. Let G be a finitely generated ICC group. Then G has property (S).

Proof. Let F b G. As G is finitely generated, there is n ∈ N such that F ⊂ Bn, where Bn denotes

the ball of size n in the word metric with respect to some set of generators. Set Z = B2n+1.

By Proposition 3.7, there exists g ∈ G such that the only possible solution to gxg = y are given by

x = y = 1G. Note that if there are any such solutions, then g is necessary an involution.

If g is not an involution, it follows that gFg∩F = ∅ and we are done. If g is an involution choose

any h such that |h| = n + 1 and let g′ = gh. Suppose there are k, k′ ∈ Bn such that g′kg′ = k′,

then g(hk)g = k′h−1. As max{|hk|, |k′h−1|} ≤ 2n + 1, it follows that both hk, k′h−1 ∈ Z and

thus hk = k′h−1 = 1G, which cannot happen because |h| = n + 1 and |k| ≤ n. We conclude that

g′Bng
′ ∩Bn = ∅ and thus g′Fg′ ∩ F = ∅. �

Proposition 3.9. Let G be a group without property (S). Then G is virtually nilpotent.
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Proof. IfG is not virtually nilpotent, then it admits a quotient with the ICC property. By Lemma 3.8

it follows that G admits a quotient with property (S). By Lemma 3.6, we conclude that G has prop-

erty (S). �

As every finitely generated virtually nilpotent group has decidable word problem, Theorem 1.1

follows from Proposition 3.9 and the considerations above.

4. Growing trees in non-amenable groups

Let κ ≥ 2 be an integer. It is well known that a group N is non-amenable if and only if one

can find a finite subset K b N and a κ-to-1 surjective map ϕ : N → N such that g−1ϕ(g) ∈ K
for every g ∈ N , see for instance [12, Theorem 4.9.2]. The main observation from this section, and

which was the main tool in [9], is that the space of all such maps, which can be thought of as a

parametrization of a set of paradoxical decompositions of N , can be encoded as a subshift of finite

type.

The purpose of this section is to exploit this observation to construct a subshift of finite type on

which every configuration encodes a map defined by local rules which associates to every element

of the group a binary tree, and the binary trees are pairwise disjoint. This will enable us to treat

a non-amenable group N as if each element were an infinite binary tree. More precisely, endow

both N and {0, 1}∗ with the discrete topology, the following result is the main technical tool of our

reduction.

Lemma 4.1. Let N be a non-amenable group. There exists a nonempty N -subshift of finite type

T and continuous maps root, son0, son1 from T to a finite subset of N which induce a continuous

map γ : T× {0, 1}∗ ×N → N such that:

(1) for every τ ∈ T, w ∈ {0, 1}∗ and g ∈ N , we have γ(τ, w, g) = gγ(g−1τ, w, 1N ).

(2) for every τ ∈ T the map γτ : {0, 1}∗ ×N → N is injective, where γτ (w, g) = γ(τ, w, g) for

every w ∈ {0, 1}∗ and g ∈ N .

The precise definition of γ will be given below.

4.1. The binary tree shift. For the remainder of the section, fix a non-amenable group N and a

finite symmetric set K b N such that there exists a 3-to-1 map ϕ : N → N such that g−1ϕ(g) ∈ K
for every g ∈ N . We also fix the finite set A = K4 × {0, 1, 2}. For a = (k0, k1, k2, k3, i) ∈ A, we

write s0(a) = k0, s1(a) = k1, s2(a) = k2, p(a) = k3 and c(a) = i.

Definition 4.2. The binary tree shift T ⊂ AN is the set of all configurations τ ∈ AN which satisfy

the following two constraints for every g ∈ N :

(1) if we let k = p(τ(g)) and i = c(τ(g)), then si(τ(gk)) = k−1.

(2) For every i ∈ {0, 1, 2} if we have si(τ(g)) = k then p(τ(gk)) = k−1 and c(τ(gk)) = i.

The elements si(a) are locally encoding the preimages of a 3-to-1 map, while p(a) locally encodes

the map itself. The colour c(a) is essentially partitioning the group in three disjoint sets such that
12



the restriction maps are bijections. The two rules above are simply encoding the fact that this local

information is consistent.

It is clear that T is an N -subshift of finite type. We argue that T it is nonempty. Let ϕ : N → N

be a 3-to-1 map such that g−1ϕ(g) ∈ K for every g ∈ N . Partition N as a disjoint union N0∪N1∪N2

such that for every i ∈ {0, 1, 2} the map ϕi : Ni → N given by ϕi = ϕ|Ni is a bijection. For g ∈ N
let ig ∈ {0, 1, 2} such that g ∈ Nig . Define τ ∈ AN through

τ(g) = (g−1ϕ−1
0 (g), g−1ϕ−1

1 (g), g−1ϕ−1
2 (g), g−1ϕ(g), ig) for every g ∈ N.

From our choice that K is symmetric it follows that τ(g) ∈ A. It is clear from this construction

that τ satisfies both constraints from the definition and thus T it is nonempty.

Now we define the four local maps from Lemma 4.1. Let τ ∈ T and let a = τ(1N ) be its value

at the identity of N . Recall that we write a = (s0(a), s1(a), s2(a), p(a), c(a)).

(1) The map root : T→ K is given by

root(τ) = sc(a)+2 mod 3(a).

(2) The maps sonb : T→ K for b ∈ {0, 1} are given by

soni(τ) = sc(a)+b mod 3(a).

Let us now construct a map γ : T × {0, 1}∗ ×N → N . This map will be defined recursively on

the length of the word w ∈ {0, 1}∗.

Definition 4.3. The tree map γ : T×{0, 1}∗×N → N is defined as follows. Let τ ∈ T, w ∈ {0, 1}∗

and g ∈ N ,

(1) if w = ε is the empty word, define γ(τ, ε, g) = g · root(g−1τ).

(2) if w is a nonempty word that ends by b ∈ {0, 1}, that is, w = ub for some u ∈ {0, 1}∗, then

let h = γ(τ, u, g), we define γ(τ, w, g) = h · sonb(h−1τ).

The construction of γ is illustrated in Figure 2. Continuity of γ is immediate from the locality

of the maps root, son0 and son1. Furthermore, we remark that we may traverse the tree using

local information. Namely, if w = ub for some u ∈ {0, 1}∗, we have the relations γ(τ, u, g) =

γ(τ, w, g)p(τ(γ(τ, w, g))) and γ(τ, ε, g)p(γ(τ, ε, g)) = g.

We end this section with a verification that γ satisfies both conditions of Lemma 4.1.

Proof of Lemma 4.1. Let τ ∈ T, w ∈ {0, 1}∗ and g ∈ N . We check condition (1) by induction

on the size of w. Note first that (g−1τ)(1N ) = τ(g), this immediately implies that γ(τ, ε, g) =

gγ(g−1τ, ε, 1N ). Now write w = ub for some b ∈ {0, 1} and suppose that γ(τ, u, g) = gγ(g−1τ, u, 1N ).

We have that

τ(γ(τ, u, g)) = τ(gγ(g−1τ, u, 1N )) = g−1τ(γ(g−1τ, u, 1N )).

From this and the definition of γ it follows that γ(τ, w, g) = gγ(g−1τ, w, 1N ).

Let us now show condition (2). Let g, g′ ∈ N and w,w′ ∈ {0, 1}∗ such that γ(τ, w, g) =

γ(τ, w′, g′). If neither w nor w′ is the empty word, we write w = ub and w′ = u′b′ for b, b′ ∈
13
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1

0 1 2
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Figure 2. The terniary structure induced by T. The three incoming arrows represent
s1(a), s2(a), s3(a), the outgoing arrow represents p(a) and the number c(a). We mark in
red the binary tree associated to the topmost element according to γ. We can see that the
choice in the definition of γ forces the binary trees to be pairwise disjoint.

{0, 1}. From this assumption and the relation γ(τ, u, g) = γ(τ, w, g)p(τ(γ(τ, w, g))), we obtain that

γ(τ, u, g) = γ(τ, u′, g′). Iterating this procedure we may assume without loss of generality that

w′ = ε.

Suppose then that we have γ(τ, w, g) = γ(τ, ε, g′) for some w ∈ {0, 1}∗. Let h = γ(τ, ε, g′) and

a = τ(h). By definition of γ(τ, ε, g′) we have that

c(τ(h)) + 1 = c(τ(hp(τ(h))) mod 3.

If w were nonempty, we would instead have that either

c(τ(h)) = c(τ(hp(τ(h))) or c(τ(h)) + 2 = c(τ(hp(τ(h))) mod 3.

From where we conclude that w = ε as well. Finally, if h = γ(τ, ε, g) = γ(τ, ε, g′), we can multiply

on the right by p(h) to conclude that g = g′. This shows condition (2). �

4.2. Simplification of the main result. Now we shall exploit Lemma 4.1 to simplify the proof

of Theorem 1.2. For that we will need to provide an ad-hoc extension of the definition of subshift

of finite type for the direct product M = H ×{0, 1}∗ of some group H with the rooted free monoid

{0, 1}∗.
Let A be a finite set. For some finite subset F b M , a function p : F → A is called a pattern

and F = supp(p) is called its support.

Definition 4.4. Let H be a group and consider the direct product M = H × {0, 1}∗. Let A be a

finite set. A rooted SFT is a subset X ⊂ AM for which there exists a seed alphabet A0 ⊂ A and

a finite set F of forbidden patterns such that x ∈ X if and only if
14



(1) For every g ∈M and p ∈ F there exists m ∈ supp(p) such that x(gm) 6= p(m).

(2) For every h ∈ H, we have that x(h, ε) ∈ A0.

The first condition states that forbidden patterns cannot occur anywhere in M . The second

condition restricts the symbols that may occur in any coordinate in which the second coordinate

is the root (the empty word) in {0, 1}∗.
As usual with SFTs, we can describe forbidden patterns implicitly through invariant rules. For

instance, if we say: “let n ∈M , for every m ∈M if x(m) = a then x(mn) = b”, this can be encoded

as the set of forbidden patterns p with support {1M , n} such that p(1M ) = a and p(n) 6= b.

Definition 4.5. Let A,B be finite sets, X ⊂ AH and Z ⊂ BM . We say that Z root-factors onto

X if there is a map Φ: B → A such that if we let φ : Z → AH be given by φ(z)(h) = Φ(z(h, ε)) for

every h ∈ H, then φ(Z) = X.

Now we can state the simplification of the main result.

Lemma 4.6. Let H be a finitely generated group and suppose that for every H-subshift X which

is effectively closed by patterns there exists a rooted SFT Z on M = H ×{0, 1}∗ which root-factors

onto X. Then for every non-amenable group N the free extension of H to G = H × N is a sofic

subshift.

Proof. Let Z ⊂ BM be the rooted SFT which root-factors onto X. Let B0 ⊂ B be its seed alphabet,

F a set of forbidden patterns which defines it and Φ: B → A the associated map.

Let T ⊂ AN be the binary tree shift on N . Let root, son0, son1 and γ : T × {0, 1}∗ × N → N

be the continuous maps from Lemma 4.1. Consider its trivial extension T̃ to G = H ×N

T̃ = {x ∈ AH×N : x|{1H}×N ∈ T and x(h, n) = x(1H , n) for every h ∈ H}.

As H is finitely generated, it follows that T̃ is a G-SFT. Also note that all of the previous maps

extend naturally to T̃. For instance, γ extends to a continuous map γ̃ : T̃ × {0, 1}∗ ×N → N by

letting γ̃(τ̃ , w, h) = γ(τ, w, h) with τ̃ |{1H}×N = τ . In order to reduce the encumbrance of notation,

we shall keep the original names of these maps.

Let us briefly explain the intuition of the remainder of the proof. We wish to construct a subshift

of finite type on the product space T̃ × BG in the following way: the configuration τ ∈ T̃ will

associate to every n ∈ N an infinite binary tree, and we will use the underlying rules to associate

a set of forbidden patterns which force every induced copy of H × {0, 1}∗ to contain a copy of Z.

However, notice that the maps γτ : {0, 1}∗ ×N → N are not necessarily surjective, and thus there

are portions of N which carry either infinite unrooted binary trees, or degenerate trees (when the

underlying component of the 3-to-1 map ends in a cycle). In order to make sure we are able to

correctly produce a non-empty subshift, we shall introduce an extra symbol ∗.
Now we proceed formally, let ∗ /∈ B and let C = B ∪ {∗}. We define the subshift Y ⊂ T̃ × CG

as the set of configurations (τ, y) in T̃ × CG which satisfy the following extra rules. For every

(h, n) ∈ H ×N , we have
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(1) root condition: if we let r = n · root((h, n)−1τ) then y(h, r) ∈ B0.

(2) pattern condition for every p ∈ F there exists (g, w) ∈ supp(p) such that

y(hg, γ(τ, w, n)) 6= p(g, w).

(3) extra symbol condition let n0 = n · son0((h, n)−1τ) and n1 = n · son1((h, n)−1τ). We

have that y(h, n) = ∗ ⇐⇒ y(h, n0) = ∗ and that y(h, n) = ∗ ⇐⇒ y(h, n1) = ∗.

As the maps root, son0, son1 and γ are continuous, they depend only on finitely many coordinates

of τ . Furthermore, as F is finite, there are only finitely many w in the second condition. This

means that the three rules above are local and can be implement with finitely many forbidden

patterns. This shows that Y is a G-SFT.

We now define a topological factor map ψ from Y to the free extension of X as follows, for every

(τ, y) ∈ Y we let

ψ(τ, y)(h, n) = Φ(y(h, γ(τ, ε, n))).

From the fact that n · root((h, n)−1τ) = γ(τ, ε, n) it is clear that ψ is continuous. From the

identity γ(τ, ε, n) = nγ(n−1τ, ε, 1N ) it follows that ψ is G-equivariant.

Recall that the surjective map φ : Z → X is given by φ(z)(h) = Φ(z(h, ε)). Now fix (τ, y) ∈ Y
and let n ∈ N , if we define zn ∈ BM by zn(h,w) = y(h, γ(τ, w, n)) then the root condition ensures

that zn(h, ε) ∈ A0. As ∗ /∈ A0, the extra symbol condition ensures that for every w ∈ {0, 1}∗ then

zn(h,w) ∈ B. Finally, the pattern condition ensures that no forbidden patterns occur in zn and

thus zn ∈ Z. It follows that

ψ(τ, y)(1H , n) = Φ(y(h, γ(τ, ε, n))) = Φ(zn(h, ε)) = φ(zn)(h).

From where we obtain that ψ is well defined, that is, the range of ψ is contained in the free

extension of X. In order to conclude our proof we just need to show that ψ is surjective.

Let x̃ be in the free extension of X to H × N . For each n ∈ N , let xn ∈ X be given by

xn(h) = x̃(h, n). As φ : Z → X is surjective, for each n we may choose and fix some zn ∈ Z such

that φ(zn) = xn.

As N is nonamenable, the subshift T̃ is nonempty (for a suitable choice of K in its definition)

and thus there is some τ ∈ T̃. Partition the group N into N = Rτ ∪ Uτ where m ∈ Rτ if and

only if there is n ∈ N and w ∈ {0, 1}∗ such that m = γ(τ, w, n). The names Rτ and Uτ stand for

“reachable” and “unreachable” respectively. Notice that by Lemma 4.1 if m = γ(τ, w, n) ∈ Rτ ,

then the choice of n and w is unique.

Define y ∈ CG as follows. For every (h,m) ∈ H ×N ,

y(h,m) =

zn(h,w) if m = γ(τ, w, n) ∈ Rτ
∗ if m ∈ Uτ .

A direct verification shows that (τ, y) ∈ Y and that ψ(τ, y) = x̃ and thus ψ is surjective.

As Y is a G-SFT and ψ is a continuous, G-equivariant surjective map onto the free extension of

X, it follows that said extension is a G-sofic subshift. �
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5. Soficity of free extensions

The purpose of this section is to show Theorem 1.2, namely, that for every nonamenable group

N , every finitely generated group H with decidable word problem, and every effectively closed

H-subshift X, the free extension of X to H ×N is a sofic subshift.

The proof in the case where H is finite is trivial. In view of Lemma 4.6, it suffices to show that

if H is an infinite group with decidable word problem then for every effectively closed by patterns

H-subshift X there is a rooted SFT Z on H × {0, 1}∗ which root-factors onto X. We remark

that as the word problem of H is decidable, effectively closed by patterns subshifts are effectively

closed actions, and thus we will simply say “effectively closed subshift”. For the remainder of the

section we fix a finitely generated group H with decidable word problem and an effectively closed

H-subshift X ⊂ AH . We also write M = H × {0, 1}∗.
Let us begin by explaining in very informal terms our construction of the rooted SFT Z. We

will describe Z as a subset of the product of five other structures which we will refer to as “layers”.

The alphabet layer A, the directions layer D, the branching layer B, the computation layer C and

the tentacle layer T .

First we consider the full H-shift AH and extend it trivially to M , this is the alphabet layer

A. Second, we construct an SFT on H on which every configuration induces a partition of H into

local copies of Z or one of its quotients. A theorem of Seward will ensure that there exists at least

one configuration in which no proper quotients of Z occur. The directions layer D is the trivial

extension of this space to M .

In the branching layer B we produce a structure suitable for parallel computation. Namely, we

shall use the information from D and in each induced copy of Z × {0, 1}∗ (or Z/nZ × {0, 1}∗) we

will seed symbols in each position (n, ε) which will act as computation tapes of size 1. Each time

we advance on the tree, each computation nondeterministically chooses to move to one branch of

the tree and extend its computation tape to the right by one place. As the number of possible

branchings grows exponentially, there exist choices which enable each position to extend its own

rooted computation tape to the right without ever colliding with the other tapes. This will also

eliminate the possibility of witnessing any proper quotients of Z induced by D. See Figure 3 for

an illustration of this construction.

Next we use the information from the branching layer B to simulate a Turing machine rooted on

every position of H, this simulation is encoded in the computation layer C. The Turing machine

will enumerate forbidden pattern codings for X. As soon as a forbidden pattern coding is produced,

each word in its description will be replaced by a geodesic (using the algorithm for the word problem

of the group). Next, a “search” subroutine will start, in which the computation layer C will locally

interact with the tentacle layer T . This tentacle layer grows “tentacles” from the leftmost position

of every computation layer which blindly follow the geodesic path and check if a symbol occurs in

some position in H and bring the information back to the computation layer. We will show that

there is a choice of branchings such that no tentacles attached to distinct computations collide.
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Figure 3. The computation branches in Z×{0, 1}∗. Each computation zone is of the form
I (�)∗ J. The S symbols are seeds and the ∅ symbols are placeholders for unused space.
The numbers indicate the branch in which the computation will continue, note that the
numbers are constant inside every computation zone.

The reason behind turning the words into geodesics is to ensure that the tentacles do not collide

with themselves.

If either two computation tapes collide, two tentacles collide, or a forbidden pattern coding is

found to occur in AH , then we force the occurrence of a forbidden pattern. This will ensure that

the configurations of AH which belong on X are exactly those that occur as projections to the

AH -layer of configurations of Z, thus showing that Z root-factors onto X.

5.1. The alphabet layer. Recall that M = H × {0, 1}∗. We define the alphabet layer A as the

trivial extension to M of the full H-shift on H, that is,

A = {α ∈ AM : α(h,w) = α(h, ε) for every h ∈ H,w ∈ {0, 1}∗}.

5.2. The directions layer. A bijection T : H → H is a translation-like action of Z on G if it

is free (for every h ∈ H, T k(h) = h implies k = 0) and there is K b H such that h−1T (h) ∈ K for

every h ∈ H. A result of Seward [24, Theorem 1.4] (see also [11] for a computable version) shows

that every infinite and finitely generated group H admits a translation-like action of Z.

For the remainder of this section, fix a finite symmetric set S of generators of H which contains

the identity and such that there exists a translation-like action T : H → H with h−1T (h) ∈ S.

Consider the alphabet AD = S × S. For a = (s, s′) ∈ S × S denote `(a) = s, r(a) = s′ where ` and

r stand for “left” and “right”.

Consider the H-SFT D as the space of all configurations d ∈ (AD)H such that for any h ∈ H,

(1) If s = r(d(h)) and u = `(d(hs)) then s = u−1.

(2) If s = `(d(h)) and u = r(d(hs)) then s = u−1.
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Both rules are local and thus D is an H-SFT. Notice that each d ∈ D induces a map Td : H → H

by letting Td(h) = h · r(d(h)) and the rules imply that Td is a bijection (its inverse is given by

T−1
d (h) = h · `(d(h))). Moreover, by definition we have that for every h ∈ H then h−1Td(h) =

r(d(h)) ∈ S. Conversely, every bijection T : H → H with h−1T (h) ∈ S for every h ∈ H induces a

configuration dT ∈ D by letting `(dT (h)) = h−1T−1(h) and r(dT (h)) = h−1T (h).

Let D be the trivial extension of D to M = H × {0, 1}∗, that is

D = {δ ∈ (AD)M : δ|H×{ε} ∈ D and δ(h,w) = δ(h, ε) for every h ∈ H,w ∈ {0, 1}∗}.

Clearly D is a rooted SFT (with no root condition at all). We call D the direction layer. Given

δ ∈ D and h ∈ H, we will use the notations Lδ(h) = h`(δ(h, ε)) and Rδ(h) = hr(δ(h, ε)) to denote

the elements at the left and right of h induced by δ.

5.3. The branching layer. Now we will describe how to produce a branching structure of ex-

panding computation zones which are seeded everywhere in H. Consider the alphabet

AB = {∅} ∪ ({S,J,�,I} × {0, 1}) .

Also consider the seed subalphabet as

A′B = {S} × {0, 1}.

Contrary to the previous two layers, the local rules will now depend upon information locally

encoded in the configuration δ ∈ D. We define B as the set of all β ∈ (AB)M which satisfy the

following rules for every h ∈ H and w ∈ {0, 1}∗,

(1) seed rule: we have that β(h, ε) ∈ A′B.

(2) seed growth: for each b ∈ {0, 1}, if β(h,w) = (S, b) then there is c ∈ {0, 1} such that

β(h,wb) = (I, c) and β(Rδ(h), wb) = (J, c)

(3) horizontal consistency rules: for each b ∈ {0, 1},
(a) if β(h,w) = (I, b) then β(Rδ(h), w) ∈ {(�, b), (J, b)}.
(b) if β(h,w) = (�, b) then β(Rδ(h), w) ∈ {(�, b), (J, b)} and β(Lδ(h), w) ∈ {(I, b), (�, b)}.
(c) if β(h,w) = (J, b) then β(Lδ(h), w) ∈ {(I, b), (�, b)}.

(4) branching rules: for each b ∈ {0, 1},
(a) if β(h,w) = (I, b) then there is c ∈ {0, 1} such that β(h,wb) = (I, c).

(b) if β(h,w) = (�, b) then there is c ∈ {0, 1} such that β(h,wb) = (�, c).

(c) if β(h,w) = (J, b) then there is c ∈ {0, 1} such that β(h,wb) = (�, c) and β(Rδ(h), wb) =

(J, c).

(5) Computation symbols come from seeds: If |w| ≥ 1, write w = ub for some b ∈
{0, 1}. Unless β(h, u) ∈ {(I, b), (�, b), (J, b), (S, b)} or β(Lδ(h), u) ∈ {(J, b), (S, b)}, we

have β(h,w) = ∅.

Let us now explain the meaning of the alphabet and the rules. The symbols I,� and J encode

“computation zones”. Every computation zone is read from left to right in an induced copy of Z
by δ and is of the form I (�)∗ J. The symbols {0, 1} are branching bits, and encode into which
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branch of the infinite binary tree {0, 1}∗ the tape should copy itself and extend to the right. The

symbol S is a seed which ensures that from that position a computation zone will start growing.

Finally, the symbol ∅ is a placeholder symbol that can go anywhere (as long as the rules don’t

force another symbol in that place).

The seed rule states that the symbols S should occur at every position in H with an arbitrary

branch number b ∈ {0, 1}. The seed growth rule forces the seed to move into the branch b and

spawn a computation zone of size 2 of the form IJ. The horizontal consistency rules ensure that

every computation zone shares the same branch bit b ∈ {0, 1} and that they are always of the form

I (�)∗ J. The branching rules state that every computation zone marked by the branching bit b,

whose leftmost border is in position (h,w) ∈ M , must copy itself into (h,wb) and extend itself to

the right by one position. Finally, the last rule states that nonempty symbols can only occur when

a computation zone in a previous level extends, that is, everything else is necessarily filled with the

placeholder symbol ∅.

Clearly, all of the above rules are either seed rules or local rules, and thus the set of configurations

(α, δ, β) ∈ A×D ×B form a rooted SFT.

The next remarks are not needed for our proof, but they do help to understand how this con-

struction works so far.

Remark 5.1. Although the seed rule says that the symbol S occurs in every (h, ε) with an arbitrary

branch number, the only possibility is that in every induced copy of Z (or a quotient) the branch

numbers alternate between 0 and 1. Otherwise, the branching rule would enforce that two distinct

symbols must appear at a single position.

Remark 5.2. For every (α, δ, β) ∈ A × D × B, if we let Tδ : H → H be the action Z
Tδy H

given by Tδ(h) = hRδ(h) then Tδ is a translation-like action. Indeed, suppose there is n > 0

such that Tnδ (h) = h. Define b0 as the second coordinate of β(h, ε), and iteratively, for i ∈
{1, . . . , n} let bi be the second coordinate of β(h, b0 . . . bi−1). The seed growth rule implies that

β(h, b0) = (I, b1), and iteratively, the branching rule a) forces that β(h, b0 . . . bi) = (I, bi+1) for

every i ∈ {1, . . . , n− 1}. Similarly, the seed growth rule and the horizontal consistency rule implies

that β(Tδ(h), b0) = (J, b1), and iteratively, the branching rule c) and the horizontal consistency

rule force that β(T i+1
δ (h), b0 . . . bi) = (J, bi+1) for every i ∈ {1, . . . , n − 1}. If we have Tn(h) = h,

then

(J, bn) = β(h, b0...bn−1) = (I, bn)

Which obviously cannot occur.

Remark 5.3. The rooted SFT A ×D × B is non-empty. Our choice of generating set S for H

ensures that there exists a translation-like action T : H → H with h−1T (h) ∈ S and thus δ defined

by δ(h,w) = (h−1T (h), h−1T−1(h)) is an element of D with the property that n 7→ Rnδ (h) is injective

for every h ∈ H. One way to construct a configuration β ∈ B compatible with δ is by assigning

alternating branching values to the seeds in H × {ε} in each induced copy of Z × {ε} and then

iteratively doing the same in each computation zone in the following branches. A straightforward
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computation shows that this construction will ensure that there are 2|w| − (|w|+ 1) unused spaces

between each computation zone in a branch w ∈ {0, 1}∗, which can be filled with the symbol ∅. In

fact, it suffices to force alternating branching bits only on words with length |w| = 2k − 1 for some

k ∈ N.

5.4. The computation layer. Recall that a Turing machine is a tuple (Q,Σ, δ, q0, qF ) where Q

is a finite set of states, Σ is a finite set called alphabet, δ : Q × Σ → Q × Σ × {−1, 0, 1} is a

transition function, q0 ∈ Q is the initial state and qF ∈ Q is the final state. We shall also

assume that there is a special blank symbol t ∈ Σ

Turing machines act (as monoids) on the space ΣZ×Q×Z by sending (x, q, n) to (y, r,m) where

δ(q, x(n)) = (r, a, d), m = n+ d, and y ∈ ΣZ is such that y(n) = a and yZ\{n} = xZ\{n}.

It is well-known that every Turing machine can be implemented in an equivalent way in a Turing

machine which never uses the negative portion of the tape, that is, a Turing machine which acts on

ΣN ×Q× N; and that their space-time diagrams can be implemented through Wang tilings. Here

we give a slight adaptation of these classical constructions that match up well with the structure

induced by the branching layer.

Fix a Turing machine T = (Q,Σ, δ, q0, qF ). We define the alphabet A0
T as the set of squares with

colored edges illustrated on Figure 4.
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seed L
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Mid

E

O

C
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E

E
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O
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E

E

t

a

a

(s′, b′)

(s, b)

c′

`′←
(`, c)

d′

r′→
(r, d)

(q, a)

q→
a

(q, a)

q←
a

Figure 4. The alphabet A0
C associated to a Turing machine T = {Q,Σ, δ, q0, qF }. t is

the blank symbol, q0 the starting state. For the bottom row tiles, a ∈ Σ is an arbitrary
symbol and q ∈ Q is an arbitrary state. (s, b), (`, c), (r, d) ∈ Q × Σ are pairs such that
δ(s, b) = (s′, b′, 0), δ(`, c) = (`′, c′,−1) and δ(r, d) = (r′, d′,+1).

Notice that the first three tiles have a little squid drawn over them. This will be relevant for

interactions with the tentacle layer T , for now it may be ignored.

Let us illustrate how the computability tape will work. Recall that the branching layer induces

on each position (h, ε) ∈M a structure which we identify as a computability tape which extends to
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the right with every branching. We may identify each of these tapes with {(n,m) ∈ N2 : n ≤ m}
and tile them with elements of AT using as rule that the seed symbols on B must match with the

seed tile, and that the symbols and colors in adjacent edges must match. See Figure 5
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Figure 5. An example of a tiling of the computation layer. Note that fixing the seed symbol
on the bottom position determines completely the rest of the tiling. Here we illustrate a
Turing machine with alphabet Σ = {t, a, b}, Q = {q0, r, s, t} and with δ(q0,t) = (a, r, 1),
δ(r,t) = (s, b, 0), δ(s, b) = (a, t,−1), δ(t, a) = (b, s, 1).

In order to interact with the tentacle layer, we will need to do a few modifications to this layer

which will essentially consist in the inclusion and removal of symbols from the alphabet. The first

modification has the purpose to enable sending “commands” to the tentacle layer. In order to do

this we will require our Turing machine T to have, for every s ∈ S, a special pair of states qs, q
′
s

and the transition δ(qs,t) = (q′s,t, 0). We will use this single step transition to communicate

the command “extend the tentacle on direction s ∈ S”. Similarly, we shall also require a special

pair of states qD, q
′
D and the transition δ(qD,t) = (q′D,t, 0). This will be used to send the command

“delete the tentacle”. This will be implemented through the exchange of some tiles in the alphabet.

Formally, let Acomm
T , Aold

T be the sets

Acomm
T = : s ∈ S ∪

B

B

s : s ∈ S ∪
(qs,t)

(q′s,t)

s

,

B

B

D

(qD,t)

(q′D,t)

D
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Aold
T = : s ∈ S ∪

(q′s,t)

(qs,t)

(q′D,t)

(qD,t)

We shall add Acomm
T to the alphabet and remove Aold

T . This has the additional effect that these

kind of transitions will only be able to occur at the origin of the tape. The second modification

has the purpose of making the Turing machine able to read information from the tentacle layer.

We shall only need to read a single symbol from A in the tentacle layer at a time and react to it.

To this end, we shall do a slight modification to our definition of Turing machine. We replace the

transition function δ by a “conditional transition” function which also depends on the alphabet A,

namely, we shall consider now δ : Q× Σ× A→ Q× Σ× {−1, 0, 1}. All but one kind of transition

in our Turing machine will actually ignore the symbol a ∈ A, and thus those transitions will still

be represented by those on the alphabet AT . More precisely, we will consider two special states

q0, q1 ∈ Q and for each a ∈ A we will have a special state qa ∈ Q such that

δ(qa,t, a) = (q1,t, 0) and δ(qa,t, b) = (q0,t, 0) for b 6= a.

And those two will be the only “conditional” transitions. In order to implement those extra transi-

tions we consider the alphabet Aread
T described below. The tiles from Aread

T are called conditional

transition tiles.

Aread
T = : a ∈ A ∪

(q1,t)

(qa,t)

a : a, b ∈ A, a 6= b

(q0,t)

(qa,t)

b

The precise Turing machine T we will use will be better described after introducing the tentacle

layer. For now, we just set the alphabet of the computation layer as AC = (A0
T \ Aold

T ) ∪ Acomm
T ∪

Aread
T ∪ {∅} and define the computation layer C as the subset of configurations γ ∈ (AC)M such

that, given (α, δ, β) ∈ A×D ×B satisfy,

(1) Tiles overlay with computation zones: We have that for every (h,w) ∈M , γ(h,w) = ∅
if and only if β(h,w) = ∅.

(2) Seed condition: For every h ∈ H, then γ(h, ε) is the seed tile, that is

γ(h, ε) =

S

(3) Wang tile condition: The symbols in γ that are on top of a computation zone in B must

match vertically and horizontally as Wang tiles (see Figure 5).
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5.5. The tentacle layer. Finally, we shall construct a layer which emulates “tentacles” which

grow from every position in H and are able to extend along the group and bring back information

about the symbols in the alphabet layer back to their base. These tentacles are essentially a “linked

list” data structure which shares some information.

More precisely, consider the alphabet

AT = ({0, 1} × (S × S)×A× ({D} ∪ {Gs : s ∈ S})) ∪ {∅}.

For a symbol t = (b, (s1, s2), a, c) ∈ AT with t 6= ∅, we denote by

(1) bit(t) = b the branching bit of t,

(2) prev(t) = s1 the predecessor of t,

(3) next(t) = s2 the successor of t,

(4) symb(t) = a the symbol of t,

(5) comm(t) = c the command of t.

We will refer to three types of tentacle “parts” depending on the values of prev(t) and next(t).

Recall that we denote by 1H the identity of H and that 1H ∈ S. If prev(t) = 1H , we say that t

is a base. If next(t) = 1H we say that t is a tip (some t can be simultaneously bases and tips).

Finally, if both prev(t) and next(t) are distinct from 1H , we say it is an arm.

The command D stands for “delete” and will force the tentacle to be deleted in the next step.

The commands Gs stand for “grow on direction s” and mean that the tentacle should replace the

next value of it tip for s and build a new tip at that position. Note that it is possible to grow on

the trivial direction 1H ∈ S, which means that the tentacle will remain unchanged.

We shall first define formally the tentacle layer and explain the meaning of the rules afterwards.

If for some t ∈ AT we invoke any of the five functions defined above, we implicitly mean that it is

not ∅. We shall not write this explicitly to avoid cluttering the definition even more.

Let (α, δ, β, γ) ∈ A×D ×B ×C. We define the tentacle layer as the set T of configurations

τ ∈ (AT )M which satisfy the following rules:

(1) Seed rule: For every h ∈ H, prev(τ(h, ε)) = next(τ(h, ε)) = 1H .

(2) Tentacle consistency rules: For every (h,w) ∈M , if τ(h,w) 6= ∅ then:

(a) If next(τ(h,w)) = s 6= 1H , then prev(τ(h · next(τ(h,w)), w)) = s−1.

(b) If prev(τ(h,w)) = s 6= 1H , then next(τ(h · prev(τ(h,w)), w)) = s−1.

(c) bit(τ(h,w)) = bit(τ(h · next(τ(h,w)), w)) = bit(τ(h · prev(τ(h,w)), w)).

(d) symb(τ(h,w)) = symb(τ(h · next(τ(h,w)), w)) = symb(τ(h · prev(τ(h,w)), w)).

(e) comm(τ(h,w)) = comm(τ(h · next(τ(h,w)), w)) = comm(τ(h · prev(τ(h,w)), w)).

(3) Tip reads alphabet: if next(τ(h,w)) = 1H then symb(τ(h,w)) = α(h,w)

(4) Base reads branching bit: if prev(τ(h,w)) = 1H and β(h,w) ∈ {(S, b), (I, b)} then

bit(τ(h,w)) = b.

(5) Base reads the command: if prev(τ(h,w)) = 1H then γ(h,w) is a tile with a squid and:

(a) If the symbol at the right of the squid is D, then comm(τ(h,w)) = D

(b) If the symbol at the right of the squid is s ∈ S, then comm(τ(h,w)) = Gs
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(c) In there is no symbol at the right of the squid, then comm(τ(h,w)) = G1H .

(6) Conditional transition reads alphabet from base: if prev(τ(h,w)) = 1H and γ(hRδ(h), w)

is a conditional transition tile, then the symbol at the middle of the tile must be symb(τ(h,w)).

(7) Delete command rule: if comm(τ(h,w)) = D, let b = bit(τ(h,w)), then:

(a) If prev(τ(h,w)) 6= 1H (if the symbol is not a base) then τ(h,wb) = ∅.

(b) If prev(τ(h,w)) 6= 1H (if the symbol is a base) then prev(τ(h,wb)) = next(τ(h,wb)) =

1H .

(8) Grow command rule: if comm(τ(h,w)) = Gs, let b = bit(τ(h,w)), then:

(a) If next(τ(h,w)) 6= 1H (if the symbol is not a tip) then prev(τ(h,wb)) = prev(τ(h,w))

and next(τ(h,wb)) = next(τ(h,w)).

(b) If prev(τ(h,w)) 6= 1H (if the symbol is a tip) then prev(τ(h,wb)) = prev(τ(h,w)),

next(τ(h,wb)) = s.

Moreover, if s 6= 1H , then prev(τ(hs,wb)) = s−1 and next(τ(hs,wb)) = 1H .

(9) No new tentacles rule: For any b ∈ {0, 1}, unless it conflicts with the Grow or Delete

command rules, then τ(h,wb) = ∅.

The seed rule states that at every seed position (h, ε) we initially have a tentacle which is

simultaneously a base and a tip. The consistency rules establish that the non-trivial symbols in

this alphabet arrange themselves as a collection of (doubly) linked lists. Each element points to the

next (through the next(t) function) and to the previous one (through the prev(t) function). Also,

each one of these lists, which we shall call “tentacles” shares the same information (branching bit,

command and symbol).

The next three rules impose where the information of the tentacles comes from. The symbol is

read on the tip of the tentacle from the alphabet layer, the branching bit is read on the base of the

tentacle from the branching layer (thus the base of a tentacle is always attached to the leftmost

position of a computation zone), and the command is read on the base of the tentacle from the

computing layer in the tile which has the squid on it. Notice that the base of every tentacle will

always be matched up with the squid tiles.

The next rule governs how the computation layer reads from the tentacle the information for its

conditional transitions. It states that each time a conditional transition occurs (recall that they

always occur at the origin of the computation tape), the conditional symbol in the middle of the

tile must be the symbol carried by the base of the tentacle, which is the one read at the tip of the

tentacle.

The following three rules determine how the tentacles evolve when increasing the length of w.

The evolution is done in the tree {0, 1}∗ following the branching bit (which is the same as the one

in the computation zone attached to the base). If a tentacle has the command “delete” then the

whole structure is replaced by ∅ except for the base, which reverts to its initial state of being both

a base and a tip. If a tentacle has the command “grow in direction s ∈ S” then its tip changes so

that it now points at s, and a new tip is created at said position. Note that if s = 1H the rules
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impose that the tentacle copies to the branching layer with its directions unchanged. The last rule

imposes that besides this prescribed evolution, no new tentacles can occur anywhere else.

The behaviour of a single tentacle is illustrated on Figure 6.

a b c a

b c b b

c c a cG(1,0)

G(0,1)

G(0,0)

G(1,0)

D

a

b b

c

c

c

c

c

c

b

b

b

ba

Figure 6. An illustration of the dynamics of a tentacle. In the base we have H = Z2 filled
with symbols from A = {a, b, c}. The tentacle starts at the bottom left position and evolves
according to the command written on the left. The next arrows are bold, while the prev

arrows are dotted. At every step, the symbol shown on the tentacle is the one at the tip.
In this figure the tentacle reaches the position (2, 1) from its starting position and then gets
deleted.

5.6. Description of the Turing machine. Recall that the word problem of H is decidable, that

is, there exists an algorithm which on input w ∈ S∗ accepts if and only if w represents the identity

in H. From this algorithm, one can easily construct another which takes w ∈ S∗ and outputs

u ∈ S∗ which represents the same element as w and has minimal length (for instance, running the

algorithm for the word problem on wu−1 for every u of length at most |w| and choosing the smallest

for which it accepts). Such a word u will be referred to as a “geodesic”.

Also as X is an effectively closed (by patterns) subshift, there exists an algorithm which on input

n ∈ N, outputs a pattern coding cn such that the collection C = {cn : n ∈ N} defines X. Recall

that a pattern coding can be though of as a finite list cn = {(wi, ai)}i∈I with wi ∈ S∗ and ai ∈ A.

Running this algorithm along with the one which replaces a word by a geodesic, we may assume

without loss of generality that the algorithm is chosen such that all wi occurring in each cn are

geodesics.

Next we will describe the Turing machine T used to define the computation layer. We will build

T so that it works on a one-sided tape and such that it never writes over the origin (it may move

and change states at the origin). Recall also that we ask T to have special states qs, q
′
s for each

s ∈ S, qD, q
′
D, q

a for each a ∈ A and q0, q1; and that there are conditional transitions from each qa
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to either q0 or q1 depending on a symbol from A (which will be read from the tentacle layer) as

follows

δ(qa,t, b) =

(q0,t, 0) if b 6= a

(q1,t, 0) if b = a

We define T as a Turing machine which executes the following algorithm.

(1) Initialize n = 0 and execute the following loop:

(a) Compute cn = {(wi, ai)}i∈I (recall that each wi is a geodesic).

(b) Initialize DANGER = 1

(c) For each i ∈ I, let m = |wi| and write wi = s1s2 . . . sm ∈ S∗.
(i) Wait for at least

(
2 |S|

2m+1−1
|S|−1

)
+
⌈
log2

(
|S|2m+1−1
|S|−1

)⌉
+ 1 steps.

(ii) Initialize j = 1 and execute the following loop:

(A) If j = m+ 1, break the loop (go to (iii)).

(B) Move the head to the origin and go to state qsj (this sends the instruction

“grow by sj” to the tentacle layer).

(C) replace j by j + 1 and restart the loop (go to (A)).

(iii) Move the head to the origin, go to state qai and execute the conditional transition

(this reads the symbol from the tentacle layer, goes to q1 if it is ai and to q0

otherwise).

(iv) If the current state is q0, replace the value of DANGER by 0.

(v) Move the head to the origin and go to state qD (this sends the instruction “delete”

to the tentacle layer).

(d) If DANGER = 1, go to the final state qF (a forbidden pattern has been detected).

(e) Replace n by n+ 1 and restart the loop (go to (a)).

It is clear that such an algorithm can be implemented by a Turing machine (with conditional

transitions). The behavior is the following, if the leftmost position of the computation zone is

attached to h ∈ H, it starts computing in order the forbidden pattern codings cn. As soon as it

finds one, it interacts with the tentacle layer to determine whether h−1(α|H×{ε}) ∈ [cn]. If it is the

case, then at the end of the loop it will have DANGER = 1 and the machine will go to the final state

qF . Otherwise, it checks the next pattern coding in the list.

The only instruction which we need to explain is the “wait” one. This simply means that the

Turing machine will initialize a counter and count up to that number (thus delaying the rest of the

algorithm for at least that number of steps). The purpose of this seemingly useless instruction is to

allow enough time for branchings to occur such that no tentacles attached to different computation

zones will collide.

5.7. Proof of the main theorem. Now we are ready to prove the main result. We define Z as

the subset of all configurations z = (α, δ, β, γ, τ) ∈ A×D×B×C ×T such that no tile occurring

in γ carries the final state qF . From the definition of each layer it is direct that Z is a rooted SFT.

Lemma 5.4. The rooted SFT Z root-factors onto X.
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Proof. Let φ : Z → AH be the map such that if z = (α, δ, β, γ, τ) ∈ Z, then φ(z) = α(h, ε). Clearly

φ is given by an alphabet map Φ (the projection to the first component) as in Definition 4.5,

therefore it suffices to show that φ(Z) = X.

Let x ∈ X. We shall construct z ∈ Z such that φ(z) = x. Let α ∈ AM be such that α(h,w) =

x(h) for every h ∈ H. By our choice of generating set S, there exists δ ∈ D such that Tδ is a

translation-like action of Z on H. Clearly (α, δ) ∈ A×D.

Notice that a configuration β ∈ B is entirely determined by δ and the choices of branching bits.

We are going to produce an assignment of branching bits which will ensure that no computation

zones overlap, and that no tentacles will collide. To this end, let f : N→ N be given by f(n) = 2n−1,

and consider a bijective map g : N\f(N)→ (H \{1H})×{−1,+1} with the property that elements

of H occur in the image of g with non-decreasing word-length with respect to S.

We define β ∈ B as the configuration produced by the following choice of branching bits on each

w ∈ {0, 1}∗:

(1) If |w| = 2n − 1 for some n ∈ N, assign alternating branching bits to the symbols S or I in

each copy of Z induced by δ.

(2) Otherwise, let g(|w|) = (h,m). Let (ti)i∈I be a set of left coset representatives of the cyclic

subgroup of H generated by h.

• If h is not a torsion element, assign the branching bit 0 to elements of the form (tih
2k, w)

for k ∈ Z which are paired with I, and the branching bit 1 to elements of the form

(tih
2k+1, w) for k ∈ Z which are paired with I.

• If h is a torsion element, let κ be the smallest positive integer such that hκ = 1H .

Assign the branching bit 0 to elements of the form (tih
m·k, w) for even values of k ∈

{0, . . . , κ− 1} which are paired with I. Assign the branching bit 1 to elements of the

form (tih
mk, w) for odd values of k ∈ {0, . . . , κ− 1} which are paired with I.

The assignment above for |w| = 2n − 1 ensures that no computation zones collide and thus that

β is well defined. The second choice is slightly more subtle. At g(|w|) = (h,m) we want to force

elements of H which are separated by h to lie in different branches from that point onwards. This

is easy enough to do if h is a non-torsion element, as we can just assign alternating branching bits

to every leftmost corner of a computation zone in the subgroup induced by H. However, if h is a

torsion element of odd order this cannot be done. To fix this, we do the alternating assignment

twice, once going forward, and once going backwards. This ensures that after both (h,−1) and

(h,+1) pass, then no elements separated by h lie in the same branch.

We have thus (α, δ, β) ∈ A×D×B. These three configurations already determine (γ, τ) entirely

if they exist, and the only way that they might not exist is if two tentacles collide. We claim that

the choice of branchings given above ensures that no tentacles collide. Indeed, notice that if Bm is

the ball of radius m in H with respect to the word metric induced by S, then

|Bm| ≤
m∑
k=0

|S|k =
|S|m+1 − 1

|S| − 1
.
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As we chose g such that the images are non-decreasing in word length, it follows that in order

to make sure that every h ∈ B2m has already occurred twice in the image of g, it suffices to be in

an element of {0, 1}∗ with length at least

2(|S|2m+1 − 1)

|S| − 1
+

⌈
log2

(
|S|2m+1 − 1

|S| − 1

)⌉
+ 1 ≥ 2|B2m|+ dlog2 (2|B2m|)e .

Which is precisely the number of steps we asked the algorithm to wait in the description of our

Turing machine. Therefore when the machine sends information to the tentacle layer to grow from

h to hw, we already know that every position in every ball of size 2m in the group H is already

on a distinct branch, thus the tentacles will not collide with each other. Moreover, as the word

produced in each pattern coding cn are geodesics, the tentacles with not collide with themselves

either.

From the argument above, it follows that we have z = (α, δ, β, γ, τ) ∈ A×D ×B ×C × T and

that φ(z) = x. We just need to argue that the final state is never reached in γ in order to have

z ∈ Z. Indeed, as x ∈ X, by definition for every forbidden pattern coding cn = (wi, ai)i∈I and every

h ∈ H we have that there is i ∈ I such that x(hwi) 6= ai. This means that the algorithm when

run on the loop corresponding to (wi, ai) will have the tentacle tip on hwi looking at the symbol

x(hwi). Therefore the next step of the algorithm will change the value of the DANGER variable to 0

and not go to the final state qF . As this holds true for every h ∈ H and n ∈ N, it follows that qF

is not reached in any computation zone and thus z ∈ Z.

Conversely, let z = (α, δ, β, γ, τ) ∈ Z and let x = φ(z). Suppose that x /∈ X it follows that there

exists h ∈ H and n ∈ N such that if cn = (wi, ai)i∈I then for every i ∈ I we have x(hwi) = ai.

Consider the computation zone whose leftmost position is on h. Eventually the algorithm produces

the pattern coding cn and each iteration of the loop keeps the variable DANGER = 1 unchanged.

Therefore at the end of the loop the machine goes to state qF , which raises a contradiction because

we assumed that z ∈ Z. Thus x ∈ X. �

Proof of Theorem 1.2. Let H be a finitely generated group, N a non-amenable group and X an

effectively closed H-subshift. If H is finite, then X is an SFT, and thus so is its free extension to

H × N . If H is infinite and with decidable word problem, Lemma 5.4 ensures that there exists a

rooted SFT Z which root-factors onto X. By Lemma 4.6 we obtain that the free extension of X

to H ×N is a sofic subshift. �

6. Applications

The first consequence of Theorem 1.2 is rather straightforward. If N is finitely generated, we

can grab a free extension and turn it into a trivial extension by forcing that symbols are constant

along the generators of N .

Corollary 6.1. Let H,N be finitely generated groups. Let H have decidable word problem and let

N be non-amenable. Then the trivial extension of every effectively closed H-subshift to G = H×N
is sofic.
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Proof. Let X be an effectively closed H-subshift. By Theorem 1.2, the free extension X̃ of X to G

is sofic. Let S b N be a finite set of generators and consider the G-subshift Y given by

Y = {x ∈ X̃ : for every s ∈ S and (h, n) ∈ G, x(h, n) = x(h, ns)}.

The extra rule is local and thus Y is still a sofic G-subshift. It is clear that Y is precisely the trivial

extension of X to G. �

6.1. Simulation of actions of non-amenable groups. The purpose of this section is to prove

a simulation theorem for effectively closed actions of a finitely generated non-amenable group N .

More precisely, we shall prove Theorem 1.3. The main idea is to construct an effectively closed

H-subshift such that every configuration encodes a single an element of the set representation of an

effectively closed action N y X in such a way that this coding is invariant under shifts by elements

of H. By Theorem 1.2 the free extension of said subshift to H × N is sofic, thus we just need to

add some local rules to force each H-coset to communicate with its neighbors in such a way that

the natural topological factor of the N -subaction is precisely N y X.

Proof of Theorem 1.3. Let X ⊆ AN and N y X be an effectively closed action. Let S be a finite

generating set of N which contains the identity and for which its set representation Rep(Gy X,S)

is an effectively closed set (see Definition 2.1). Following the idea from [8], we embed this set in

an effectively closed Z-subshift using Toeplitz codings. Let B be an alphabet. Consider the map

ψ : BN → (B ∪ {$})Z defined by

ψ(y)j =

yn if j = 3n mod 3n+1 for some n ∈ N

$ otherwise;

That is, the image of some y ∈ BN looks as follows (we show the restriction to {0, . . . , 30})

ψ(y) = . . . $y0$y1y0$$y0$y2y0$y1y0$$y0$$y0$y1y0$$y0$y3y0$y1 . . .

For a set Y ⊂ BN, consider the Z-subshift Top(Y ) obtained as the topological closure of the

union of the orbits of ψ(y) for some y ∈ Y under the shift action. One can show (see Section 3

of [8]) that if Y is an effectively closed set, then Top(Y ) is an effectively closed Z-subshift which

admits a continuous (and computable) map φ : Top(Y )→ Y which is constant on orbits. Indeed,

in every configuration x ∈ Top(BN) which is in the orbit closure of some ψ(y0y1y2 . . . ), notice that

the symbol $ can be preceded only either by $ or by y0 ∈ B which appears with period three. If we

remove the subwords y0$ in x, one obtains a new element of Top(BN) which now comes from the

orbit closure of ψ(y1y2y3 . . . ). The map φ : Top(Y ) → Y is obtained by repeating the procedure

recursively.

Now we can set B = AS and Y = Rep(Gy X,S) and thus T = Top(Y ) is an effectively closed

Z-subshift which admits a continuous map φ : T → Rep(Gy X,S).

By the result of Seward we used in the previous section ([24, Theorem 1.4]), there exists a

translation-like action of Z on H. Fix a finite symmetric set K of generators of H such that there
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exists a translation-like action f : H → H with h−1f(h) ∈ K. Consider the alphabet AD = K×K.

For a = (k, k′) ∈ K ×K denote `(a) = k, r(a) = k′ where ` and r stand for “left” and “right”.

Consider the H-SFT D as the space of all configurations d ∈ (AD)H such that for any h ∈ H,

(1) if s = r(d(h)) and u = `(d(hs)) then s = u−1;

(2) if s = `(d(h)) and u = r(d(hs)) then s = u−1.

Both rules are local and thus D is an H-SFT which encodes actions of Z on H which are bounded

by K. Given d ∈ D and h ∈ H, denote by Rd(h) = h · r(d(h)) and Ld(h) = h · `(d(h)), and notice

that Ld is the inverse of Rd as bijections on H.

Finally, Let D[T ] ⊆ D× (AS ∪{$})H be the H-subshift such that (d, y) ∈ D[T ] if and only if for

every h, h′ ∈ H one has

(y(Rnd (h)))n∈Z ∈ T and φ((y(Rnd (h)))n∈Z) = φ(
(
y(Rnd (h′))

)
n∈Z).

In simpler words, in each copy of Z induced by d there is an element of T , and all of these

elements of T code the same element of Rep(G y X,S). As D is an SFT, and T is effectively

closed, it follows that D[T ] is an effectively closed H-subshift. Moreover, as D contains one element

which encodes the translation-like action f , it follows that D[T ] is nonempty.

Let D̃[T ] be the free extension to H ×N of the effective H-subshift D[T ]. As the word problem

of H is decidable and N is non-amenable, it follows by Theorem 1.2 that D̃[T ] is a sofic subshift.

Let us introduce some notation, we shall write configurations of D̃[T ] as pairs (d, t) ∈ (AD)H×N ×
(AS ∪ {$})H×N . Also, for b ∈ AS ∪ {$} and s ∈ S we write π̃s(b) for its s-th coordinate if b ∈ AS

and set π̃s($) = $.

Finally, consider H × N -subshift W ⊂ D̃[T ] which consists on the configurations (d, y) ∈ D̃[T ]

that satisfy the following two additional local rules for every (h, n) ∈ H ×N :

(1) For every s ∈ S, d(h, n) = d(h, ns).

(2) For every s ∈ S, π̃s(y(h, n)) = π̃1N (y(h, ns−1)).

In other words, we force the restriction of d in each H-coset to be exactly the same, and the

force the s-th coordinates in every position to correspond to the 1N -th coordinates in the positions

reached by moving by s ∈ S. Notice that as d is the same in every coset, the map Rd is well defined

as above. These two rules are clearly local and thus W is sofic as well. Let Z be a subshift of finite

type on H ×N which factors onto W through some map ϕ : Z →W .

Let γ : W → T be the map given by γ(d, y) = (y(Rnd (1H), 1N ))n∈N. That is, the map which

assigns to (d, y) ∈W the element from the set representation obtained by following the identity.

Finally, consider ρ : Z → X defined by ρ = π1N ◦ φ ◦ γ ◦ ϕ. As all maps are continuous and

surjective, it follows that ρ is continuous and surjective. We just need to show that it factors onto

the trivial extension of N y X.

Let z ∈ Z, h ∈ H and ϕ(z) = (d, y) ∈ W . By the second rule of the construction of D[T ] we

have that φ ◦ γ((h, 1N ) · (d, y)) = φ ◦ γ(d, y) and thus ρ((h, 1N ) · z) = ρ(z).
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On the other hand, let s ∈ S and notice that one has for any k ∈ N

γ(d, y)(k) = y(Rnd (1H), 1N ) and γ((1H , s) · (d, y))(k) = y(Rnd (1H), s−1).

By the second local rule one obtains that π̃1N (γ((1H , s) · (d, x))(n) = π̃s(γ(d, x)(n) from where we

obtain that

π1N ◦ φ ◦ γ((1H , s) · (d, y)) = πs ◦ φ ◦ γ(d, y).

From the above identity and the fact that πs = s · π1N on the set representation, one concludes

that ρ((1H , s) · z) = s · ρ(z).

Putting together the two identities and the fact that S generates N , we obtain that for every

(h, n) ∈ H ×N , ρ((h, n) · z) = n · ρ(z) and thus Z factors onto the trivial extension of N y X to

H ×N . �

6.2. Strongly aperiodic SFT for direct products with a non-amenable component.

Definition 6.2. A G-subshift is strongly aperiodic if G acts freely on it, that is, if gx = x for

some x ∈ X then g = 1G.

In [2] it was shown that every finitely generated group with decidable word problem admits a

nonempty effectively closed subshift which is strongly aperiodic. We shall use this result to produce

nonempty strongly aperiodic SFTs on groups of the form G = H×N where both groups are infinite,

finitely generated, have decidable word problem and N is non-amenable.

Proof of Theorem 1.4. As H,N have decidable word problem, by [2, Theorem 2.6], the groups H

and N admit nonempty strongly aperiodic effective subshifts X1 and X2 respectively. By Theo-

rem 1.2 there exists an (H × N)-SFT Z1 which factors onto the free extension of H y X1, and

by Theorem 1.3, there exists there exists an (H×N)-SFT Z2 which factors onto the trivial extension

of N y X1. Let Z = Z1 × Z2 with the product shift action.

Let (h, n) ∈ H × N and (z1, z2) ∈ Z such that (h, n) · (z1, z2) = (z1, z2). One has (h, n) · z2 =

(1H , n) · z2 = z2. As X2 is strongly aperiodic, applying the topological factor map we obtain that

n = 1N . Then one has (h, 1N ) · z1 = z1. As X1 is strongly aperiodic, applying the respective

topological factor map we obtain that h = 1H . Thus Z must be a strongly aperiodic SFT. �

In the particular case of H = Z and N = F2 is the free group on two generators, we partially

recover a result of [3] which shows the existence of a nonempty, minimal and strongly aperiodic SFT

on Z×F2 (we don’t get minimality with our technique). In the case where H is also non-amenable

we recover a particular case of [9, Corollary 8.18].

7. Questions

In Theorem 1.2 we used the hypothesis that the group H has decidable word problem. This

was fundamentally used to ensure that every word occurring in a pattern coding is geodesic and

thus that tentacles will not collide with themselves. We do not know whether this condition can
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H
K

amenable non-amenable

amenable not always sofic always sofic
non-amenable depends always sofic

Table 1. Soficity of free extensions of effectively closed H-subshifts to H ×K

be removed or at least replaced with the milder condition that H is recursively presented (or

co-recursively presented).

Question 7.1. Does Theorem 1.2 hold if H does not have decidable word problem?

In Corollary 6.1 we showed that under the additional condition that N is finitely generated, the

trivial extension of an effectively closed subshift on H to H × N is sofic. We were not able to

extend this result to the trivial extension of a (non-expansive) effectively closed action of H using

our main result.

Question 7.2. Let H,N be infinite and finitely generated groups with decidable word problem and

such that N is non-amenable. Let H y X be an effectively closed action. Is the trivial extension

of H y X to H ×N the topological factor of a subshift of finite type?

Another questions concerns completing the picture for free extensions of subshifts. In Table 1

we summarize what we know for the free extension of an H-subshift to H × K. In the table we

suppose both H,K are infinite, finitely generated and with decidable word problem.

In the case where both H and K are non-amenable, we actually have that every effectively closed

H ×K-subshift is sofic, and thus the result also follows from [9]. In the case where both groups

are amenable we constructed a single counterexample, but indeed we have no counterexamples to

the generalization of Jeandel’s question of whether soficity of the free extension implies soficity of

the subshift on H.

Question 7.3. Let H and K be two infinite, finitely generated and amenable groups with decidable

word problem. Let X be an effectively closed H-subshift whose free extension to H ×K is sofic.

Is X sofic?

The remaining case is when H is non-amenable and K is amenable. Here we can have both

behaviors: if H is a self-simulable group (see [9], for instance H = F2 × F2), then every effectively

closed subshift on H is sofic, and thus so are their free extensions to H ×K. In the other hand,

if H = F2 and K = Z, then the construction in [9, Proposition 3.4] provides an example of an

effectively closed F2-subshift (again a variant of the mirror shift) whose free extenstion to F2 × Z
is not sofic.

Question 7.4. Let H be an infinite amenable group. For which non-amenable groups N does it

hold that the free extension of every effectively closed N -subshift to N ×H is sofic?
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Finally, in Theorem 1.4 we proved that every product of two infinite and finitely generated groups

with decidable word problem H ×K admits a nonempty strongly aperiodic SFT as long as one of

them is nonamenable. In [6] it was proven that the direct product of three infinite finitely generated

groups with decidable word problem always admits a nonempty strongly aperiodic SFT, thus the

remaining case is when we just have two groups and they are both amenable.

Question 7.5. Let G = H × K be the direct product of two infinite finitely generated amenable

groups with decidable word problem. Does G admit a nonempty strongly aperiodic SFT?

Another interesting question is whether these strongly aperiodic SFTs can be constructed with

properties of dynamical importance, such as mixing, transitivity, minimality, unique ergodicity, etc.

Our current technique does not provide any such properties. This is particularly relevant due to

the fact that the construction in [3] for G = Z× F2 is minimal.
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