
A generalization of the simulation theorem for

semidirect products

Sebastián Barbieri∗ and Mathieu Sablik†

sebastian.barbieri@ens-lyon.fr

mathieu.sablik@math.univ-toulouse.fr

Abstract

We generalize a result of Hochman in two simultaneous directions:
Instead of realizing an effectively closed Zd action as a factor of a sub-
action of a Zd+2-SFT we realize an action of a finitely generated group
analogously in any semidirect product of the group with Z2. Let H be
a finitely generated group and G = Z2 o H a semidirect product. We
show that for any effectively closed H-dynamical system (Y, f) where Y
is a Cantor set, there exists a G-subshift of finite type (X,σ) such that
the H-subaction of (X,σ) is an extension of (Y, f). In the case where f
is an expansive action, a subshift conjugated to (Y, f) can be obtained as
the H-projective subdynamics of a G-sofic subshift. As a corollary, we
obtain that G admits a non-empty strongly aperiodic subshift of finite
type whenever the word problem of H is decidable.

1 Introduction

A dynamical system is a tuple (X,T ) where X is a set and T : X → X is a map
which describes the evolution of points of X in time. In the case where T is
bijective one can describe T as a Z-action by associating (n, x)→ Tn(x). This
can be generalized to a set of bijective maps T1, . . . , Tn which satisfy some set of
relations R –for instance, the relation T1 ◦ T2 = T2 ◦ T1 which indicates T1 and
T2 commute–. These actions and their relations can be expressed by the group
action T : G ×X → X where G ∼= 〈T1, . . . , Tn | R〉 and T (Ti1 ◦ · · · ◦ Tik , x) =
Ti1 ◦ · · · ◦ Tik(x).

More than often dynamical systems arising from group actions are difficult
to study, and a fruitful technique is to look at their subactions, that is, the
restriction of the group action to a particular subgroup. For instance, see the
study of expansive subdynamics of Zd actions [6, 10]. It is thus appealing to
ask the following question: What systems can be obtained as subactions of a
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class of dynamical systems? An interesting class is the one of subshifts of finite
type (SFT), that is, the sets of colorings of a group along with the shift action
which are defined by a finite number of forbidden patterns.

For the class of Zd-SFTs there is still no characterization of which dynam-
ical systems can arise as their subactions, nevertheless, it has been proven by
Hochman [12] that every Zd-action over a Cantor set T : Zd ×X → X which is
effectively closed – meaning that it can be described with a Turing machine– ad-
mits an almost trivial isometric extension which can be realized as the subaction
of a Zd+2-SFT. This result has subsequently been improved for the expansive
case independently in [3] and [9] showing that every effectively closed subshift
can be obtained as the projective subdynamics of a sofic Z2-subshift. These kind
of results yield powerful techniques to prove properties about the original sys-
tems. An example is the characterization of the set of entropies of Z2-SFTs [13]
as the set of right recursively enumerable numbers.

In this article we extend Hochman’s result to the case of group actions for
groups which are of the form G = Z2 oϕ H for some finitely generated group
H and a homomorphism ϕ : H → Aut(Z2). More specifically we prove the
following result.

Theorem 3.1. For every H-effectively closed dynamical system (X, f) there
exists a (Z2 oH)-SFT whose H-subaction is an extension of (X, f).

We remark the strong gap which occurs when passing from Z-SFTs to the
multidimensional case. For instance, Z-SFTs contain periodic points, have reg-
ular languages and the possible set of entropies they can have is reduced to
logarithms of Perron numbers [17]. In the other hand multidimensional SFTs
can be strongly aperiodic [5, 20, 16, 15], can be composed uniquely of non-
computable points [11, 19] and their entropies are not even computable [13].
Most of these differences can be put into evidence with simulation theorems
by the fact that multidimensional SFTs can be projected onto effectively closed
subshifts in one dimension. Our Theorem 3.1 allows analogously to extend prop-
erties of effectively closed subshifts in general groups H and show that they also
appear in SFTs when the group is replaced by Z2 oH. This is a powerful tool
to construct SFTs with some desired property in an arbitrary finitely generated
group as long as said property is present in some effectively closed subshift.

Readers who are not familiar with computability or the embedding of Turing
machine computations in subshifts of finite type will be reassured by the fact
that in the proof all of those aspects are hidden in black boxes. Namely, we
use the result of [3, 9] that every effectively closed Z-subshift is the projective
subdynamics of a sofic Z2-subshift whose vertical shift action is trivial. We also
make use of a theorem of Mozes [18] which states that subshifts arising from
two-dimensional substitutions are sofic.

In the case when H is a recursively presented group, Theorem 3.1 can be
presented in a purely symbolic dynamics fashion for expansive actions, namely
we show:

Theorem 4.3. Let X be an effectively closed H-subshift. Then there exists a
sofic (Z2 oH)-subshift Y such that its H-projective subdynamics πH(Y ) is X.
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It is known that every Z-SFT contains a periodic configuration [17]. How-
ever, it was shown by Berger [5] that there are Z2-SFTs which are strongly
aperiodic, that is, such that the shift acts freely on the set of configurations.
This result has been proven several times with different techniques [20, 16, 15]
giving a variety of constructions. However, it remains an open question which
is the class of groups which admit strongly aperiodic SFTs. Amongst the class
of groups that do admit strongly aperiodic SFTs are: Zd for d > 1, hyperbolic
surface groups [8], Osin and Ivanov monster groups [14], and the direct product
G × Z for a particular class of groups G which includes Thompson’s T group
and PSL(Z, 2) [14]. It is also known that no group with two or more ends can
contain strongly aperiodic SFTs [7] and that recursively presented groups which
admit strongly aperiodic SFTs must have decidable word problem [14].

As an application of Theorem 3.1 we present a new class of groups which
admit strongly aperiodic SFTs, that is:

Theorem 4.4. Every semidirect product Z2 oH where H is finitely generated
and has decidable word problem admits a non-empty strongly aperiodic SFT.

Amongst this new class of groups which admit strongly aperiodic SFTs, we
remark the discrete Heisenberg group which admits a presentation H ∼= Z2 oZ.
A construction by Ugarcovici, Sahin and Schraudner showing that H admits
strongly aperiodic SFTs was already presented in a workshop [21] in 2014. Our
results provide a new proof of this result along with a positive answer to their
question asking if similar constructions can be realized in the powers of the
Heisenberg group, the Flip group and the Sol group.

2 Preliminaries

Consider a group G and a compact topological space (X, T ). The tuple (X, f)
where f : G × X → X is a left G action by homeomorphisms is called a G-
dynamical system. Let (X, f), (X ′, f ′) be two G-dynamical systems. We say
φ : X → X ′ is a morphism if it is continuous and φ◦fg = f ′g ◦φ for all g ∈ G. A
surjective morphism φ : X � X ′ is a factor and we say that (X ′, f ′) is a factor
of (X, f) and that (X, f) is an extension of (X ′, f ′). When φ is a bijection and
its inverse is continuous we say it is a conjugacy and that (X, f) is conjugated
to (X ′, f ′).

In what follows, we consider the space X to be a Cantor set equipped with
the product topology and a finitely generated group acting over X. Without
loss of generality, we consider X to be a closed subset of {0, 1}N. Let G be a
group generated by a finite set S. A G-effectively closed dynamical system is a
G-dynamical system (X, f) where:

1. X ⊂ {0, 1}N is a closed effective subset: X = {0, 1}N \
⋃
i∈I [wi] where

{wi}i∈I ⊂ {0, 1}∗ is a recursively enumerable language. That means that
X is the complement of a union of cylinders which can be enumerated by
a Turing machine.
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2. f is an effectively closed action: there exists a Turing machine which on
entry s ∈ S and w ∈ {0, 1}∗ enumerates a sequence of words (wj)j∈J such
that f−1

s ([w]) = {0, 1}N \
⋃
j∈J [wj ].

The idea behind the definition is the following: There is a Turing machine
T which given a word g ∈ S∗ representing an element of G and n coordinates
of x ∈ X ⊂ {0, 1}N returns an approximation of the preimage of x by fg.

Let A be a finite alphabet and G a finitely generated group. The set AG =
{x : G → A} equipped with the left group action σ : G × AG → AG given
by: (σh(x))g = xh−1g is the G-full shift. The elements a ∈ A and x ∈ AG
are called symbols and configurations respectively. We endow AG with the
product topology, therefore obtaining a compact metric space. The topology is
generated by the metric d(x, y) = 2− inf{|g| | g∈G: xg 6=yg} where |g| is the length
of the smallest expression of g as the product of some fixed set of generators.
This topology is also generated by a clopen basis given by the cylinders [a]g =
{x ∈ AG|xg = a ∈ A}. A support is a finite subset F ⊂ G. Given a support F ,
a pattern with support F is an element P of AF , i.e. a finite configuration and
we write supp(P ) = F . We also denote the cylinder generated by P centered in
g as [P ]g =

⋂
h∈F [Ph]gh. If x ∈ [P ]g for some g ∈ G we write P @ x.

A subset X of AG is a G-subshift if it is σ-invariant – σ(G,X) ⊂ X – and
closed for the cylinder topology. Equivalently, X is a G-subshift if and only if
there exists a set of forbidden patterns F that defines it.

X = XF := AG \
⋃

P∈F,g∈G
[P ]g.

That is, a G-subshift is a subset of AG which can be written as the comple-
ment of the orbit of a union of cylinders

If the context is clear enough, we will drop the group G from the notation
and simply refer to a subshift. A subshift X ⊆ AG is of finite type – SFT for
short – if there exists a finite set of forbidden patterns F such that X = XF . A
subshift X ⊆ AG is sofic if there exists a subshift of finite type Y ⊂ A′G and
a factor φ : Y � X. A subshift is effectively closed if there exists a recursively
enumerable coding of a set of forbidden patterns F such that X = XF . More
details can be found in [2] or in Section 4.

Any G-dynamical system over a Cantor set can be seen as a subshift over an
infinite alphabet: Indeed, (X, f) can be seen as Y ⊂ ({0, 1}N)G equipped with
the shift action such that x ∈ Y if and only if ∀g ∈ G xg = fg(x1G

). In this
setting, effectively closed G-dynamical systems correspond to effectively closed
subshifts in this infinite alphabet.

Let H ≤ G be a subgroup and (X, f) a G-dynamical system. The H-
subaction of (X, f) is (X, fH) where fH : H×X → X is the restriction of f toH,
that is ∀h ∈ H, (fH)h(x) = fh(x). In the case of a subshift X ⊂ AG there is also
the different notion of projective subdynamics. The H-projective subdynamics
of X is the set πH(X) = {y ∈ AH | ∃x ∈ X,∀h ∈ H, yh = xh}. It is important to
remark that subactions don’t preserve expansivity, so in particular a subaction of
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a subshift is not necessarily a subshift. Nevertheless, the projective subdynamics
of a subshift πH(X) is always an H-subshift.

Throughout this article we make use of the following notation. If x ∈ AG is
a configuration such that ∀g ∈ F ⊂ G then xg = a ∈ A we just write x|F ≡ a.

3 Simulation Theorem

The purpose of this section is to prove our main result.

Theorem 3.1. Let H be finitely generated group and G = Z2 oH. For every
H-effectively closed dynamical system (X, f) there exists a G-SFT whose H-
subaction is an extension of (X, f).

We begin by introducing some useful constructions. The general schema
of the proof is the following: First, we construct for each non-zero vector
v ∈ (Z/3Z)2 a substitution sv. Each configuration on the subshift generated by
sv encodes countably many copies of Z2 as lattices. These lattices are situated
in a way such that any automorphism ϕ ∈ Aut(Z2) acting over the space of con-
figurations by permuting the coordinates has as an image the subshift generated
by sϕ̃(v), where ϕ̃ ∈ Aut((Z/3Z)2) is the automorphism of (Z/3Z)2 obtained by
reducing each entry of the matrix representation of ϕ modulo 3. The purpose
of the lattices is to encode a finite amount of information, namely, each lattice
will be later on paired to a specific coordinate of a configuration in {0, 1}N and
will transmit this information when moving in G by elements of H.

The second ingredient of this proof is a joint encoding of the elements of X
and the H-dynamical system f in an effective Toeplitz Z-subshift. We do so
in a way that the horizontal and vertical projections of the n-th order lattice
of the previous construction always match with the n-th coordinate of x ∈
X ⊂ {0, 1}N. For technical reasons of matching all the possible projections, we
parametrize these Toeplitz subshifts with a natural number q ∈ {1, 2}.

Afterwards, we extend the Toeplitz subshift to a Z2-subshift by repeating
rows (or columns). Using a known simulation theorem we obtain that this object
is a sofic Z2-subshift from which we extract an SFT extension. We then proceed
to couple this structure with the substitution subshifts described above in such
a way that the symbols encoded by the Toeplitz layers match with the lattices
of the substitution.

In the next step, we extend this construction to a G-SFT by adding local
rules that ensure that if the (Z2, 0)-coset of a configuration y in said subshift
codes x ∈ X then for any h ∈ H the (Z2, 0)-coset of σh(y) codes fh(x). This
set of rules is described as a finite amount of forbidden patterns.

Finally, we define the factor code, and show that it satisfies the required
properties.
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3.1 A set of Z2-substitutions which are permuted by ac-
tions of Aut(Z2).

Let p ≥ 3 be an integer. We define a substitution over a two symbol alphabet
which generates a sofic Z2-subshift encoding translations of pm+1Z2 for m ∈ N.
In the proof of the simulation theorem we will only use the case where p = 3,
but we prefer to proceed here with more generality.

To make notations shorter, we write ~0 = (0, 0) ∈ Z2 throughout the whole
proof. Let v ∈ (Z/pZ)2 \ {~0} and A = { , }. The Z2-substitution sv : A →
A{0,...,p−1}2 is defined by:

(sv( ))u =

{
if u = v

otherwise.
(sv( ))u =

{
if u ∈ {~0, v}
otherwise.

As an example, if p = 3 and v = (1, 1) we get the following:

sv( ) = sv( ) =

In this example the patterns s3
v( ) and s4

v( ) can be seen in Figure 1.

Figure 1: The patterns or order 3 and 4 of sv for v = (1, 1).

To a substitution sv we associate the subshift Subv defined as the set of
Z2-configurations such that every subpattern appears in some iteration of the
substitution sv.

Subv = {x ∈ { , }Z
2

| ∀P @ x, ∃n ∈ N : P @ snv ( )}

Proposition 3.2. The following statements hold:
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(1) Subv is a minimal subshift.

(2) sv has unique derivation.

(3) Subv is a Z2-sofic subshift which admits an almost 1-1 SFT extension

(4) The Toeplitz configuration τ ∈ { , }Z2

defined by:

τu =

{
if ∃n ∈ N, u ∈ pnv + pn+1Z2

otherwise

belongs to Subv. In particular Orb(τ) = Subv is a Toeplitz subshift.

Proof. The substitution sv is primitive and any subshift generated by a primitive
substitution is minimal, therefore (1) holds.

For the unique derivation, let z, y ∈ Subv such that for any u ∈ [0, p−1]2∩Z2

zp(x,y)+u = sv(y(x,y))u. As (sv( ))v = (sv( ))v = we infer that ∀w ∈ v+pZ2

then zw = . If there existed another way to subdivide z there would have
to be a disjoint pZ2-lattice of . As each vector u ∈ (Z/pZ)2 \ {~0, v} satisfies
(sv( ))u = (sv( ))u = the only possibility is that ∀w ∈ ~0+pZ2 then zw = ,

but as (sv( ))~0 = this would imply that y =
Z2

which is clearly not an
element of Subv. Hence (2) holds.

By Mozes Theorem [18] Subv is a Z2-sofic subshift. Furthermore, as sv has
unique derivation, the SFT extension can be chosen to be almost 1-1. This
settles (3).

To show (4) it suffices to prove that all of the finite windows of the form
τ |[0,pn−1]2 appear in some iteration of sv. Indeed, as τ is Toeplitz, every pattern
appearing in τ must also appear in the N2 portion of the plane. The claim
follows directly as it can be verified inductively that τ |[0,pn−1]2 = snv ( ) and

snv ( ) @ sn+1
v ( ). Also, as Subv is minimal it follows that Orb(τ) = Subv

proving (4).

Proposition 3.2 gives an useful way to describe elements from Subv. Namely,
for each z ∈ Subv there is a sequence of Z2 vectors {uk}k∈N such that σuk

(τ)→
z. Let Kn ∈ N be such that ∀k ≥ Kn then σuk

(τ)|[0,pn−1]2 = z|[0,pn−1]2 and de-
fine ūn := uKn mod (pn+1, pn+1). We have that form ∈ N σuk

(τ)|pmv+uk+pm+1Z2

is composed uniquely of black squares. In the case where m ≤ n and k ≥ Kn

we have
pmv + uk + pm+1Z2 = ūn + pmv + pm+1Z2.

Therefore, we can conclude that for every m ≤ n if we define Bm(z) := ūn+
pmv + pm+1Z2 then z|Bm(z) is composed uniquely of black squares. Moreover,
each ūn is unique as any other possibility would shift the position of the pm+1Z2-
lattice of black squares which is already fixed.

Let {ūn}n∈N be the sequence of vectors associated to z ∈ Subv. Then for
every m ≤ n we have ūm = ūn mod (pm+1, pm+1). Conversely, for each se-
quence {ūn}n∈N which satisfies this restriction we can construct a configuration
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z̄ ∈ Subv as an accumulation point of σūn(τ) which therefore has the property
that Bn(z̄) = ūn + pnv + pn+1Z2 for all n ∈ N.

Proposition 3.3. Let ϕ ∈ Aut(Z2) be represented as Aϕ ∈ GL(2,Z) and let
Aϕ̃ ∈ M(Z/pZ, 2) be the matrix obtained by reducing the entries of Aϕ modulo
p. Aϕ̃ defines an automorphism ϕ̃ ∈ Aut((Z/pZ)2) by left multiplication. We
have that:

ϕ(Bm(z)) = ϕ(ūn) + pmϕ̃(v) + pm+1Z2.

In particular ∀z ∈ Subv then z ◦ ϕ ∈ Subϕ̃(v) and Bm(z ◦ ϕ) = ϕ(Bm(z)).

Proof. Let z ∈ Subv and Bm(z) as defined above, then, given any n ≥ m:

ϕ(Bm(z)) = ϕ(ūn + pmv + pm+1Z2)

= ϕ(ūn) + pmAϕv + pm+1Z2

= ϕ(ūn) + pm(Aϕ̃ + p(
Aϕ −Aϕ̃

p
))v + pm+1Z2

= ϕ(ūn) + pmAϕ̃v + pm+1((
Aϕ −Aϕ̃

p
)v + Z2)

= ϕ(ūn) + pmϕ̃(v) + pm+1Z2

This means that for fixed n ∈ N all lattices of size m ≤ n are sent to lattices ap-
pearing in configurations of Subϕ̃(v). Indeed, as ūm = ūn mod (pm+1, pm+1) we
have ϕ(ūm) = ϕ(ūn) mod (pm+1, pm+1) and therefore the sequence {ϕ(ūn)}n∈N
defines a configuration in Subϕ̃(v). Following a compactness argument one con-
cludes that z ◦ ϕ ∈ Subϕ̃(v) and Bm(z ◦ ϕ) = ϕ(Bm(z)).

The importance of Proposition 3.3 is that it states that any automorphism of
Z2 correctly maps the lattices Bm(z) to those of another substitution. We shall
use these lattices to encode elements of {0, 1}N belonging to our H-dynamical
system (X, f). In order to do this, we need to define a subshift which matches
these lattices to actual values from X and that also codes the action of f .

3.2 Encoding configurations in Toeplitz sequences.

Consider p ≥ 3, q ∈ {1, . . . , p − 1} and the encoding Ψq : {0, 1}N → {0, 1, $}Z
given by:

Ψq(x)j =

{
xn if j = qpn mod pn+1

$ in the contrary case.

The idea behind this encoding is to match for each m ∈ N the horizontal
and vertical projections of the lattice Bm(z) for some z ∈ Subv to the symbol
xm. We need to do this for every possible choice of q as the projections of the
lattices might differ depending on the substitution. For instance, the horizontal
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projection associated to v = (1, 1) is different from the one for v = (2, 2). We
begin this section by studying the structure of the encoding Ψq.

First notice that Ψq(x)|q+pZ ≡ x0 and ∀q′ ∈ {1, . . . p− 1} \ {q} we have that
Ψq(x)q′+pZ ≡ $. Indeed, as q′ + pk 6= 0 mod p thus q′ + pk 6= pi mod pi+1.
Also, if i ≥ 1 and Ψq(x)j = xi then Ψq(x)j+q = x0 as j = pi mod pi+1 forces
that j = 0 mod p. This means that every x0 is a special coordinate in a string
of p − 1 symbols where every other symbol is $ and every xi with i ≥ 1 is
necessarily followed by such string. The important property we derive from
these computations is that the lattice of x0 can be recognized locally. Indeed,
each x0 is preceded by q − 1 symbols $ and followed by p− q − 1 symbols $. If
p ≥ 3 and q−1 6= p−q−1 this is enough to locally recognize the position of the
lattice in a string of p symbols as x0 is the only lattice satisfying that property.
If q − 1 = p − q − 1 the previous property is now true for any symbol but
the decoding can be done in any string of 2p symbols because if Ψq(x)j = xm
for some m > 0 then Ψq(x)j+p = Ψq(x)j−p = $ and any false positive can be
detected in a finite window.

For x = (xi)i∈N ∈ {0, 1}N let σ(x) ∈ {0, 1}N be defined by σ(x)i = xi+1 (we
shall use the same notation as in the case of the group shift action, though in this
case it’s a one-sided N-action). We define also for k ∈ Z/pZ the transformation
Ωk : {0, 1, $}Z → {0, 1, $}Z by (Ωk(y))j = yjp+k. It is straightforward from the
definition of Ψq that Ω0 transforms the coding of x ∈ {0, 1}N into that of its
shifted version, that is Ω0(Ψq(x)) = Ψq(σ(x)). Also, one can directly check that
Ωk = Ω0 ◦ σ−k and Ω0 ◦ σp` = σ` ◦ Ω0.

Proposition 3.4. Let x ∈ {0, 1}N and y ∈ Orbσ(Ψq(x)). There exists an unique
k0 ∈ Z/pZ such that:

Ωk0(y) ∈ Orbσ(Ψq(σ(x))).

Proof. The application Ωk is clearly continuous in the product topology as fixing
y in the interval Z∩ [−lp, lp− 1] for l ≥ 1 necessarily fixes Ωk(y) in the interval
Z ∩ [−l, l − 1].

Let y ∈ Orbσ(Ψq(x)). As Ψq(x)|q+pZ ≡ x0 we can deduce by compactness
that there exists k ∈ Z/pZ such that y|k+pZ ≡ x0. Define k0 := k − q mod p.
Then for each n ∈ Z we have ypn+k0+1, . . . , yk0+p−1 = $q−1x0$p−q−1 as words.
This necessarily implies that any other choice of k0 would make Ωk0(y) be a
constant configuration which clearly does not belong to Orbσ(Ψq(σ(x))) there-
fore making the previous choice the only possible one. Consider a sequence
(σni

(Ψq(x)))i∈N → y. Without loss of generality we can ask that ni ∈ pZ + k0,
if not it suffices to eliminate a finite number of terms. For any ni of the form
p`+ k0 we get that

Ωk0(σp`+k0(Ψq(x))) = Ω0 ◦ σ−k0 ◦ σk0 ◦ σp`(Ψq(x))

= Ω0 ◦ σp`(Ψq(x))

= σ` ◦ Ω0(Ψq(x))

= σ`(Ψq(σ(x))) ∈ Orb(Ψq(σ(x)))

As Ωk is continuous, we obtain that Ωk0(y) ∈ Orbσ(Ψq(σ(x))).
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Example. For p = 3, q = 1 and x = x0x1x2 . . . we obtain that:

Ψq(x)|{0,...,30} = $x0$x1x0$$x0$x2x0$x1x0$$x0$$x0$x1x0$$x0$x3x0$x1

Ω0(Ψq(x))|{0,...,10} = $x1$x2x1$$x1$x3x1 = Ψq(σ(x))|{0,...,10}

Ω2
0(Ψq(x))|{0,...,3} = $x2$x3 = Ψq(σ

2(x))|{0,...,3}

Proposition 3.4 shows explicitly that x ∈ {0, 1}N can be decoded not only
from Ψq(x) but from any element of the closure of the orbit of Ψq(x) under the

shift action. Indeed, given y0 ∈ Orbσ(Ψq(x)) we find the unique value k0 ∈ Z/pZ
as above and deduce that x0 = (y0)k0+q. Next one takes y1 := Ωk0(y0) and finds
a new value k1 as before and so x1 = (y1)k1+q. Iterating this procedure one gets

a sequence yi such that yi := Ωki(y
i−1) ∈ Orbσ(Ψq(σi(x))) and xi = (yi)ki+q.

Proposition 3.5. Let x, x′ ∈ {0, 1}N. Orbσ(Ψq(x)) ∩ Orbσ(Ψq(x′)) 6= ∅ if and
only if x = x′.

Proof. Let y ∈ Orbσ(Ψq(x))∩Orbσ(Ψq(x′)). Using Proposition 3.4 we can find

an unique k0 ∈ Z/pZ such that Ωk0(y) ∈ Orbσ(Ψq(σ(x))) and thus x0 = yk0+q.

The same proposition gives k′0 ∈ Z/pZ such that Ωk′0(y) ∈ Orbσ(Ψq(σ(x′))) and
so x′0 = yk′0+q. Nevertheless in the proof of Proposition 3.4 we see that any
other choice of k0 would give a constant configuration and therefore k0 = k′0.
This implies that x0 = x′0 and Ωk0(y) ∈ Orbσ(Ψq(σ(x))) ∩ Orbσ(Ψq(σ(x′))).
Iterating this argument we obtain that for every n ∈ N then xn = x′n holds and
thus x = x′. The other direction is trivial as Ψq(x) ∈ Orbσ(Ψq(σ(x))) 6= ∅.

Before continuing, let’s draw the attention to the structure of the subshift
Orbσ(Ψq(x)). Every element here encodes the structure of x by repeating its
n-th coordinate in gaps of size pn+1. Therefore, every non $ element appears
periodically with at most one exception – a position obtained by compactness –
which we denote by x∞. This point may take any value if both 0 and 1 appear
infinitely often in x but is restricted if x is eventually constant. This point
has its analogue in the configurations z ∈ Subv. All of the symbols appear
in square lattices with the exception of at most one. We call this degenerated
lattice B∞(z) and make the remark that B∞(z) might be empty.

Let (X, f) be an H-dynamical system and p ≥ 3. We use the encoding Ψq

defined above to construct a Z-subshift Top(X, f) which encodes the configura-
tions of X and the action of f around a unit ball in H. Formally, let S ⊂ H
be a finite set such that 1H ∈ S and 〈S〉 = H. We define by Ψ(x) as the
configuration in ({0, 1, $}{1,...,p−1}×S)Z such that (Ψ(x)n)(q,s) = Ψq(fs(x))n.

Top(X, f) ⊂ ({0, 1, $}{1,...,p−1}×S)Z is the Z-subshift given by:

Top(X, f) :=
⋃
x∈X

(
Orbσ (Ψ(x))

)
Elements of Top(X, f) can be thought of as (p − 1)|S|-tuples of configu-

rations in {0, 1, $}Z where the tuple associated to the pair (q, s) belongs to
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Orbσ(Ψq(fs(x))). Here the shift action is taken diagonally, that is, each con-
figuration is shifted simultaneously. The idea behind this construction is to let
each q-row code an element x ∈ X and its image fs(x) for each s ∈ S. Given
y ∈ Top(X, f) we denote the projection to the (q, s)-th layer by Layerq,s(y) ∈
{0, 1, $}Z. We need to do this for every possible q just for technical reasons, as
we’ll need to match every possible lattice in the substitution defined above.

Proposition 3.6. If (X, f) is an effectively closed H-dynamical system then
Top(X, f) is an effectively closed Z-subshift.

Proof. Top(X, f) is clearly shift invariant. To see that it is closed consider a
sequence of configurations {yn}n∈N ⊂ Top(X, f) converging to y. By Proposi-
tion 3.5 each yn belongs to a unique orbit Orbσ (Ψ(xn)) for xn ∈ X as they
are pairwise disjoint. It is also straightforward to see that y ∈ Orbσ (Ψ(x)) for
some x ∈ {0, 1}N. It suffices to show that x ∈ X. As Ωk is continuous we
get that Ωk(Layerq,s(yn))→ Ωk(Layerq,s(y)). Clearly the sequence of k0 given
by Proposition 3.4 associated to yn must stabilize and hence there is N ∈ N
such that for every n ≥ N then yn belongs to an orbit Orbσ (Ψ(xn)) where
(xn)0 = x0 = (Layerq,1H

(y))k0+q. Iterating this argument we get that for each
m ∈ N there exists Nm such that for every n ≥ Nm then (xn)i = xi for each
i ≤ m. We conclude that xn converges to x. As X is closed we obtain that
y ∈ Top(X, f).

A set of forbidden patterns defining Top(X, f) can be given explicitly. We
consider for n ∈ N all words of length pn+1 over the alphabet {$, 0, 1}|S|(p−1)

which do not appear in any configuration of Top(X, f). As this is an increasing
sequence of forbidden patterns it is enough to define Top(X, f).

This set of forbidden words is recursively enumerable. The following algo-
rithm accepts a set of forbidden patterns defining Top(X, f). Let the input be
a word of length pn for n ∈ N. The structure of Top(X, f) makes it possi-
ble to recognize algorithmically all gaps in every layer (formally the algorithm
checks that each substring of p contiguous symbols is a cyclic permutation of
a$q−1b$p−q−1 for some a ∈ {0, 1, $} and b ∈ {0, 1}). Then if this stage is passed,
it computes k0 from Proposition 3.4 for each layer, checks that b is the same
symbol throughout the word. Finally it checks that k0 is the same in every layer
(thus the layers are aligned). Then it applies Ωk0 to this string obtaining a word
of length pn−1. The algorithm is repeated until reaching a word of length 0. If
at any stage a check fails, the word is accepted as forbidden.

The previous stage recognizes all words that haven’t got the correct struc-
ture. After that stage ends, we can use the same algorithm and the function Ωk
to decode n coordinates x0x1 . . . xn−1 for each pair (q, s) and check for every
s that the word is the same independently of q. If this stage is passed we end
up with |S| words which depend only on s and we denote them by (ws)s∈S .
Here we run two recognition algorithms in parallel. One searches for a cylinder
[ws] 6⊂ X and the other searches if [w1H

] 6⊂ f−1
s ([ws]). If any of these two

searches succeed at a certain step then the algorithm returns that the pattern is
forbidden. These two last algorithms do exist as (X, f) is an effectively closed
H-dynamical system.
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The subshift Top(X, f) is the ingredient of the proof which allows us to
simulate points x ∈ X and their images under the generators of H in a sofic
Z2-subshift which contains this information. The next step is to put one of these
configurations in each Z2-coset of Z2oϕH and force by local rules that the shift
action by (0, h) yields the Z2-coset where the point fh(x) is codified. The obvious
obstruction to this idea is the fact that the action under (0, h) in a semidirect
product disturbs the adjacency relations in a coset if the automorphism ϕh isn’t
trivial. The way to go around this obstruction is to use the lattices given by
the layer Subv which are invariant under automorphisms. We specify how these
two elements go together in the next subsection.

3.3 Proof of Theorem 3.1

Denote ϕ : H → Aut(Z2) a group homomorphism such that G = Z2 oϕ H is
given by:

(n1, h1) · (n2, h2) = (n1 + ϕh1
(n2), h1h2)

Let S be a finite set of generators of H where 1H ∈ S , |S| = d and let’s
fix the parameter p = 3 which is used to construct Top(X, f) (which contains
thus 2d layers) and the substitutions Subv for v ∈ (Z/3Z)2 \ {~0}. Consider the
following two Z2-subshifts.

Top(X, f)H ⊆ ({0, 1, $}2d)Z
2

Top(X, f)V ⊆ ({0, 1, $}2d)Z
2

Where x ∈ Top(X, f)H is the subshift whose projection to (Z, 0) belongs to
Top(X, f) and any vertical strip is constant. Analogously x ∈ Top(X, f)V is
the subshift whose projection to (0,Z) belongs to Top(X, f) and any horizontal
strip is constant. Formally: x ∈ Top(X, f)H if ∀i, j ∈ Z then xi,j = xi,j+1 and
(x(i,0))i∈Z ∈ Top(X, f). An analogous definition can be given for Top(X, f)V .
Proposition 3.6 says that Top(X, f) is an effective Z-subshift and therefore
Top(X, f)H and Top(X, f)V are sofic Z2-subshifts by the simulation theorem
proven in [3, 9]. Next we are going to put these subshifts together with the
substitution layers to create a rich structure in each Z2-coset.

Consider the product subshift Top(X, f)H×Top(X, f)V×
⊗

v∈(Z/3Z)2\{~0} Subv.

Given a configuration y in that product we denote by LayerH(y) and LayerV (y)
the projections to the horizontal and vertical layer respectively. If we want
to precise the tuple we will use the notation LayerHq,s(y) and LayerVq,s(y) re-

spectively. Also, for v ∈ (Z/3Z)2 \ {~0}, we denote by Subv(y) the projection
to the corresponding substitutive layer. We define Π(X, f) ⊂ Top(X, f)H ×
Top(X, f)V ×

⊗
v∈(Z/3Z)2\{~0} Subv as the set of configurations y which satisfy

the following rules:

1. ∀u ∈ Z2 and (a, b) ∈ (Z/3Z)2 \ {~0} the following is satisfied. If a 6= 0 then
(Sub(a,b)(y))u = if and only if (LayerHa,1H

(y))u ∈ {0, 1}. Analogously, if

b 6= 0 then then (Sub(a,b)(y))u = if and only if (LayerVb,1H
(y))u ∈ {0, 1}.
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2. If (Sub(1,1)(y))u = then ∀s ∈ S (LayerH1,s(y))u = (LayerV1,s(y))u.

The Z2-subshift Π(X, f) is sofic. Indeed, all the component are sofic sub-
shifts and the added rules are local (we just forbid symbols in the product
alphabet). Recall that we denote by Bm(z) the m-th lattice of black squares in
a configuration z in a substitutive layer.

Claim 3.1. Let y ∈ Π(X, f), (a, b) ∈ (Z/3Z)2\{~0} and z = Sub(a,b)(y). Suppose
that LayerH(y) is given by x ∈ X. Then:

• If a 6= 0 then ∀m ∈ N,∀s ∈ S: LayerHa,s(y)|Bm(z) ≡ fs(x)m

• If b 6= 0 then ∀m ∈ N,∀s ∈ S: LayerVb,s(y)|Bm(z) ≡ fs(x)m

• The configurations in the layers Top(X, f)H and Top(X, f)V are defined
by the same x ∈ X.

Proof. Let a 6= 0. It suffices to show this property for s = 1H as the definition
of Top(X, f) forces the configurations to be aligned. The lattice B0(z) has the
form ū0 + (a, b) + 3Z2, therefore its projection in the horizontal coordinate is
of the form k0 + 3Z. Using the structure of Ψa(x) there are three possibilities
for 3-lattices: One contains uniformly the symbol x0, another contains only
the symbol $ and the third one contains Ψa(σ(x)) by proposition 3.4. The
first rule of Π(X, f) rules out the second and third possibility because there
would be $’s matched with . Therefore LayerHa,1H

|B0(z) ≡ x0. Inductively, let

Bm(z) = ūm + (a, b)3m + 3m+1Z2 and suppose ∀m′ < m LayerHa,1H
|Bm′ (z)

≡
xm′ . Note that for m′ the projection to the horizontal layer is of the form
km′+3m

′+1Z. Using iteratively the previous argument and applying the function
Ωkm′ defined in 3.4 we end up with three possibilities for 3m-lattices (that is,
the value of km′), and again the first rule of Π(X, f) rules out two of them,
yielding LayerHa,1H

|Bm(z) ≡ xm.

Suppose the configuration in Top(X, f)V is given by x′ ∈ X. For b the
proof is analogous and we get that b 6= 0 implies that ∀m ∈ N,∀s ∈ S:
LayerVb,s|Bm(z) ≡ fs(x′)m.

Now set (a, b) = (1, 1). The second rule of Π(X, f) implies that ∀s ∈ S,m ∈
N then (LayerH1,s(y))|Bm(z) = (LayerV1,s(y))|Bm(z). Using the previous two prop-
erties we conclude that ∀s ∈ S,m ∈ N we have fs(x)m = fs(x

′)m. Using s = 1H
yields x = x′ hence proving the second and third statement.

From Claim 3.1 we obtain that each configuration y ∈ Π(X, f) contains
the information of a single x ∈ X. We can thus define properly the decod-
ing function Υ : Π(X, f) → X such that Υ(y) = x if and only if ∀m ∈ N:
LayerH1,1H

(y)|Bm(Sub(1,1)(y)) ≡ xm.
Consider the set of forbidden patterns F defining Π(X, f). Each of these

patterns has a finite support F ⊂ Z2. We extend those patterns to patterns in
G = Z2 oϕ H by associating d ∈ F → (d, 1H) ∈ G. Therefore every pattern
P ∈ F with support F ⊂ Z2 is embedded into a pattern p̃ with support F ×
{1H} ⊂ G. We consider the set F̃ = {p̃ | p ∈ F} and we define Final(X, f) as
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the subshift over the same alphabet as Π(X, f) defined by the set of forbidden

patterns F̃ ∪ G where G is defined as follows:
For each s ∈ S consider ϕs−1 the automorphism associated to s−1 and

(a, b) = ϕ̃s−1(1, 1). We put in G all the patterns P with support {(~0, 1H), (~0, s−1)}
which satisfy that Sub(a,b)(P(~0,1H)) = but either:

• Sub(1,1)(P(~0,s−1)) 6= or

• Sub(1,1)(P(~0,s−1)) = and

– If a 6= 0 then LayerHa,s(P(~0,1H)) 6= LayerH1,1H
(P(~0,s−1)) or

– If b 6= 0 then LayerVb,s(P(~0,1H)) 6= LayerV1,1H
(P(~0,s−1)).

In simpler words: we force that every in layer Sub(a,b) of the (Z2, 1H)-coset
must be matched with a in Sub(1,1) in the (Z2, s−1)-coset and that if a 6= 0

then the symbol in (~0, 1H) in LayerHa,s is the same as the symbol in (~0, s−1) in

LayerH1,1H
. If b 6= 0 we impose that the symbol in (~0, 1H) in LayerVb,s is the

same as the symbol in (~0, s−1) in LayerV1,1H
.

Before continuing let’s translate F̃ ∪ G into properties of Final(X, f). In
order to do that properly, for y ∈ Final(X, f) we denote by π(y) the Z2-
configuration such that ∀u ∈ Z2 π(y)u = y(u,1H).

Claim 3.2. Final(X, f) satisfies the following properties:

• Final(X, f) is a sofic G-subshift.

• Let y ∈ Final(X, f). Then π(y) ∈ Π(X, f).

• If Υ(π(y)) = x then ∀h ∈ H, Υ(π(σ(~0,h)(y))) = fh(x).

Proof. As Π(X, f) is sofic, it admits an SFT extension φ : Π̂(X, f)� Π(X, f).

By embedding as above a finite list of forbidden patterns defining Π̂(X, f) into G
we obtain a G-SFT extension of XF̃ . Adding to this list of forbidden patterns
the pullback of the finite list of forbidden patterns G under the local code Φ
defining φ we obtain an SFT extension F̂inal(X, f) of Final(X, f).

The second property comes directly from the definition of Final(X, f) as
it contains an embedding of every forbidden pattern defining Π(X, f). Note
that it may happen that y|(Z2,h) seen as a Z2-configuration does not belong to
Π(X, f) for some h ∈ H, but π(σ(~0,h)(y)) always does.

Let’s prove the third property: We claim that it suffices to prove the property
for s ∈ S. Indeed, given h ∈ H, as H = 〈S〉 there exists a minimal length word
representing h. If h = 1H the result is immediate. If not, then h = sh′ for some
h′ ∈ H having a shorter word representation. Suppose this third property holds
for all words of strictly smaller length and define y′ = σ(~0,h′)(y). We have that

Υ(π(y′)) = fh′(x) = x′, so:

Υ(π(σ(~0,h)(y))) = Υ(π(σ(~0,s)(y
′))) = fs(x

′) = fs(fh′(x)) = fh(x).
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It suffices therefore to prove the property for s ∈ S. Let’s denote y′ = σ(~0,s)(y)

and let Υ(π(y)) = x and Υ(π(y′)) = x′. We want to prove that x′ = fs(x).
Let ϕ̃s−1(1, 1) = (a, b) and suppose that a 6= 0 (if a = 0 then b 6= 0 and the
argument is analogous). Let m ∈ N, using Claim 3.1 we obtain

LayerH1,1H
(y′)|(Bm(Sub(1,1)(y′)),1H) ≡ x′m

LayerHa,s(y)|(Bm(Sub(a,b)(y)),1H) ≡ fs(x)m.

Using the forbidden patterns G results in

Sub(1,1)(y)|(Bm(Sub(a,b)(y)),s−1) ≡

LayerH1,1H
(y)|(Bm(Sub(a,b)(y)),s−1) ≡ fs(x)m.

Finally, developing the action on y′ yields

y′|(Bm(Sub(1,1)(y′)),1H) = σ(~0,s)(y)|(Bm(Sub(1,1)(y′)),1H)

= y|(~0,s−1)(Bm(Sub(1,1)(y′)),1H)

= y|(ϕs−1 (Bm(Sub(1,1)(y′))),s−1).

Using Proposition 3.3 we obtain that:

ϕs−1(Bm(Sub(1,1)(y
′))) = Bm(Sub(1,1)(y

′)◦ϕs−1) and Sub(1,1)(y
′)◦ϕs−1 ∈ Sub(a,b).

As we also have ∀m ∈ N that:

Sub(1,1)(y
′)|(Bm(Sub(1,1)(y′)),1H) ≡ and Sub(1,1)(y)|(Bm(Sub(a,b)(y)),s−1) ≡

we conclude that ϕs−1(Bm(Sub(1,1)(y
′))) = Bm(Sub(a,b)(y)). Therefore,

LayerH1,1H
(y′)|(Bm(Sub(1,1)(y′)),1H) = LayerH1,1H

(y)|(Bm(Sub(a,b)(y)),s−1).

Which yields x′m = fs(x)m. As m ∈ N is arbitrary x′ = fs(x).

Finally we are ready to finish the proof. Consider again the SFT extension
F̂inal(X, f) of Final(X, f), the factor map φ : F̂inal(X, f)� Final(X, f) and

the subaction (F̂inal(X, f), σH).

Proposition 3.7. Υ ◦ π ◦ φ is a factor map from (F̂inal(X, f), σH) to (X, f).

Proof. As φ : F̂inal(X, f) � Final(X, f) it suffices to show that Υ ◦ π is a
factor map from (Final(X, f), σH) to (X, f). Let y ∈ Final(X, f). Following
Claim 3.2 we have π(y) ∈ Π(X, f) and thus Υ(π(y)) ∈ X. Moreover, setting
Υ(π(y)) = x yields ∀h ∈ H that Υ(σ(~0,h)(y)) = fh(x). This implies

∀h ∈ H : (Υ ◦ π) ◦ σ(~0,h) = fh ◦ (Υ ◦ π).
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Also, both Υ and π are clearly continuous, therefore, it only remains to show
that Υ◦π is surjective. Let x ∈ X, we construct a configuration ŷ ∈ Final(X, f)
such that Υ(π(ŷ)) = x.

In order to do this, we begin by constructing a sequence of configurations
(yh)h∈H which belong to Π(X, f). For (a, b) ∈ (Z/3Z)2 \{~0} let z(a,b) ∈ Sub(a,b)

be the Toeplitz configuration defined in Proposition 3.2 part (4). The configura-
tion z(a,b) satisfiesBm(z(a,b)) = (a, b)3m+3m+1Z2 form ∈ N andB∞(z(a,b)) = ∅.
We define yh ∈ Π(X, f) by specifying the configuration in each layer. For
a substitutive layer we have Sub(a,b)(y

h) = z(a,b) and for the Toeplitz layers

we have that ∀u = (u1, u2) ∈ Z2, s ∈ S, a, b ∈ {1, 2} then LayerHa,s(y
h)u =

Ψa(fs(fh(x)))u1
and LayerVb,s(y

h)u = Ψb(fs(fh(x)))u2
. It can easily be verified

that for each h ∈ H the configuration yh ∈ Π(X, f).
Finally, we define ŷ as follows:

ŷ(u,h) = (yh
−1

)ϕh−1 (u).

As ϕ1H
u = u then π(ŷ) = y1H and thus Υ(π(ŷ)) = f1H

(x) = x. It suffices to
show that ŷ ∈ Final(X, f). This comes down to showing that no patterns in F
or G appear in ŷ. Suppose a pattern P ∈ F appears at position g = (u, h), that
is ŷ ∈ [P ]g ⇐⇒ σg−1(ŷ) ∈ [P ]1G

. As P has a support contained in (Z2, 1H)
then π(σg−1(ŷ)) /∈ Π(X, f). Nonetheless:

σg−1(ŷ)(u′,1H) = ŷ(u,h)(u′,1H)

= ŷ(u+ϕh(u′),h)

= (yh
−1

)u′+ϕh−1 (u)

= (σ−ϕh−1 (u)(y
h−1

))u′ .

Therefore π(σg−1(ŷ)) = σ−ϕh−1u(yh
−1

) ∈ Π(X, f) which is a contradiction.
Hence ŷ does not contain any pattern from F . It remains to show it contains
no patterns in G. Recall that patterns P ∈ G have support {(~0, 1H), (~0, s−1)}
for s ∈ S. Let g = (u, h) such that σg−1(ŷ) ∈ [P ]1G

. Then σg−1(ŷ)(~0,1H) =

(σ−ϕh−1 (u)(y
h−1

))~0 and

σg−1(ŷ)(~0,s−1) = ŷ(u,h)(~0,s−1)

= ŷ(u,hs−1)

= (ysh
−1

)ϕ(sh−1)u

= (σ−(ϕ(sh−1)u)(y
sh−1

))~0.

Letm ∈ N and denote (a, b) = ϕ̃s−1(1, 1). By definitionBm(Sub(a,b)(y
h−1

)) =
(a, b)3m + 3m+1Z2 therefore,

Bm(Sub(a,b)(σ−ϕh−1 (u)(y
h−1

))) = (a, b)3m − ϕh−1(u) + 3m+1Z2
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In the other hand,

Bm(Sub(1,1)(σ−ϕ(sh−1)(u)(y
sh−1

))) = (1, 1)3m − ϕ(sh−1)(u) + 3m+1Z2.

So, if Sub(a,b)(σg−1(ŷ))(~0,1H) = then ~0 ∈ (a, b)3m − ϕh−1(u) + 3m+1Z2 for
some m ∈ N. Applying ϕs at both sides we obtain:

ϕs(~0) = ~0 ∈ ϕs(a, b)3m − ϕ(sh−1)(u) + 3m+1Z2

= ϕ̃s(a, b)3
m − ϕ(sh−1)(u) + 3m+1Z2

= (1, 1)3m − ϕ(sh−1)(u) + 3m+1Z2

= Bm(Sub(1,1)(σ−ϕ(sh−1)(u)(y
sh−1

))).

Implying that Sub(1,1)(σg−1(ŷ))(~0,s−1) = . Moreover, if either a or b is non-

zero (here we treat only the a 6= 0 case as the b 6= 0 case is analogous), then,
using the previous computation we get:

LayerHa,s(σg−1(ŷ))(~0,1H) = fs(fh−1(x))m

LayerH1,1H
(σg−1(ŷ))(~0,s−1) = fsh−1(x)m.

So no patterns from G appear, yielding ŷ ∈ Final(X, f).

Proposition 3.7 concludes the proof of Theorem 3.1.

4 Consequences and remarks

In this last section we explore some consequences of our simulation theorem.
The first one is in the case of expansive actions. Here we show that we can
replace the subaction by the projective subdynamics and obtain the same result.
The second consequence is an application of Theorem 3.1 to produce non-empty
strongly aperiodic subshifts of finite type in a class of groups where this was
previously unknown. We also extend a Theorem of Jeandel [14] to the existence
of effectively closed free dynamical systems in general.

We close this section by remarking that the technique used to prove The-
orem 3.1 is valid in an even larger class (namely, simulation in Zd o G) and
with a discussion on the size of the extension. Indeed, in Hochman’s article [12]
the subaction is shown to be an almost trivial isometric extension. We dedicate
the last part of this section to informally discuss the size of the factor in our
construction and how a similar result could be obtained.

4.1 The simulation theorem for expansive actions

Before presenting the simulation theorem for expansive actions, we must define
with more detail effectively closed subshifts in groups. A longer survey of these
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concepts can be found in [2]. Given a group G generated by S and a finite
alphabet A a pattern coding c is a finite set of tuples c = (wi, ai)i∈I where
wi ∈ S∗ and ai ∈ A. A set of pattern codings C is said to be recursively
enumerable if there is a Turing machine which takes as input a pattern coding
c and accepts it if and only if c ∈ C. A subshift X ⊂ AG is effectively closed if
there is a recursively enumerable set of pattern codings C such that:

X = XC :=
⋂

g∈G,c∈C

AG \ ⋂
(w,a)∈c

[a]gw

 .

With this formal concept in hand, we show that the symbolic factors of an
effectively closed G-dynamical system are still effectively closed.

Proposition 4.1. For every finitely generated group, any G-subshift which is
the factor of an effectively closed G-dynamical system is itself effectively closed.

Proof. Let G be generated by the finite symmetric set S ⊂ G, (X, f) an ef-
fectively closed G-dynamical system over a Cantor set, (Y, σ) a G-subshift and
φ : (X, f)� (Y, σ) a factor.

Recall that X ⊂ {0, 1}N and Y ⊂ AG for some finiteA. As both X and Y are
compact, φ is uniformly continuous. Therefore for each a ∈ A then φ−1([a]) =
Wa where Wa is a clopen set depending on a finite number of coordinates. For
any pattern coding c and v ∈ S∗:

φ−1

 ⋂
(w,a)∈c

[a]vw

 =
⋂

(w,a)∈c

φ−1(σvw([a])) =
⋂

(w,a)∈c

fvw(φ−1([a]))

Therefore,

Y ∩
⋂

(w,a)∈c

[a]vw = ∅ =⇒ X ∩
⋂

(w,a)∈c

fvw(Wa) = ∅.

As (X, f) is effectively closed, there is a Turing machine which can approx-
imate the set

⋂
(w,a)∈c fvw(Wa) as each Wa is just a finite union of a finite

intersection of cylinders and vw ∈ S∗. Also, for each partial approximation we
can enumerate the cylinders which approximate the complement of X to recog-
nize if the intersection is empty, namely, to check if fvw(Wa) is contained in the
complement. Using these tools we can construct a Turing machine recognizing
a maximal set of forbidden pattern codings defining Y .

Theorem 4.2. Let H be a finitely generated group and (X, f) an effectively
closed expansive H-dynamical system over a Cantor set. Then there exists a
(Z2 oH)-sofic subshift Y such that its H-projective subdynamics πH(Y ) is con-
jugated to (X, f).
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Proof. Consider first (X, f) an effectively closed expansive H-dynamical system
over a Cantor set. By Theorem 3.1 there exists an (Z2 oH)-SFT X̂ such that
its H-subaction (X̂, σH) is an extension of (X, f). Denote the factor map by
φ : (X̂, σH) � (X, f). Let C > 0 be the expansivity constant of (X, f). As X
is a Cantor set one can choose a clopen partition P = {P1, . . . , Pn} such that
every Pi ∈ P satisfies diam(Pi) < C. Given x 6= y ∈ X the expansivity implies
the existence of h ∈ H such that d(fh(x), fh(y)) ≥ C. Therefore the refinement
fh(P) ∨ P separates x and y. This means that P is a generating partition.

Let Xi = φ−1(Pi) and the continuous shift-commuting map φ̂ : X̂ →
{1, . . . , n}Z2oH where φ̂(x̂)(u,h) = i ⇐⇒ σ(u,h)(x̂) ∈ Xi. By definition

Y := φ̂(X̂) is a sofic (Z2 o H)-subshift. We claim its projective subdynam-

ics (πH(Y ), σ) are conjugate to (X, f). To see this define φ̃ : X → {1, . . . , n}H
such that φ̃(x)h = i ⇐⇒ x ∈ fh(Pi). Obviously φ̃ is continuous and as P
is generating, we have that φ̃ is injective. It is also clear by definition that
φ̃(X) = πH(Y ) and that φ̃ ◦ fh = σh ◦ φ̃. Therefore (X, f) is conjugate to
(πH(Y ), σ).

(X̂, σ) (X̂, σH)

(Y, σ) (πH(Y ), σ)

(X, f)

H-subaction

φ

φ̂

πH p. subd. φ̃

Figure 2: The diagram for the proof of Theorem 4.2.

Theorem 4.3. Let H be a finitely generated and recursively presented group.
For every effectively closed H-subshift Z there exists a sofic (Z2 oH)-subshift
Y such that its H-projective subdynamics πH(Y ) is Z.

Proof. Let S ⊂ H is a finite set such that 〈S〉 = H. Consider a recursive
bijection ϕ : N→ S∗ where S∗ is the set of all words on S. As H is recursively
presented, then its word problem WP(H) = {w ∈ S∗ | w = 1H} is recursively
enumerable and there is a Turing machine T which accepts a pair (n, n′) ∈ N2

if and only if ϕ(n) = ϕ(n′) as elements of H.
For simplicity, we suppose Z ⊂ {0, 1}G. Consider the map ρ : Z → {0, 1}N

where ρ(z)n = zϕ(n) where ϕ(n) ∈ S∗ is identified as an element of H. Consider
the set Ω = ρ(Z) and the H-action f : H × Ω → Ω defined as fh(ρ(z)) =
ρ(σh(z)). Clearly ρ is a conjugacy between (Z, σ) and (Ω, f). We claim that
(Ω, f) is an effectively closed H-dynamical system.

Indeed, let w ∈ {0, 1}∗. A Turing machine which accepts w if and only if
[w] ∈ {0, 1}N \ Ω is given by the following scheme: for each pair (n, n′) in the
support of w run T in parallel. if T accepts for a pair such that wn 6= wn′ then
accept w (this means that w did not codify a configuration in AZ as two words
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codifying different group elements have different symbols). Also, in parallel,
use the algorithm recognizing a maximal set of forbidden patterns for Z over
the pattern coding cw = (ϕ(n), wn)n≤|w|. This eliminates all w which codify
configurations containing forbidden patterns in Z. For f−1

s [w] just note that
the application n→ ϕ(s−1ϕ−1(n)) is recursive, thus f−1

s [w] can be calculated.
It suffices to apply Theorem 4.2 to (Ω, f) to obtain a sofic (Z2oH)-subshift Y

such that (πH(Y ), σ) is conjugate to (Z, σ) One can then extend this conjugacy
to act over Y in such a way to obtain a factor Ŷ of Y such that πH(Ŷ ) = Z.

In the case of a bigger alphabet A, we can code each a ∈ A as a word in
{0, 1}k and redefine ρ such that for z ∈ Z then ρ(z)n = (zϕ(bn/kc))n mod k. This
construction also defines a conjugated system (Ω, f) which is effectively closed.

We can describe this symbolic factor map in a simple way. Consider first
the case where the alphabet is {0, 1}. An explicit way to describe it is to force
the recursive bijection ϕ described above to satisfy ϕ(0) to be the empty word
coding 1H and notice that in the sofic subshift Final(Ω, f ′) the symbol z1H

is
therefore coded in the lattice containing x0 in each Z2-coset. It suffices to use a
big enough factor to recognize the first lattice in a Toeplitz layer and project to
the value x0 everywhere. In the case of a finite alphabet which is coded as words
in {0, 1}k it suffices to recognize the first k lattices and project the symbol they
code.

4.2 Existence of strongly aperiodic SFT in a class of groups
obtained by semidirect products

Next we show how these previous theorems can be applied to produce strongly
aperiodic subshifts of finite type. We say aG-subshift (X,σ) is strongly aperiodic
if the shift action is free, that is, ∀x ∈ X,σg(x) = x =⇒ g = 1G.

Theorem 4.4. Let H be a finitely generated group and (X, f) a non-empty
effectively closed H-dynamical system which is free. Then G ∼= Z2 oH admits
a non-empty strongly aperiodic SFT.

Proof. We begin by recalling the following general property of factor maps.
Suppose there is a factor φ : (X, f)� (Y, f ′). and let x ∈ X such that fg(x) = x.
Then f ′g(φ(x)) = φ(fg(x)) = φ(x) ∈ Y . This means that if f ′ is a free action
then f is also a free action.

By Theorem 3.1 we can construct the (Z2 oH)-SFT F̂inal(X, f) such that

(F̂inal(X, f), σH) is an extension of (X, f) via the factor φ1 = Υ◦π◦φ. We also

consider the factor φ2 = Sub(1,1)◦φ which sends F̂inal(X, f) first to Final(X, f)
and then to its Sub(1,1) layer.

Let y ∈ F̂inal(X, f) and (z, h) ∈ Z2oH such that σ(z,h)(y) = y. This implies
that φ2(y) = σ(z,h)(φ2(y)) = σ(z,1H)(σ(0,h)(φ2(y))). As we have seen in the proof
of Theorem 3.1, the action σ(0,h) leaves the lattices (Bm)m∈N of Sub(1,1) invariant
in the (Z2, 1H)-coset. Let M > ||z||2. Then σ(z,0) does not leave invariant the

lattice BM . This implies that z = ~0. Therefore, σ(~0,h)(y) = y. Applying φ1
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we obtain that fh(y) = y, and thus h = 1H . Therefore (z, h) = (~0, 1H) and

F̂inal(X, f) is strongly aperiodic. It is non-empty as X 6= ∅.

Theorem 4.4 requires the existence of a non-empty effectively closed free
dynamical system to conclude the existence of a non-empty strongly aperiodic
SFT. It is a non-trivial fact that these objects always exist when the word prob-
lem of the group is decidable. Furthermore, in the class of recursively presented
groups, non-empty effectively closed subshifts which are strongly aperiodic exist
if and only if the word problem of the group is decidable. This is proven in [4]
and can be formally stated as follows:

Lemma 4.5. Let H be a recursively presented group. There exists a non-empty,
effectively closed and strongly aperiodic subshift over H if and only if the word
problem of H is decidable.

The only if part of this proof is a theorem by Jeandel [14] and is basically
the fact that a strongly aperiodic subshift in a recursively presented group gives
enough information to recursively enumerate the complement of the word prob-
lem of the group. Conversely, the existence part of the proof of Lemma 4.5
relies on a proof by Alon, Grytczuk, Haluszczak and Riordan [1] which uses
Lovász local lemma to show that every finite regular graph of degree ∆ can
be vertex-colored with at most (2e16 + 1)∆2 colors in a way such that the se-
quence of colors in any non-intersecting path does not contain a square word.
Using compactness arguments this result is extended to Cayley graphs Γ(H,S)
of finitely generated groups where the bound takes the form 219|S|2 colors where
|S| is the cardinality of a set of generators of H. One can also show that the
set of square-free vertex-coloring of Γ(H,S) yields a strongly aperiodic subshift,
which is thus non-empty if the alphabet has at least 219|S|2 symbols. In the
case where H has decidable word problem, a Turing machine can construct the
sequence of balls B(1H , n) of the Cayley graph and enumerate a codification
of all patterns containing a square colored path. Therefore we obtain an effec-
tively closed, strongly aperiodic and non-empty subshift. Using the fact that H
is recursively presented one can apply the coding of Theorem 4.3 to the object
of Lemma 4.5 to obtain a free non-empty effectively closed H-dynamical system
(Ω, f ′). Applying Theorem 4.4 to this result allows us to state the following
corollary.

Corollary 4.6. Let H be a finitely generated group with decidable word problem,
then Z2 oH admits a non-empty strongly aperiodic SFT.

We remark that this corollary is an alternative proof to a construction done
by Ugarcovici, Sahin and Schraudner [21] showing that the discrete Heisenberg
group H admits non-empty strongly aperiodic SFTs. This falls directly from

our theorem as H ∼= Z2 oϕ Z for ϕ(1) =

(
1 1
0 1

)
. In their proof they use a

similar trick using as a base the Robinson tiling [20]. They use the lattices of
crosses in this object to match the different (Z2, 0)-cosets correctly to force a
trivial action in the Z direction and use a counter machine to create aperiodicity
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in the other direction. In our construction the Robinson tiling got replaced by
the substitutive subshifts Sub(a,b) which are able to match correctly the cosets
of any possible automorphism and the counter machine by the simulation of
the free H-dynamical system. We also remark that Corollary 4.6 answers some
open questions in their talk asking the same property for the Flip, Sol groups
and the powers of the Heisenberg group which can be represented as Z2 oϕ Z

for ϕ given by the matrices

(
0 1
1 0

)
,

(
1 1
1 0

)
and

(
1 n
0 1

)
respectively. The

only case in their list which is not solved is a two-dimensional Baumslag Solitar
group which we don’t know how to express as a semidirect product.

A theorem of Jeandel [14] says that for recursively presented groups G, the
existence of a non-empty strongly aperiodic subshift X ⊂ AG implies that the
word problem of G is decidable. We can extend this to the case of arbitrary
dynamical systems. This gives a deep relation between computability and dy-
namical properties.

Corollary 4.7. Let H be a recursively presented and finitely generated group.
There exists a strongly aperiodic effectively closed H-dynamical system if and
only if the word problem of H is decidable.

Proof. If the word problem of H is decidable, we can use the effectively closed
subshift constructed in [4] as an example. Conversely, Jeandel’s result implies
that if a recursively presented group admits a non-empty effectively closed and
strongly aperiodic subshift then it’s word problem is decidable. Using Theo-
rem 4.4 we can construct a strongly aperiodic subshift from any free effectively
closed H-dynamical system. Therefore the word problem of H is decidable.

4.3 A generalization and comments on the size of the ex-
tension

In this last portion we want to make explicit that the technique used in the
proof of Theorem 3.1 can be easily be generalized to the following context

Theorem 4.8. Let H be finitely generated group, d ≥ 2 and G = Zd oH. For
every H-effectively closed dynamical system (X, f) there exists a G-SFT whose
H-subaction is an extension of (X, f).

Indeed, instead of considering vectors in (Z/3Z)2 \ {~0} we use v ∈ (Z/3Z)d \
{~0} and d-dimensional substitutions sv defined analogously. The subshifts gen-
erated by these substitutions carry Zd-lattices and the configurations z ∈ Subv
can be described in the same way as before by lattices Bm(z). The Toeplitz con-
struction Top(X, f) stays the same but instead of just constructing Top(X, f)H

and Top(X, f)V we construct Top(X, f)ei for every canonical vector {ei}i≤d
where the 〈ei〉-projective subdynamics yields Top(X, f) and the configurations
are extended periodically everywhere else. The rest of the construction trans-
lates directly to this setting and Theorem 4.4 and Corollary 4.6 also hold.
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We also want to remark the following: Hochman’s theorem gives further
information about the extension. Formally, given an effectively closed Zd-
dynamical system. A Zd+2-SFT is constructed such that the Zd-subaction is
an almost trivial isometric extension (ATIE) of the Zd-dynamical system. An
extension (Z, fZ)� (Y, fY ) is an ATIE if we can interpolate a factor

(Z, fZ)� (Y, fY )× (W, fW )� (Y, fY )

such that (W, fW ) is an isometric action of a totally disconnected space, (Y, fY )×
(W, fW )� (Y, fY ) is the projection of the first coordinate (Z, fZ)� (Y, fY )×
(W, fW ) is almost everywhere 1−1, that is, it satisfies that the set of points with
unique preimage has measure 1 under any invariant Borel probability measure.

The idea behind the notion of ATIE is of an extension which is in a certain
sense “small”. It consists basically on adding a simple system (W, fW ) as a
product and then considering a measure equivalent action as the extension.
Many properties such as the topological entropy (at least for Zd-actions) are
preserved by taking ATIEs.

In our construction the only obstruction towards obtaining an ATIE is the
use of the simulation theorem of effectively closed Z-subshifts as projective sub-
actions of sofic Z2-subshifts. This theorem in its current state does not yield
an almost everywhere 1− 1 extension. The rest of the proof can be adapted to
obtain an ATIE, for instance, the substitutive layers can be coupled in a single
substitution to avoid the degree of freedom when either a or b are zero. Fur-
thermore, the substitutive layers and the Toeplitz structure can be factorized
in the isometric action as they are invariant under the H-subaction. Therefore,
the maps Υ◦π do not pose obstructions to obtaining an ATIE. Everything that
remains is the factor φ : F̂inal(X, f) � Final(X, f). Here the substitutive
layers don’t present a problem as they come from a primitive substitution with
unique derivation and thus Mozes’s theorem [18] gives the almost 1 − 1 SFT
extension. The only thing that remains is the aforementioned almost 1− 1 SFT
extension for Top(X, f)H and Top(X, f)V that could be obtained by refining
that simulation theorem.
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