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ABSTRACT. We study an abstract group of reversible Turing machines. In our model, each machine is
interpreted as a homeomorphism over a space which represents a tape filled with symbols and a head
carrying a state. These homeomorphisms can only modify the tape at a bounded distance around
the head, change the state and move the head in a bounded way. We study three natural subgroups
arising in this model: the group of finite-state automata, which generalizes the topological full groups
studied in topological dynamics and the theory of orbit-equivalence; the group of oblivious Turing
machines whose movement is independent of tape contents, which generalizes lamplighter groups
and has connections to the study of universal reversible logical gates; and the group of elementary
Turing machines, which are the machines which are obtained by composing finite-state automata and
oblivious Turing machines. We show that both the group of oblivious Turing machines and that of
elementary Turing machines are finitely generated, while the group of finite-state automata and the
group of reversible Turing machines are not. We show that the group of elementary Turing machines
has undecidable torsion problem. From this, we also obtain that the group of cellular automata (more
generally, the automorphism group of any uncountable one-dimensional sofic subshift) contains a
finitely-generated subgroup with undecidable torsion problem. We also show that the torsion problem
is undecidable for the topological full group of a full Z%-shift on a non-trivial alphabet if and only if
d=2.
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1. INTRODUCTION

This article is the extended version of the conference paper [4]. The main new results that did not
appear in the conference paper are that elementary Turing machines are finitely generated, and that
automorphism groups of uncountable sofic Z-shifts have finitely-generated subgroups with undecidable

torsion problem.

1.1. Turing machines and their generalization. Turing machines have been studied since the 30s
as the standard formalization of the abstract concept of computation. However, more recently, Turing
machines have also been studied in the context of dynamical systems. In [27], two dynamical systems
were associated to a Turing machine, one with a “moving tape” and one with a “moving head”. After that,
there has been a lot of study of dynamics of Turing machines, see for example [12, 7, 25, 16, 15, 21, 17].
Another connection between Turing machines and dynamics is that they can be used to describe
“effectively closed” zero-dimensional dynamical systems. A particularly interesting case is that of
subshifts whose forbidden patterns are enumerated by a Turing machine. These subshifts are called
effectively closed, or I1{ subshifts, and especially in multiple dimensions, they are central to the topic
due to the strong links known between SFTs, sofic shifts and I19-subshifts, see for example [20, 13, 3].
An intrinsic notion of Turing machine computation for these subshifts on general groups was proposed
in 2], and a similar study was performed with finite state machines in [38, 37].

In all these papers, the definition of a Turing machine is (up to mostly notational differences and

switching between the moving tape and moving head model) the following: A Turing machine is a
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function T': % x Q — %% x Q defined by a local rule fr: ¥ x Q — X x Q x {—1,0,1} by the formula

T(x,q) = (0~%2),q) if fr(zo,q) = (a,q", d),

where o: ©% — Y7 is the shift action given by 0%(z), = x._4, #o = a and Z|z\10p = ®|z\03- In this
paper, such Turing machines are called classical Turing machines. This definition (as far as we
know) certainly suffices to capture all computational and dynamical properties of interest, but it also
has some undesirable properties: The composition of two classical Turing machines — and even the
square of a classical Turing machine — is typically not a classical Turing machine, and the reverse of a
reversible classical Turing machine is not always a classical Turing machine.

In this paper, we give a more general definition of a Turing machine, by allowing it to move the head
and modify cells at an arbitrary (but bounded) distance on each timestep. With the new definition, we
get rid of both issues: With our definition,

e Turing machines are closed under composition, forming a monoid, and

e reversible Turing machines are closed under inversion, forming a group.
We also characterize reversibility of classical Turing machines in combinatorial terms, and show what
their inverses look like. Our definition of a Turing machine originated in the yet unpublished work of
M. Schraudner and the last author, where the group of such machines was studied on general subshifts
(with somewhat different objectives). The same definition was given in 1991 by Moore [33] under the
name “generalized shifts”.

These benefits of the definition should be compared to the benefits of allowing arbitrary radii in
the definition of a cellular automaton: If we define cellular automata as having a fixed radius of, say,
3, then the inverse map of a reversible cellular automaton is not always a cellular automaton, as the
inverse of a cellular automaton may have a much larger radius, see [11]. Similarly, with a fixed radius,
the composition of two cellular automata is not necessarily a cellular automaton.

We give our Turing machine definitions in two ways, with a moving tape and with a moving head,
as done in [27]. The moving tape point of view is often the more useful one when studying one-step
behavior and invariant measures, whereas we find the moving head point of view easier for constructing
examples, and when we need to track the movement of multiple heads. The moving head Turing
machines are in fact a subset of cellular automata on a particular kind of subshift. The moving tape
machine on the other hand is a generalization of the topological full group of a subshift, which is an
important concept in particular in topological dynamics and the theory of orbit equivalence. For the
study of topological full groups of minimal subshifts and their interesting group-theoretic properties,
see for example [18, 19, 22]. The (one-sided) SFT case is studied in [32]. We shall show that our two
Turing machine models yield isomorphic monoids, and isomorphic groups in the case of reversible

Turing machines.

1.2. Our results and comparisons with other groups. In Section 2, we define our models and
prove basic results about them. In Section 2.3, we define a natural uniform measure on these spaces
and use it to show that injectivity and surjectivity are both equal to reversibility in our model.

Our results have interesting counterparts in the theory of cellular automata: One of the main
theorems in the theory of cellular automata is that on a large class of groups (the surjunctive groups,
see for instance [9, Chapter 3]) injectivity implies surjectivity, and (global) bijectivity is equivalent
to having a cellular automaton inverse map. Furthermore, one can attach to a reversible one- or
two-dimensional cellular automaton its “average drift”, that is, the speed at which information moves

when the map is applied, and this is a homomorphism from the group of cellular automata to a subgroup
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of Q¢ under multiplication (where d is the corresponding dimension), see [23]. In Section 3 we use the
uniform measure to define an analog, the “average movement” homomorphism for Turing machines.

In Section 3, we define some interesting subgroups of the group of reversible Turing machines. First,
we define the local permutations — Turing machines that never move the head at all —, and their
generalization to oblivious Turing machines where movement is allowed, but is independent of the tape
contents. The group of oblivious Turing machines can be seen as a kind of generalization of lamplighter
groups. It turns out that the group of oblivious Turing machines is finitely generated. Our proof relies
strongly on the existence of universal reversible logical gates, see [1].

We also define the group of (reversible) finite-state machines — Turing machines that never modify
the tape. This group is not finitely generated, but we give a natural infinite generating set for it.
Finite-state machines with a single state exactly correspond to the topological full groups of full shifts,
and in this sense our definition of a reversible finite-state machine can be seen as a generalization of
the topological full group on a full Z%-shift.

Our original motivation for defining these subgroups — finite-state machines and local permutations —
was to study the question of whether they generate all reversible Turing machines. Namely, a reversible
Turing machine changes the tape contents at the position of the head and then moves, in a globally
reversible way. Thus, it is a natural question whether every reversible Turing machine can actually
be split into reversible tape changes (actions by local permutations) and reversible moves (finite-state
automata).

We call the join of finite-state machines and local permutations elementary Turing machines, and
show that not all Turing machines are elementary, as Turing machines can have arbitrarily small average
movement, but elementary ones have only a discrete sublattice of possible average movements. However,
we show that every reversible classical Turing machine (and thus all its iterates) is elementary.

A reason why elementary Turing machines are so interesting is that, while we show that the group
of reversible Turing machines is not finitely generated (Theorem 3.11), we have that the group of
elementary Turing machines on a one-dimensional tape is finitely generated, for any fixed alphabet size

and number of states.

Theorem 1.1. The group of elementary Turing machines on n symbols, k states and dimension 1 is

finitely generated for every n,k > 1.

In Section 4, we show that the group of Turing machines is recursively presented and has a decidable
word problem, but that its torsion problem (the problem of deciding if a given element has finite order)
is undecidable in all dimensions. In fact, we show that the finitely-generated group of elementary
Turing machines has an undecidable torsion problem in the purely group-theoretic sense. The proof is
based on simulating classical Turing machines with elementary ones on a fixed alphabet and state set,
with a simulation that preserves finite orbits. The result follows because the periodicity of reversible

Turing machines is undecidable [25].

Theorem 1.2. The torsion problem of the group of elementary Turing machines on n symbols, k states

and dimension d is undecidable for everyn =2, k=1 and d > 1.

As an application of the former result, we obtain that there is a finitely-generated group of reversible
cellular automata on a full shift (thus on any uncountable sofic shift), which has undecidable torsion
problem. This follows from an “almost-embedding” of the group of Turing machines into the group of
cellular automata — there is no actual embedding for group-theoretic reasons, but we show that the

almost-embedding we construct preserves the decidability of the torsion problem.



Corollary 1.3. Let X be an uncountable sofic Z-subshift. Then there is a finitely generated subgroup
of Aut(X) which has undecidable torsion problem.

For finite-state machines, we show that the torsion problem is decidable in dimension one, but is
undecidable in higher dimensions; again we construct a finitely-generated subgroup where the problem
is undecidable. The proof in the one-dimensional case is based on a simple pigeonhole argument, while
in the higher-dimensional case undecidability is a corollary of the undecidability of the snake tiling
problem [24].

Theorem 1.4. Consider the group G of finite-state machines on n = 2 symbols, k > 1 states and
dimension d = 1,
(1) The torsion problem of G is decidable if d = 1.

(2) G contains a finitely generated subgroup with undecidable torsion problem when d = 2.

Furthermore, we show that the decidability result holds for finite-state machines running on an
arbitrary sofic subshift and that in fact their finiteness problem is decidable meaning we can decide
whether a given finitely-generated subgroup is finite or not (which implies the decidability of their
torsion problem). As a special case of our results, we obtain the following statement about topological

full groups.

Corollary 1.5. Let d > 2. The topological full group of a full Z*-shift on at least two symbols contains

a finitely generated subgroup with undecidable torsion problem.

We note that our group is very similar to the Brin-Thompson group 2V [6, 5], the main difference
being that elements of 2V can erase and add symbols to the tape; indeed, the group of reversible
Turing machines on an alphabet with 2 symbols and 1 state can be seen naturally as a subgroup of
2V, consisting of elements that do not use this addional functionality. Our group is not isomorphic to
any of the Brin-Thompson groups nV, as they are finitely generated. Thompson’s V has a decidable
torsion problem, but that of 2V is not, also due to the undecidability of periodicity of reversible Turing

machines.

1.3. Preliminaries. In this section we present general definitions and fix the notation which is used
throughout the article. The review of these concepts will be brief and focused on the dynamical aspects.
For a more complete introduction the reader may refer to [30]. Throughout this article we shall define
several monoids and groups that come from Turing machines. In order to make it easier for the reader
to recall these notations, we have added a dictionary in Appendix A, where these definitions can be
found along with short descriptions and references to where they are defined.

We restrict our setting to finitely generated and torsion-free abelian groups Z%, although, just like
with cellular automata [9], the idea of a Turing machine directly generalizes to general groups. All of
the results of this and the following section directly generalize for arbitrary countable groups G in place
of Z4.

Let A be a finite alphabet. The set AZ" = {z: Z¢ — A} equipped with the shift action o: Z% x AZ
A% defined by (0%(x))a = xg_g is a full shift. Thus ¥ shifts cell contents in direction 7, or equivalently
moves the origin of x to —%. The elements a € A and z € AZ" are called symbols and configurations
respectively. Configuration x € AZ" s periodic if ¢7(z) = z for some non-zero ¥ € Z4, and it is
eventually periodic if there exists a periodic configuration y € AZ* that differs from only in finitely
many positions. The set of configurations AZ" endowed with the prodiscrete topology (that is, the
product topology obtained from taking the discrete topology on A) is a compact metrizable space,
a generating metric being given by d(z,y) = 2~ "7l : 7eZ’, 252y} where |0] is the taxicab norm

~ d |~
0] = 2y 13-



This topology has the sets [a]z = {z € AL xp =ae A} as a subbasis. A support is a finite
subset F' < Z¢. Given a support F, a pattern with support F is an element p of A”. The cylinder
generated by p in position ¥ is [plg = (\zep[pilo+a. For simplicity, we write [p] = [p];.

Definition 1.6. A subset X of AL s a subshift if it is topologically closed and o-invariant, that is,
for every v e Z¢ we have o”(X) c X.

Equivalently, X is a subshift if and only if there exists a set of patterns F that defines it:
X= 1 A"\l
peF,TeZ
Any such F which defines X is called a set of forbidden patterns for X.

For a subshift X < A%" and a finite support F = Z¢ we define the language L r(X) of support F
of X as the set of patterns p € A" such that [p] n X # @. The language of X is the union L(X) of
Lr(X) over all finite F' = Z%. We denote p C X iff p e L(X). For an individual configuration x e AP
we denote p C z iff € [p]y for some ¥ € Z?, and we say that pattern p occurs in .

Let X,Y be subshifts over alphabets .4 and B respectively. A continuous Z%-equivariant (i.e. shift-
commuting) map ¢: X — Y between subshifts is called a morphism. A well-known theorem of Curtis,
Hedlund and Lyndon which can be found in full generality in [9] asserts that morphisms are equivalent
to maps defined by local rules as follows: There exists a finite ' < Z¢ and ®: A" — B such that for
every v € X, ¢(z)5 = ®(07%(z)|r). If ¢ is an endomorphism (that is, X = Y') then we refer to it as a
cellular automaton. A cellular automaton is said to be reversible if there exists a cellular automaton
¢~ ' such that po ¢! = ¢! 0 ¢ = id. It is well known that reversibility is equivalent to bijectivity, see
Section 1.10 of [9].

Throughout this article we use the following notation inspired by Turing machines. We denote by
Y ={0,...,n—1} the set of tape symbols and Q = {1,..., k} the set of states. We also use the symbols
n = |X| for the size of the alphabet and k = |Q| for the number of states. Given a function of the form
f:Q—> Ay x...x A, we denote by f;: Q@ — A; the projection of f to the i-th coordinate.

2. TWO MODELS FOR TURING MACHINE GROUPS

In this section we define our generalized Turing machine model, and the group of Turing machines.
In fact, we give two definitions for this group, one with a moving head and one with a moving tape
as in [27]. We show that — except in the case of a trivial alphabet — these groups are isomorphic.!
Furthermore, both can be defined both by local rules and “dynamically”, that is, in terms of continuity
and the shift action. In the moving tape model we characterize reversibility as preservation of a suitably

defined measure.

2.1. The moving head model. In the moving head model, we will represent our space as I Q=77
That is, the product of the set of configurations ZZd, a set of states () and the possible positions of a
head Z?. The objects of this space are therefore 3-tuples (z,q, ). In order to write this in a shorter
manner, we use the notation xg instead of (z,q, 7).
Given a function
f: oo Q - nfout x Q x 79,
where Fi,, Fout are finite subsets of Z?, we can define a map T Y2 % Q x 74 — £ x Q x Z% as follows:
given J;g e Y2 x Q x 7 let p = o~ %(x)|p, and f(p,q) = (p,G,w). Then we define Tf(xg) = ig*w

where for i € Z%:

INote that the dynamics obtained from these two definitions are in fact quite different, as shown in [27, 28].
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Definition 2.1. A function T for which there is an f: L5 x Q — LFou x Q x Z% such that T = Ty
is called a moving head (Z¢,n,k)-Turing machine, and f is its local rule. If there exists a
(Z2,n, k)-Turing machine T~" such that ToT~' = T~ oT = id, we say T is reversible.

This definition corresponds to classical Turing machines with the moving head model when d = 1,
Fiy = Fout = {0} and the third component of f(z,¢) is in {—1,0,1} for all ,q. An illustration of how a
moving head Turing machine acts can be seen in Figure 1. Note that 0~7(x)|r is the F-shaped pattern

hrob)

“at ¥”. We do not write x|z, r because we want the pattern we read from z to have F as its domain.

Note that one of these machines could be defined by several different local functions f, and that the
projection to the third coordinate f3 of f has finite range. Also, given f: L x Q — NFowr x Q x Z¢
we can define F' = F},, U Foyp U f3(3F x Q) and f/: B x Q — BF x Q x F such that Ty =Ty This
motivates the following definition: The minimal neighborhood of T is the minimum set for inclusion
F for which there is f: X x Q — B x @ x F such that T' = Ty. This minimum always exists as the
set of finite subsets of Z? which work for this definition is closed under intersections.

As Z4 is finitely generated, we can also use a numerical definition of radius in place of the neighborhood:
Let B(#,7) be the set of i € Z? such that |i — @] < r. By possibly changing the local rule f, we can
always choose F}, = B(O, r;) and Fyyy = B(O, ro) for some r;,7, € N, without changing the Turing
machine T it defines. The minimal such r; is called the in-radius of 7', and the minimal r, is called
the out-radius of T. We say the in-radius of a Turing machine is —1 if there is no dependence on
input, that is, the neighborhood B(0¢,7;) can be replaced by the empty set. The maximum value of |7
for all 7€ f3(XF x Q) is called the move-radius of T'. Finally, the maximum of all these three radii is
called the radius of T'. In this terminology, classical Turing machines are those with in- and out-radius

0, and move-radius 1.

f('a QI) = (02, q2, (la 1)) Fiy = Fou = {(an)a (170)’ (17 1)}

FIGURE 1. The action of a moving head machine 7.

Definition 2.2. We denote by TM(Z?, n, k) the set of (Z%,n, k)-Turing machines and RTM(Z%, n, k)

the set of reversible (Z¢,n, k)-Turing machines.

In some parts of this article we just consider d = 1. In this case we simplify the notation and just
write RTM(n, k) = RTM(Z,n, k) and TM(n, k) = TM(Z,n, k). Of course, we want TM(Z9,n, k) to
be a monoid and RTM(Z?,n, k) a group under function composition. This is indeed the case, and

one can prove this directly by constructing local rules for the inverse of a reversible Turing machine
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and composition of two Turing machines. However, it is easier to extract this from the following
characterization of Turing machines as a particular kind of cellular automaton.
Let X}, be the subshift with alphabet Q U {0} such that in each configuration the number of non-zero

symbols is at most one.
X ={xe {O,l,...,k‘}Zd :0¢ {xg, x5} = U=7}.

In the case where k = 1 this subshift is often called the sunny-side-up subshift. The name comes
from [34] as a reference to the shape of an egg prepared in that manner. We note that X is also called
the “at-most-one-one-subshift” in [10]. Notice that Xy = {OZd} consists of a single configuration and for
non-negative integers i < j we have X; ¢ X;. Let also X, ;, = Y2 x X &, where recall that we always
set ¥ = {0,...,n—1}. For the case d = 1, configurations in X, , represent a bi-infinite tape filled with
symbols in ¥ possibly containing a head that has a state in (). Note that there might be no head in a
configuration.

More precisely, we interpret X, ; as the compactification of N2« Q x Z¢ by identifying xg =
(z,q,7) € N2 x Q x Z¢ with the point (z,y) € X, x, where yz = ¢ and yz = 0 for @ # ¥. In other
words, we add the possibility of having no head. We can now interpret Turing machines as functions on
X,k in the following way: For (x,y) € X, x, if there is no ' € Z? such that yz # 0 then T'(z,y) = (,y).
Otherwise apply T through the natural bijection.

For a subshift X, we denote by End(X) the monoid of endomorphisms of X and Aut(X) the group
of automorphisms of X. Next we will argue that Turing machines with n symbols and k states can be
seen as endomorphisms of X, . Continuity follows essentially from the fact that Turing machines only
modify configurations near the head based on the symbols around it. Furthermore, since the shift moves
both the configuration and the head by the same amount, it follows that Turing machines commute

with the shift. For the convenience of the reader, we provide a formal proof in the following lemma.
Lemma 2.3. Every T € TM(Z%,n, k) induces a continuous and shift-invariant map on X k-

Proof. Let T € TM(Z%,n,k) and let f: 3F x Q@ — S x Q x F be such that T = Ty. Clearly T
commutes with the shift on X, ¢ since it acts as the identity map. Let then xg € Xn 1\ Xn0-

Let p = o~ %(2)|r and f(p,q) = (p,G,@). Then by the definition of Ty we have Ty(xl) = :Tcg“i where

Tg 1fﬁ*17¢F

81
)
Il

Pa—yg HUu—UeF

q
o (2)I*%. Let y = 0”(z) and ¥’ = T+ & so that Ty(o"(a2)) = Tf(yg/). Let p' = 0=7 (y)|r and note
that

Now, let us consider the application of Tt to Uw(xg). By the definition of o we have o (z%) =

Pp=0"W)a=yare = 0 (@)ire = Tarr—i = Tars =0 (T)g
for all ii € F so p' = p. We have thus f(p',q) = f(p,q) = (§,4,%). Then by definition we have
Ty(yl) = gjg*ﬁ where

‘We have to show that

gg'Jr{Z _ O_E(jl?ru) _ a’ﬁ(i‘)g*{”w.
By definition, @ + @ = ¥ 4 @ + 4. We now show § = 0¥ (%), that is, jz = Zg_g for all @ € Z<.
On the other hand ¢%(%)z = Tg_@ =

g
Zg_5 where the last equality follows from the definition of Z because @ — W — 0 =4 — 7' ¢ F.
7
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Suppose then that @ — @ € F. Then §z = pg_w. As above, by the definition of & we have
U—W—T=U—V €F 80 &g_g = Pa—w—v = Pa—w- This concludes the proof that Ty commutes with
the shift.

Take m > 1 and choose some r such that F' = [—r,r]?. Given any (z,¢) € X, 1, we have
by definition of T that the values Tt (x,c)|[_pm,m]¢ depend exclusively on the values of (x,c) in
[-m,m]¢ + F < [-m —r,m + r]¢, from where it follows that d(Ty(z,c), Tf(2',c’)) < 2™ whenever

d((z,c), (2',¢)) < 27(m+7) thus T} is continuous. O

From the previous argument it follows that Turing machines are cellular automata on X, . We can
make this identification precise if we add the property that “the configurations are only modified near

a head”. This is the content of the following proposition.
Proposition 2.4. Let n,k be positive integers and Y = X,, 9. Then:

TM(Z%, n, k) = {¢ € End(X,, 1) : ¢y = id, ¢~ (V) = Y}

)

RTM(Z%, n, k) = {¢ € Aut(X,, 1) : dly = id}.

Proof. Consider a Turing machine T € TM(Z?,n, k) seen as a function on X,, ;. By Lemma 2.3 we
have that T' € End(X,, ;). Also, T acts trivially on X,, o so T'|y = id and if a configuration has a head,
it can only be shifted but not disappear, thus 7-'(Y) = Y. Moreover, if T € RTM(Z%,n, k), then T
has a Turing machine inverse, thus a cellular automaton inverse, and it follows that T e Aut(X,, ).

Conversely, let ¢ € End(X,, ), so that ¢(z,y)5 = ®(c%(x,y)|r) for some local rule ®: (3 x
{0,..., k¥ - X x {0,...,k} and F a finite subset of Z?, where we may suppose 0 € F.

As ¢|y =id, we can deduce that ®(u,v) = (u,v)g if v = 0. Therefore if (z,y) € Xy k, ys # 0 and
we define Wy = {1 : v € © + F} = ¥ — F we get that ¢(z,y)|zew, = (z,9)|ze\w,. We extend @ to
P (Zx{0,....,kH)"WotF — (£ x {0,...,k})"o by pointwise application of ®. Note that W5 = —F.

We can then define f,: £F~F x Q — LF x Q x Z% by using & as follows: We set fs(p,q) = (', ¢, Q)
if, after defining r € {0,...,k}*" =% such that r5 = ¢ and 0 elsewhere, we have <T>(p, r) = (p/,r') and
" €{0,...,k}~F contains the symbol ¢’ # 0 in position @ (there is always a unique such position i as
¢~1(Y) =Y). It can be verified that the Turing machine T, is precisely ¢, therefore ¢ € TM(G, n, k).

If ¢ € Aut(X,, 1) then ¢~1(Y) DY is implied by ¢|y = id, and since the inverse automorphism ¢—*
satisfies ¢~!|y = id as well, we also have ¢~ 1(Y) < Y. Thus, ¢ is a Turing machine. Similarly, the

inverse map ¢! is a Turing machine. Thus, in this case ¢ € RTM(Z?, n, k). O

Alternatively, in the previous statement we can just write TM(Z¢,n, k) = {¢ € End(X,, 1) | ¢|y =
id,p~1(Y) = Y}, since ¢~1(Y) oY is implied by ¢|y = id.

Corollary 2.5. Let ¢ € TM(Z% n, k). We have that ¢ € RTM(Z,n, k) if and only if ¢ is bijective.

Readers familiar with the theory of cellular automata may wonder if injectivity is enough, since
injective cellular automata on full shifts are surjective. This is not a priori clear since cellular automata
on nontransitive sofic shifts (such as X, ;) can be injective without being surjective. We will, however,
later prove the stronger result that both injectivity and surjectivity are equivalent to bijectivity.

Clearly, the conditions of Proposition 2.4 are preserved under function composition and inversion.
Thus:

Corollary 2.6. Under function composition, (TM(Z%,n, k), o) is a monoid and (RTM(Z%,n, k),0) is

a group.

We usually omit the function composition symbol, and use the notations TM(Z%, n, k) and RTM(Z?, n, k)

to refer to the corresponding monoids and groups.
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An important corollary of Proposition 2.4 is that every result we prove about Turing machine groups
says something about cellular automata. In particular, if a group H embeds into RTM(Z, n, k), then
H also embeds into Aut(X,, ), which implies that there exists a one-dimensional sofic subshift whose
automorphism group contains H.2

Before defining the second model for Turing machines, we introduce an extended model which will
be occasionally used in what follows. Given a subshift X < ¥Z* we denote the set of moving-head
(Z%, n, k)-Turing machines f which satisfy f(X x X3) € X x X;, by TM(X, k) (where we omit the
group from the notation, since it is determined by X). And the set of reversible ones by RTM(X, k).
This change basically amounts to replacing the full shift 32" in the definition by an arbitrary subshift X.
This will be used to make explicit which properties from X are required for our results, though our focus
is on the case where X = %2 in which RTM(X%, k) = RTM(Z?, n, k) for || = n. Proposition 2.4 is
still valid in this extended context.

One use of this generalization is that it allows us to study Turing machines on a more robust class of
subshifts than just full shifts. For example, when studying Turing machines on transitive SFTs rather

than full shifts only, states can be eliminated, due to the following lemma.

Definition 2.7. Let X < X% be a subshift and # ¢ . Write 3/X for the shift space with points

{xe (X U{#)?%: there are k€ {0,...,n — 1} and y € X such that for every m € 7Z,

(Zmn+k = Ym and for every j € {0,...,n — 1}\{k} we have Tpny; = #)}.

The subshift ¥/ X is the space of configurations on Z where some configuration of X occurs on a

coset of nZ and the rest of the positions are filled with a special symbol #.

Lemma 2.8. Let X c A% be a subshift. Then TM(X, k) is isomorphic to TM(X/X,1) as a monoid
and RTM(X, k) is isomorphic to RTM({Y/X,1) as a group.

Proof. As the monoid of Turing machines can be seen as a submonoid of endomorphisms of a subshift,
it follows that they commute with the shift. More precisely, for each machine T and m € Z if we
interpret T acting on X x X}, by endomorphisms, then we have that ¢ o T o 0~™ = T'. In particular,
as non-# symbols appear at a bounded distance in each configuration of TM(\"/Y , 1), it suffices to
define a Turing machine in (¥/X\[#]o) x {1} x Z to completely determine its action over ¥/X x {1} x Z.

Let ¢0: X — /X be defined by
#, if 4 £ 0 mod k, and
P(z); = {

Ti/k, otherwise.

Note that 1 defines a 1-to-1 map onto v/ X\[#]o.

Also, define n: Z x Q — Z by n(¥,q) = kU + ¢ — 1 which is clearly bijective. We can thus finally
define a bijection 8: X x Q x Z — (VX\[#]o) x {1} x Z by §(z¥) = ¢(2)7".

Now, given a machine 7 € TM({/X, 1) we define ¢(T) € TM(X, k) by ¢(T) = 6~* o T 0. Note
that this is well-defined since T'e TM(4/X, 1) implies that T(&/X\[#]o x X1) = ¥/X\[#]o x X again
because non-#-symbols appear with bounded gaps, and since T is the identity map on points where
the head does not appear. By definition it is then clear that (T o T") = p(T) o o(T") and that ¢ is
1-to-1. We only need to show that ¢(T') € TM(X, k) and that ¢ is onto.

2In Section 4.3, we show that RTM(Z, n, k) also “almost” embeds into Aut(3Z).
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Firstly, it is clear that 6 1 0T o6 maps X x Q x Z to itself, therefore the head cannot disappear.
We have that § o 0™ = 0¥ o § and thus ¢(T) is shift commuting.

o(T)oo™ =6"1oTodoo™
— 5 loToo"™ o4
=5 lootmoT o8
=m0 oTo§
= o™ o p(T).

Since § and T are continuous, and §~! is continuous on the image of &, we have that ¢(7') is continuous
and shift invariant and therefore defines an endomorphism of X x X}, which is an element of TM(X, k).
Conversely, an analogous argument shows that for each 7' € TM(X, k) then the map T' defined as
T' =50Tod " on V/X\[#]o x {1} x Z (and by conjugating with a suitable power of & on other points)
is in TM(/X, 1) and thus ¢(7") = T, showing that ¢ is onto.

Finally, if T'e RTM(4/X,1) then ¢(T) o o(T~!) = id and thus ¢(T) € RTM(X, k). O

2.2. The moving tape model. Even though the moving head model is helpful when building examples,
it has a fundamental disadvantage: the space on which the machines act is not compact. From an
intuitive point of view, it means that a sequence of Turing machines could potentially move the head
to infinity and make it disappear. Or alternatively, in the point of view of seeing Turing machines as
endomorphisms as in Proposition 2.4 (which usually, e.g. in Kirka [27], is directly what the moving
head model refers to), the space is compact, but there are uncountably many points that do not quite
represent Turing machine configurations.

It’s also possible to consider the position of the Turing machine as fixed at 0, and move the tape
instead, to obtain the moving tape Turing machine model. In [27], where Turing machines are studied
as dynamical systems, the moving head model and moving tape model give non-conjugate dynamical
systems. However, the abstract monoids defined by the two points of view turn out to be equal, and we
obtain an equivalent definition of the group of Turing machines.

As in the previous section, we begin with a definition using local rules.

Given a function f: £Fin x Q — LFfowt x Q x Z9¢, where Fi,, F,u are finite subsets of Z¢, we can
define a map T : Nz« Q— N2 % Q as follows: If f(z|r,,q) = (p,q, V), then Ty(x,q) = (¢~ (y),q)

where

Tigs 1fﬂ¢ Fout
Ya =

pg, if U€ Fyy,

Definition 2.9. Any function T': N2 % Q — nZ° % Q for which there is an f as above such that
T =Ty is called a moving tape (Z¢,n, k)-Turing machine and f is its local rule. If there exists a
(Z%,n, k)-Turing machine T~ such that To T~ = T~ oT =id we say T is reversible.

These machines also have the following characterization with a slightly more dynamical feel to it.
Say that two configurations x and y in Y2 are asymptotic (also called homoclinic in the literature),
and write z ~ v, if there exists a finite F' — Z% such that T|za\p = Ylza\p. In order to be more specific,

we write x ~p y to claim that a particular choice of F' satisfies the property.

Lemma 2.10. Let T: $2° x Q— DI Q be a function. Then T is a moving tape Turing machine if

and only if it is continuous, and there exist a continuous function s: DI Q — Z% and a finite F c 7.2

such that Ty (z,q) ~p o*®9 (z) for all (z,q) € Y20 % Q.
10



FIGURE 2. The action of a moving tape machine TY%.

Proof. Tt is easy to see that Ty for any local rule f: $fin x Q — XFour x Q x Z? is continuous. The
projection to the third component of f gives the function —s, and one can take F' as the minimal
neighborhood of T%.

For the converse, since s is a continuous function from a compact space to a discrete one we conclude
that the image of s is bounded. Furthermore it only depends on a finite set Fj of coordinates of x.
Since T is continuous, T'(z, q)\F+s(EZd Q) depends only on a finite set of coordinates Fy of x. It is then

easy to extract a local rule
f: EFOUFl ~ Q N EF*S(EZdXQ) « Q % Zd,
for T. O

We call the function s in the definition of these machines the shift indicator of T, as it indicates
how much the tape is shifted depending on the local configuration around 0. In the theory of orbit
equivalence and topological full groups, the analogs of s are usually called cocycles. Note that in the
definition using local functions, the third coordinate of the image indicates how much the head moves,
while the shift indicator shows how the configuration shifts, hence the minus sign next to s in the above

proof.

Remark 2.11. In the previous lemma it is not enough that T} (z, q) ~ o9 (z) for all (z,q) € N2 % Q,
we need the configurations to be uniformly asymptotic to each other (with a fixed F' < Z4). Indeed, let
Q = {1} and consider the function T': ¥ x Q — %% x Q defined by (T3 (x,1)); = x—; if @[_j;)11,1i)-1] =
0?1 and {z;,7_;} # {0}, and (T1(x,1)); = z; otherwise. Clearly this map is continuous, the constant
map s(x,q) = 0 gives a shift-indicator for it and T} (z,q) ~ z for every = € D However, T is not

defined by any local rule since it can modify the tape arbitrarily far from the origin.

As for moving head machines, it is easy to see (either by constructing local rules or by applying the
dynamical definition) that the composition of two moving tape Turing machines is again a moving tape

Turing machine. This allows us to proceed as before and define their monoid and group.

Definition 2.12. We denote by TMgy(Z%,n, k) and RTMgy(Z%,n, k) the monoid of moving tape
(Z%,n, k)-Turing machines and the group of reversible moving tape (Z%,n, k)-Turing machines respec-

tively.

Now, let us show that both models are equivalent in group-theoretical terms. First, we define the
natural monoid epimorphism W: TM(Z%, n, k) — TMg,(Z¢,n, k) that shifts the configurations so that

the head remains at the origin:

11



Definition 2.13. Let T € TM(Z%,n, k). We define ¥(T) € TMgy(Z%,n, k) as the moving tape Turing
machine such that
U(T)(x,q) = (o (y),r) when T(z) = yy.

In other terms, define the shift equivalence relation = on the moving head space ¥Z % Q x 7¢
by xg = Uﬁ(az)g“7 for all z € ¥2°, g € Q and @, ¥ € Z%. Then for T € TM(Z%,n, k), ¥(T) is the
action induced by T on the quotient DIZEN Q x Z%/=. Note that for any two =-classes U and V, if
T(U) c V then T|y: U — V is a bijection. As we shall see, this shows that ¥ preserves injectivity

and surjectivity of Turing machines.
Proposition 2.14. T is injective (surjective) if and only if W(T') is injective (surjective, respectively).

Proof. If T is not injective then T'(c1) = T'(cq) for some ¢; # co. Because T is injective in each =-class,
¢1 # co. Hence there are two distinct =-classes with the same image so that U(T') is not injective.
Conversely, if U(T') maps two distinct =-classes into the same class, there are ¢; # ¢y such that
T(c1) = T(c2). Because T is surjective in =-classes, there is ¢| = ¢; such that T(¢}]) = T(c2), so T is
not injective.

If T is surjective then clearly every =-class has a pre-image so that W(T) is surjective. And if ¥(7T)
is surjective then every =-class has a pre-image, and because T is surjective in =-classes, every element

of every =-class has a pre-image, that is, T' is surjective. O

The function ¥ is clearly always a monoid epimorphism. It is not injective in the trivial case
n = 1: Indeed, we have that RTMg,(Z?, 1, k) is isomorphic to the symmetric group on k symbols, and
TMjsy(Z%, 1, k) is isomorphic to the monoid of all functions from {1,...,k} to itself, i.e. the symmetric
monoid on {1, ..., k}. Therefore both of these groups are finite when n = 1. On the other hand, clearly
7% embeds into RTM(Z?, 1, k) and TM(Z%, 1, k) as the shifts are non-trivial elements of these monoids.
Next, we show that in most other cases ¥ is injective.

Intuitively, in order to also have Z¢ embed into the monoid of moving tape Turing machines, we
need the configuration space to admit configurations with a certain degree of aperiodicity. We shall see
that this is indeed the only obstruction and obtain as a corollary that for every n > 2 the map ¥ is an

isomorphism.

Definition 2.15. A subshift X 2% is said to be locally aperiodic if for every x € X, every finite

F < 7% and every non-zero v € Z% there exists y € [x|r] such that ygz # ysrq for some i € 74,

For example, the sunny-side-up subshift X; < {0, 1}% is locally aperiodic because every non-empty
cylinder contains a configuration with exactly one occurrence of 1, and such a configuration is non-
periodic. But this means that the morphism W of Definition 2.13 is not necessarily injective even on
reversible Turing machines over locally aperiodic subshifts. Consider, for example, the single state
machine T' € TM(X1, 1) that maps, for some fixed ¥ € Z,

g ac(lj, if zg =0,

{ o)y, ifxe=1.
This machine shifts the configuration and the position by ¢ if the cell under the head contains the
unique 1 of the configuration, and does not do anything if the cell contains symbol 0. The Turing
machine is clearly reversible, and ¥(T') is the identity regardless of the choice of vector v.

To guarantee injectivity of ¥ we define an even more restrictive variant of local aperiodicity:

Definition 2.16. A subshift X c ¥Z* s strongly locally aperiodic if for every v € X, every finite
F < Z¢ and every non-zero v € Z% there exists y € [x|r]| such that ygz # ygiz for some i@ such that
U, u+v¢F.
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Obviously X = {0,...,n — 1}Zd is strongly locally aperiodic whenever n > 2. With this definition

we have the following.

Lemma 2.17. Let X < 27 be strongly locally aperiodic. We have that
TMiax (X, k) = TM(X, k)
RTMisx (X, k) =~ RTM(X, k).

Proof. Consider again the epimorphism W: TM(Z9, n, k) — TMgy(Z%, n, k) and suppose there exists a
pair T' # T" in TM(X, k) such that U(T) = ¥(7"). Let mg be such that T(a:g) # T’(xg). Denoting by
W = F U F’ the union of the neighborhoods F' of T and F’ of T" we get that T and T’ can be described
by rules of the form fr(z|w,q) = (p,r,v) and fr:(z|w,q) = (p’,r’,v"). Denote by zp, and x[,] the
configuration where the symbols of x in the support W have been replaced by p and p’ respectively.
Clearly W(T') = ¥(T") implies that r = ¢ and o~ (z[,)) = o7 (T[p)-

If ¥ = ¢ then also x[, = x[y], which contradicts T(mg) # T’(xg). So we must have ¥ # . As
X is strongly locally aperiodic, there exists y € [z|w] such that yz # y;, 5 _; for some position
i that satisfies @, @ + v — 7 ¢ W. As ylw = x|w, we have that ¥(T)(y,q) (67 (ypp)),r) and
U(T)(y,q) = (= (Y[p1)>7')- Then U(T) = ¥(T”) implies that yp,) = o= (Y[p7), Which is not true in

position . O

—U

A non-trivial full shift X2 is strongly locally aperiodic, and thus Lemma 2.17 gives the following

corollary.
Corollary 2.18. Ifn > 2 then:

TMgy (Z%, n, k) = TM(Z4,n, k)
RTMg, (Z%,n, k) = RTM(Z%, n, k).

The previous result means that apart from the trivial case n = 1 where the tape plays no role, we

can study the properties of these groups using any model.

2.3. The uniform measure and reversibility. Consider the space Nz x Q. Let u be the product
of the uniform Bernoulli measure on ¥2" and the uniform discrete measure on Q. That is, p is the
measure such that for every finite ' c Z% and p € ¥, we have
1
ulpl < {a}) = -

Theorem 2.19. Let T € TMg, (Z%, n, k). Then the following are equivalent:

(1) T is injective.

(2) T is surjective.

(3) T € RTMgy(Z%, n, k).

(4) T preserves the uniform measure (u(T~1(A)) = u(A) for all Borel sets A = I Q).

(5) u(T(A)) = u(A) for all Borel sets A < Y2 % Q.

Proof. Let T be arbitrary, and let F' be its minimal neighborhood. Consider the cylinders C; = [p;] % {¢}
where p; € £, ¢ € Q. These cylinders form a clopen partition of ¥Z° % Q into kn!F! cylinders of
measure ﬁ

Now, because F' is the minimal neighborhood of T', T is a homeomorphism from C; onto D; = T(C;),
and D; is a cylinder set of the form [p'] x {¢'} for some p’ € X7+ ¢’ € Q, which must be of the same
measure as C; as the domain ¥ + F of p’ has as many coordinates as the domain F of p. Note that

D; is not necessarily a cylinder centered at the origin, and the offset ¢’ is given by the shift-indicator.
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Now, observe that injectivity is equivalent to the cylinders D; = T(C;) being disjoint. Namely, they
must be disjoint if T is injective, and if they are disjoint then T is injective because T'|¢, : C; — D; is a
homeomorphism. Surjectivity, on the other hand, corresponds to the equality DI Q =\, D, since
U, Di = U, T(Cy) = T(E x Q).

Now, it is easy to show that injectivity and surjectivity are equivalent: If T is injective, then
the D; are disjoint, and pu(|J; D;) = >, p(D;) = 1, so we must have |J, D; = DI Q@ because
»Z* x Q is the only clopen set of full measure. If T is not injective, then for some i # j we have
D;nDj # @. Then D = D; n D; is a nonempty clopen set, and thus has positive measure. It follows
that p(|J, Di) < X, (D) —pu(D) < 1,s0 |, D; & $2% x Q. Of course, since injectivity and surjectivity
are equivalent, they are both equivalent to bijectivity, and thus to reversibility of T by Corollary 2.5.

The argument given above in fact shows that reversibility is equivalent to preserving the uniform
Bernoulli measure in the forward sense — if T is reversible, then p(7T(A)) = u(A) for all clopen sets A,
and thus for all Borel sets, while if T" is not reversible, then there is a disjoint union of cylinders C'u D
such that u(T(C u D)) < pu(C v D).

For measure-preservation in the usual (backward) sense, observe that the reverse of a reversible
Turing machine is reversible and thus measure-preserving in the forward sense, so a reversible Turing
machine must itself be measure-preserving in the traditional sense. If T is not reversible, then
w(T(C v D)) < u(C u D) for some disjoint cylinders C and D large enough that T'|c and T|p are
measure-preserving homeomorphisms. Then for E = T(C) n T(D) we have u(T~1(E)) = p((T7*(E) n
C)u (T Y(E)n D)) =2u(E). O

Remark 2.20. The proof is based on showing that every Turing machine is a local homeomorphism
and preserves the measure of all large-radius cylinders C' in the forward sense u(7(C)) = u(C). Note
that preserving the measure of large-radius cylinders in the forward sense does not imply preserving the
measure of all Borel sets (or even all cylinders), in general. For example, the machine with n > 2,k =1
which turns the symbol in F = {0} to 0 without moving the head satisfies u([p]) = u(T[p]) for any
pe S with § o F. But u(X%° x Q) = 1 and p(T(SZ" x Q)) = u([0]) = 1/2.

Remark 2.21. Using Proposition 2.14 and Theorem 2.19 we see that also under the moving head

model injectivity and surjectivity are equivalent.
We can also use the uniform measure to define the average movement of a Turing machine.

Definition 2.22. Let T € TMg,(Z%, n, k) with shift indicator function s: Y2 % Q — Z4. We define

the average movement o(T) € R? as
O
$28 % Q

where p is the uniform measure on N2 x Q. For T in TM(Z,n, k) we define o as the application to

its image under the canonical epimorphism U from Definition 2.13, that is, o(T) = «(¥(T)).

Of course, as s(z,q) depends only on finitely many coordinates of z, this integral is actually a finite
sum over the cylinders p € ¥ for some finite F' < Z?, and thus we have a(T) € Q? for all T. The

following lemma shows that in fact a is an homomorphism.

Lemma 2.23. The map a: RTMg,(Z¢,n, k) — Q% is a group homomorphism.
14



Proof. If Ty, Ty € RTMg,(Z4,n, k) then since reversibility implies measure-preservation, we have

where E, (som,) = Eu(sm, o To + s1,) holds because styor,(2,q) = st (T2(x,q)) + s1,(z,q) for all
(z,q) € Y2 x Q. O

3. SUBGROUPS AND GENERATORS

In this section we study several subgroups of RTM(Z%, n, k). The main result of this section is that
there is a finitely-generated subgroup of “elementary Turing machines”. In the following sections, we
show that in pure computability terms, these are able to simulate general Turing machines.

The group of elementary Turing machines EL(Z?, n, k) is the subgroup of reversible Turing machines
which is generated by the union of two natural subgroups: LP(Z?, n, k), the group of local permutations
and RFA(Z?,n, k), the group of reversible finite-state automata. These two groups separately capture
the dynamics of changing the tape and moving the head. We also define the group of oblivious Turing
machines OB(Z%,n, k) as an extension of LP(Z% n, k) where arbitrary tape-independent moves are
allowed.

We recall that for the convenience of the reader, a dictionary of these groups can be found in Appen-
dix A.

The main results we prove about these subgroups are the following, when n > 2:

e RFA(Z?, n, k) is not finitely generated (Theorem 3.5),

e RTM(Z,n, k) is not finitely generated (Theorem 3.11).

e RFA(X,1) is generated by “orbitwise shifts” and “controlled position swaps” for any one-
dimensional subshift X (Theorem 3.28),

e OB(Z% n, k) is finitely generated (Theorem 3.18),

e EL(Z,n,k) is finitely generated (Theorem 1.1).

For the definitions of “orbitwise shifts” and “controlled position swap’, see Section 3.3. For any class
CL(Z%,n, k) of Turing machines with moving head we denote by CLg,(Z?, n, k) the corresponding class

of moving tape machines, that is, the image of the class under the morphism ¥ from Definition 2.13.
3.1. Definitions of subgroups.

3.1.1. Oblivious Turing machines. For v € Z%, define the machine T which does not modify the state
or the tape, and moves the head by the vector ' on each step. Denote SHIFT(Z4,n, k) = ({Ty}geza)-
Clearly SHIFT(Z%, n, k) = Z. Define also SP(Z%,n, k) as the state-permutations: Turing machines

that never move and only permute their state as a function of the tape.

Definition 3.1. We define the group LP(Z%,n, k) of local permutations as the subgroup of Turing
machines in RTM(Z®, n, k) whose shift-indicator is trivial, that is, the constant function x 0.
We define also OB(Z%,n,k) = (SHIFT(Z%,n,k),LP(Z% n,k)), the group of oblivious Turing

machines.

In other words, LP(Z¢,n, k) is the group of reversible machines that do not move the head, and

OB(Z% n, k) is the group of reversible Turing machines whose head movement is independent of the
15



state and the tape contents. Note that in the definition of both groups, we allow changing the state as
a function of the tape, and vice versa, thus SP(Z¢,n, k) < LP(Z%,n, k).

Remark 3.2. The restricted wreath products H { Z¢, where H is a finite group, are sometimes called
generalized lamplighter groups, the original lamplighter group being Z/27Z Z. Thus, OB(Z%,n, k)
can be seen as a doubly generalized lamplighter group, since the subgroup of OB(Z,n, k) generated
by the local permutations LP(Z<,n, 1) with radius 0 and SHIFT(Z%,n, 1) is isomorphic to the wreath
product S, ! Z? of the symmetric group S,. Further on we show that, similar to lamplighter groups,
OB(Z%,n, k) is also finitely generated.

3.1.2. Finite-state automata.

Definition 3.3. We define the group RFA(Z%,n, k) of reversible finite-state automata as the group
of reversible (Z4,n, k)-Turing machines that do not change the tape. That is, the local Tules are of the

form f(p,q) = (p,q’,¥) for all entries pe X qe Q.

Similarly, for a subshift X < X%° we let RFA(X, k) be the subgroup of elements in RTM(X, k) that
act without modifying the tape.
This group is “orthogonal” to OB(Z%,n, k) in the following sense,

RFA(Z%, n, k) n LP(Z%,n, k) = SP(Z%,n, k),
RFA(Z%,n,k) n OB(Z%,n, k) = (SP(Z%,n, k), SHIFT(Z4, n, k)).

Remark 3.4. It follows directly from the definitions that the group RFA(Z?,n,1) is isomorphic to the
topological full group of the full Z?-shift on n symbols as defined in [18]. Similarly, if we fix a subshift
X, then RFAg, (X, 1) is isomorphic to the topological full group of the shift action on X. The subscript

“fix” is only needed when X is not strongly locally aperiodic, see Lemma 2.17.

As usual, the case n = 1 is not particularly interesting, and we have that RFA(Z? 1,k) =
RTM(Z?,1,k). In the general case the group is more interesting.

Theorem 3.5. Let n > 2. Then RFA(EZd, n, k) is not finitely generated.

Proof. We prove this in the moving-tape model. For 7 € Z¢, let Perg(EZd) be the set of configurations
of 2" whose stabilizer under the shift action contains 7Z. Let Z=2 be the set of integers t > 2.
Let ¢: RFAﬁX(EZd,n, k) — (Z/27Z)*>* be the parity homomorphism where ¢(T); is the sign of the
permutation that T performs on the finite set Per(m_’_”yt)(EZd) x Q.

As the image of a finitely generated group under a homomorphism is also finitely generated, it
suffices to show that qS(RFAﬁX(ZZd, n, k)) is not finitely generated. It suffices thus to prove that for any
finite m > 2 the restriction of QS(RFAﬁX(ZZd, n,k)) to (Z/27Z)1™} is surjective. From here it clearly
follows that (b(RFAﬁx(EZd, n, k)) is not finitely generated.

Let t >2and ¥ = (L,t,...,t) € Z%. Let T; be the machine which in state ¢ # 1 acts trivially, and if
q = 1 does the following: Let &€= ¢€; = (1,0,...,0,0) be the first canonical basis vector. For i@ € Z¢ let
Ag=d+{0,...,t —1} x --- x {0,...,t — 1}. Then, on configuration x € EZd,

o if the restriction of  to Ay contains a unique 1 which is at 0, and is otherwise identically zero,
shift the configuration by —¢

e if the restriction of x to Az contains a unique 1 which is at €, and it otherwise identically zero,
shift the configuration by €|

e otherwise do nothing.
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The machine T} is an involution and thus is reversible. From this construction it follows that
d(T): = 1 and ¢(T3)py =0 for all 2 < ¢/ < ¢.
Now, let y € (Z/2Z){%™}. Let M, = id. Tteratively for 2 < j < m construct

M;— if y; = p(M;-1);
Tj O Mj—l if yj #* (b(Mj—l)j

M; =

As ¢ is a homomorphism it follows that ¢(M,,) = y and therefore the restriction of ¢(RFAgx (32", n, k)
to (Z/27)%™} is surjective. O

We shall introduce a new point of view on finite-state machines, which we call the permutation
model. This model be helpful in the upcoming proof that elementary Turing machines are finitely
generated. In this model, we associate to every Turing machine in RFAg, (Z%, n, k) an automorphism of
(2 x (2/2Z)9)%". The main idea behind this correspondence is that given T' € RFAgy (Z4, n, k), every
configuration z € ¥2" induces an action over Z¢ x Q, namely, a head pointing at some position in Z? in
state ¢ would move to a new pair (position,state) in Z¢ x Q after applying 7. As T is reversible, this
induces a permutation over Z¢ x @ which can be applied simultaneously to an arbitrary number of
heads, which can in turn be represented as a configuration in ((Z/2Z)?)%". We make this embedding

precise in the proof of the following proposition.
Proposition 3.6. The group RFA,(Z% n, k) embeds into Aut(AZd) for |A] = n2*.

Proof. Note that any pair (T,z) € RFAq,(Z%, n, k) x 2 induces a permutation o7, over Z¢ x Q.
Namely, let s be the shift-indicator of T, and let

o1, (U,q) = (V= s(0™"(x),q), Ta(o~"(x),q))

We identify A as the alphabet ¥ x (Z/2Z)% and thus the configurations of AZ" can be seen as pairs
(#,9) € 5% x ((2/22)9)*".
Finally, let ¢: RFAq, (Z% n, k) — Aut(AZd) be the map defined by ¢(T) = ¢ where:

(¢7)1(z,9)5 = 75,

(¢T)2(x,y)%yT(g7q) = 1 if and only if y(5,4) = 1.

That is, ¢ does not modify the »z tape, and for every position (7, ¢) € Z% x Q marked with a one,
we interpret it as a Turing machine head in state ¢ in position ¢ and mark in the image the state and
position it would end up after applying 7. This is clearly a cellular automaton on N2 x ((Z/QZ)Q)Zd
as the shift indicator of T" has a finite radius.

We claim ¢ is an embedding. A direct computation shows that the permutation induced by 77 o T3
is just oqy 4 © o, , thus showing that ¢ is a homomorphism. Now, if Ty # T4 there is some pair (x,q)
where they act differently. If we consider the configuration (z,y) where yga , = 1 and 0 elsewhere.

Clearly ¢, (z,y) # ¢, (z,y). Therefore ¢ is injective. O

Definition 3.7. For any T € RFA5,(Z%, n, k) the automorphism ¢r € Y2« (Z/QZ)ZdXQ obtained by
appling the embedding of the previous proof is called the permutation model of T.

The permutation model has the remarkable property of being linear in the second component.
Namely, given T' € RFAg,(Z4,n, k) and its permutation model ¢7, we have that for any z € ¥Z* and
y,z € (Z/27)"*Q;

d)T(xvy + Z) = (mv (¢T)2(x’y) + (d)T)Q(x?Z))a

where the sum is computed coordinate-wise.
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It is known that the automorphism group of any nontrivial full shift embeds into the automorphism

group of any uncountable sofic shift [35]. Thus we have the following corollary:

Corollary 3.8. If X is an uncountable sofic Z-subshift, then RFA(Z,n,k) embeds into Aut(X). In
particular RFA(Z,n, k) embeds into Aut(AZ) for any |A| = 2.

3.1.3. Elementary Turing machines.

Definition 3.9. The group of elementary Turing machines EL(Z% n, k) is the group generated by

finite-state machines and local permutation, that is
EL(Z% n, k) = (RFA(Z%,n, k), LP(Z%, n, k)).

The group of elementary Turing machines is generated by machines which either do not change the
tape or do not move the head, and its aim is to approximate the group RTM(Z<, n, k) using simple
building blocks. In other words, it can be understood as a sufficiently rich class of Turing machines
which can be constructed from simple atoms. For instance, Langdon’s ant [29] is an example of a
machine in EL(Z2,2,4).

Clearly the group LP(Z%, n, k) is not finitely generated because it is locally finite and infinite. We
have also shown that RFA(Z4,n, k) is not finitely generated and will soon show that RTM(Z?, n, k)
is not finitely generated either. However, we are later going to show that both OB(Z9, n, k) and
EL(Z,n, k) are finitely generated.

Before studying these machines, we show that RTM(Z%, n, k) is not finitely generated. This proof

uses the average movement homomorphism « defined in Section 2.3.

Lemma 3.10.
d _ /& ; d
(RTM(Z?,n, k) = (5 .]6N,@6{1,...,d}>< (@4, +)

Proof. Consider the (Z,n, k)-Turing machine Tgyr,m given by the local function f: »i0mb s 9 —
»{0m} 5 @ x Z which is defined as follows: For a € ¥ and ¢ < k let f(0™a,q) = (0™a,q + 1,0) and
f(0™a, k) = (a0™,1,1). Otherwise f(u,q) = (u,q,0). This machine is reversible, and satisfies that
o(Tsugr,m) = 1/kn™. This machine can easily be extended to a (Z%,n, k)-Turing machine with average
movement (1/kn™,0,...,0), and an analogous construction yields a Turing machine with the exact

same movement in other coordinates. Thus we obtain that

€; L . d
= .jeN,ze{1,...,d}><a(RTM(Z k).

To obtain the equality, observe that the integral SEZd <Q s(z, q)dp defining the average movement is
a finite sum over cylinders, the contribution of each cylinder is an integer vector, and the measure of a

cylinder is in the group generated by ﬁ Thus every element in a(RTM(Z%,n, k)) can be written as a
U

finite sum of keij.
-

The image under the homomorphism « of (RTM(Z?,n, k)) computed above is not finitely generated
whenever n > 2, therefore we conclude that RTM(Z?, n, k) cannot be finitely generated for n > 2.

Theorem 3.11. For n > 2, the group RTM(Z%,n, k) is not finitely generated.

Although « is not a homomorphism on TM(Z, n, k), using Theorem 2.19 we obtain that TM(Z?, n, k)

cannot be finitely generated either.

Theorem 3.12. For n > 2 the monoid TM(Z%,n, k) is not finitely generated.
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Proof. Let T € RTM(Z4,n,k). As T is injective, we conclude that if T =T}, o --- o T} then T} is also
injective. By Theorem 2.19 this means that 77 is reversible, which in turn implies 7% is injective and so on.
Therefore, if TM(Z%,n, k) is generated by S, then there exists S’ = S such that (S’ = RTM(Z%,n, k).
But every such S’ is infinite by Theorem 3.11 and thus S must also be infinite. (]

In the remainder of the section we study how close EL(Z%, n, k) is to RTM(Z?, n, k). We also give a
natural infinite generating set for RFA(X, k) for every Z-subshift X. Later on we show that EL(Z,n, k)
is finitely generated which implies that EL(Z,n, k) is strictly contained in RTM(Z, n, k). However, we
will first provide a simple proof of that fact which works in any dimension.

Proposition 3.13. Let +Z = {} | n € Z}. We have that

d
a(RFA(Z% n, k) = a(EL(Z%,n, k)) = (iz) .

In particular, EL(Z%, n, k) is strictly contained in RTM(Z,n, k).

Proof. Clearly a(T) = 0 for every T € LP(Z,n, k), so the first equality holds. Let us then consider
average movement values of finite-state automata. The machine Tj that increments the state by 1 on
each step (modulo the number of states) and walks one step along the jth axis whenever it enters the
state 1, has o(T}) = (0,...,0,1/k,0,...,0). We obtain

1 d
(kz) = {a(Tj) |1 < j <dy < a«(RFA(Z%,n, k)).

Next, let us show that for every finite-state machine 7', we have o(T') € (+Z)?. For this, consider
the behavior of T" on the all-zero configuration. Given a fixed state ¢, 7" moves by an integer vector ¥,
thus contributing %ﬁq to the average movement. Let ¥/ = ] 1€Q %ﬁq be the average movement of T on
the all-zero configuration.

We claim that a(7") = 0. Note that by composing T with a suitable combination of the machines T
and their inverses, it is enough to prove this in the case @ = 0. Now, for a large m, Let p € sl=msm}?
be a pattern, @ € {—m,...,m}? a position and q € Q a state. Complete p to a configuration z, € »nz
by writing 0 in every cell outside {—m, ..., m}%. Write a,,(T) for the average movement of 7" for the
finitely many choices of p,u, q. Formally, if st is the shift indicator of T

1

_ —u
am(T) = k(2m + 1)dnCm+D)? pzu:q st(07"(@p), ).

As m — oo, it is easy to show that a,, (T) — «(T), as the movement vector of T is distributed correctly
in all positions except at the boundary of {—m, ..., m}¢ which grows as o(m?).
On the other hand, for any fixed p € l=mem? the average movement of 7' on x, started from a

random state and a random position is 0, that is,
Disr(o (ay),q) = 0.
u,q

This follows from the fact that T'e RFA(Z?,n, k) and thus the action is simply a permutation of the
set of position-state pairs and the fact that o = 0. From here we conclude that the sum restricted to
ue {—m,...,m}%is o(m®). It follows that o(T") = lim c,,, (T) = 0. O

3.2. The oblivious Turing machines are finitely generated. In this section, we show that
OB(Z,n, k) is finitely generated. Our proof is based on the existence of strongly universal reversible
gates for permutations of A™, which can be found in [1, 40] for the binary alphabet case, and generalized

to other alphabets in [8]. We need a finite generating set for permutations of @ x ™, and hence the
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proof in [8] has to be adjusted to account for non-homogeneous alphabet sizes (that is, due to possibly
having n # k).

Let us remark that the case n = 1 is trivial: The group LP(Z%, 1, k) is finite and SHIFT(Z%, 1, k) is
generated by the single step moves. We hence assume that n > 2.

The following result was proved in [8] (Lemmas 3 and 5):

Lemma 3.14. Let H = (V, E) be a connected undirected graph.
(a) The transpositions (s t) for {s,t} € E generate Sym(V'), the set of permutations of the vertex
set.
(b) Let A < Sym(V) be a set of permutations of V' that contains for each edge {s,t} € E a 3-cycle
(xy z) where {s,t} < {x,y,z}. Then A generates Alt(V'), the set of even permutations of the

vertex set.

Let m > 1, and consider permutations of @) x X™. Controlled swaps are transpositions (s t) where
s,t € @ x ¥™ have Hamming distance one. Controlled 3-cycles are permutations (s ¢ u) where the
Hamming distances between the three pairs are 1, 1 and 2.

Let us denote by C,(,E ) and C,(,‘Z’ ) the sets of controlled swaps and 3-cycles in Sym(Q) x ¥™) respectively.
Let H = (V, E) be the graph with vertices V = @ x ™ and edges {s, ¢} that connect elements s and ¢
having Hamming distance one. This is a connected undirected graph, so we get from Lemma 3.14(b)

that the controlled 3-cycles generate all its even permutations:
Lemma 3.15. Let n = 2 and m = 1. The group Alt(Q x X™) is generated by .

Let £ < m, and let f be a permutation of Q x %¢. We can apply f on 1 + £ coordinates of Q x X™
(including the first), while leaving the other m — £ coordinates untouched. More precisely, the prefix
application f of f on Q) x ¥™, defined by

N

f(Q751;-~-7S€a---75m) = (fl(qasla'"585)5"'aff+1(qa817"'asf)asé+1a"'asm)7

applies f on the first 1+ ¢ coordinates. To apply it on other choices of coordinates we conjugate f using
rewirings of symbols. For any permutation 7 € Sym({1,...,m}) we define the rewiring permutation
of Q@ x X™ by

T i Q815+, 8m) = (@, 8x(1)s -+ + 5 Sm(m))-
It permutes the positions of the m tape symbols according to . Now we can conjugate the prefix
application f using a rewiring to get f,, =r-to f ory, we call fﬂ an application of f in the coordinates
m(1),...,m(¢). Let us denote by

[l = {F~ | w € Sym(m)},

the set of permutations of Q x X" that are applications of f. For a set P of permutations we denote
by [P]., the union of [f],, over all f € P.

Note that if n is even and f € Sym(Q x ) for £ < m then [f],, only contains even permutations.
The reason is that the coordinates not participating in the application of f carry a symbol of the even
alphabet ¥. The application [f],, then consists of an even number of disjoint permutations of equal
parity — hence the result is even. In contrast, for the analogous reason, if n is odd then [f],, only

contains odd permutations whenever f is itself is an odd permutation.

Lemma 3.16. Let m > 6, and let G, = <[C’£2)]m> be the group generated by the applications of
controlled swaps of @ x X* on Q x ¥™. If n = |3| is odd then G,, = Sym(Q x ™). If n is even then
G = Alt(Q x ™).
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Proof. For even n, by the note above, [C’f)]m < Alt(Q x ¥™), and for odd n there are odd permutations
in [Cf)]m. So in both cases it is enough to show Alt(Q x ¥™) c G,,,. We also note that, obviously,
[Grm—1]m € Gm.-

Based on the decomposition in Figure 3, we first conclude that any controlled 3-cycle f of @ x X™
is a composition of four applications of controlled swaps of Q x ¥™~2. In the figure, the components of
@ x X™ have been ordered in parallel horizontal wires, the @-component being among the topmost
three wires. Referring to the symbols in the illustration, the gate on the left is a generic 3-cycle
(pszabedw ptzabedw gszabedw) where one of the first three wires is the Q-component, a,b, ¢, d € ¥ and
w e X8, The proposed decomposition consists of two different controlled swaps p; and p, applied
twice in the order f = p1pop1p2. Because p; and ps are involutions, the decomposition amounts to
identity unless the input is of the form zyzabcdw where x € {p, ¢} and y € {s,t}. When the input is of
this form, it is easy to very that the circuit on the right indeed amounts to the required 3-cycle. We
conclude that CY) < <[C’7(3)_2]m>, for all m > 6. By Lemma 3.15,

1) AIE(Q x ™) = (CB = ([CP,],.).

| :Ig) l; [ p—q 17 P49 A
] '\g/ L ‘S S<«> S S<>t

z z
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c C

d d
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FIGURE 3. A decomposition of a controlled 3-cycle of Q x ¥ on the left into a sequence
of four applications of controlled swaps of Q x ¥™ 2 on the right. The ordering of the
wires is such that topmost three wires contain the Q-component and the two wires
changed by the 3-cycle (one of which may or may not be the Q-component). Black
circles are control points: the gate computes the identity unless the wire carries the
symbol indicated at the left of the wire or next to the control point.

w : : :

We proceed by induction on m. The base case m = 6 is clear: By (1),
AIY(Q x £8) = ([CP]6) = Gs.

Consider then m > 6 and suppose that G,,_; is as claimed. If n is odd then, by the inductive
hypothesis,
[Cglz]m < [Sym(Q x Em_l)]m < [Gm-1lm = G-
By (1) then Alt(Q x ¥™) < <[ij12]m> c Gy, As pointed out above, G, contains odd permutations
(all elements of [Cf)]m are odd), so G, = Sym(Q x ¥™) as claimed.
If n is even then an application of a permutation of Q x ¥™~2 on Q x Y™ is also an application of
an even permutation of @ x ™~ on Q x ™. (For this reason we left two non-controlling wires for

the gates on the right side of Figure 3.) By this and the inductive hypotheses,
[0(2)

m—2

Im < [AI(Q x ™ Y], < [Grni]m S Gons
so, by (1), we have the required Alt(Q x ™) < G,,. O

Corollary 3.17. [Sym(Q x ¥™)]mi1 < {[Sym(Q x X*)]mi1) for all m = 5.
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Proof. If n is even then [Sym(Q x £™)],, 11 < Alt(Q x ¥™ 1) and if n is odd then [Sym(Q x £™)],,41 <
Sym(Q x X™F1). In either case, the claim follows from Lemma 3.16 and C’f) c Sym(Q x X%). O

In Corollary 3.17, arbitrary permutations of Q x 3" are obtained as projections of permutations of
Q x ™1, The extra symbol is an ancilla that can have an arbitrary initial value and is returned back
to this value in the end. Such an ancilla is called a “borrowed bit” in [40]. It is needed in the case of
even n to facilitate implementing odd permutations of Q) x X™.

Now we are ready to prove the following theorem.
Theorem 3.18. OB(Z%,n, k) is finitely generated.

Proof. We construct a finite generating set A; U As U As. Let A; contain the one step moves T, for
i=1,...,d. These clearly generate SHIFT(Z% n, k).

Each T € LP(Z% n, k) is defined by a local rule f: ©F x Q — 2 x Q x {0} with a finite F ¢ Z.
To have injectivity, we clearly need that 7: (p,q) — (f1(p, q), f2(p,q)) is a permutation of X x Q. We
denote T' = P,. Let us fix an arbitrary E < Z% of size 4, and let A, be the set of all P, € LP(Z%,n, k)
determined by 7 € Sym(XF x Q).

For any permutation « of Z? with finite support, we define the cell permutation machine Cy : (p, q)
(¢',q), where p; = pqy) for all 7 74, These are clearly in LP(Z%, n, k). We take A3 to consist of the
cell permutation machines C; = C(q ¢,) that, for each ¢ = 1,...,d, swaps the contents of the currently
scanned cell and its neighbor with offset e;.

Observe that A; and As generate all cell permutation machines C,. First, conjugating C; with
Ty € SHIFT(ZY,n, k) gives the cell permutation machine C, = TglCiTg for the transposition o =
(7 ¥+ e;). Such transpositions generate all permutations of Z? with finite support: This follows from
Lemma 3.14(a) by considering a finite connected grid graph containing the support of the permutation.

Consider then an arbitrary P, € LP(Z% n,k), where 7 € Sym(XF x Q). We can safely assume
|F| = 5. Let us pick one ancilla v € Z4\F and denote F' = F U {v}. By Corollary 3.17, P, is a
composition of machines of type P, for p € Sym(X# x Q) where H < F’ has size |H| = 4. It is enough
to be able to generate these. Let o be a permutation of Z? that exchanges E and H, two sets of
cardinality four. Then C’;leC'a € Ay, which implies that P, is generated by A; U Ay U As. [l

3.3. Generators for finite-state automata on any one-dimensional subshift. In this section,
we show that while finite-state automata are not finitely generated on the one-dimensional full shift,
the group of finite-state automata has a natural generating set on every one-dimensional subshift.

We shall show that a generating set for this group is composed of two types of objects: there is
a (possibly infinite rank) abelian group that translates orbits and is an abstracted notion of average
movement, and a collection of elements with zero average-movement which is generated by “controlled
position swaps” which are similar in spirit to the controlled swaps of the previous section. We show
this result for the topological full group (one state) and will extend it to the case of multiple states
using Lemma 2.8.

Similar results are known for topological full groups of minimal systems (see for example [31, 19]).
The main additional issue is with average movement, which does not actually apply in our main
application of the full shift. Usually aperiodicity is assumed when studying topological full groups,
but periodic points do not pose any problems, except for the small issue that without strong local
aperiodicity we might not have RFAg, (X, k) = RFA(X, k). We study RFA(X, k), understanding that
the groups are the same in all cases we are actually interested in.

As suggested, we begin by showing that on any Z-subshift, there is a natural generalization of the

average-movement homomorphism which measures the average movement separately on every orbit.
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This homomorphism coincides with the average-movement a when X = ¥%, and on minimal subshifts
it corresponds to the index map defined for topological full groups [18].

The results of this section will rely strongly on our subshifts being one-dimensional. Our analogue
of the index map will be based on counting heads to the left and right of some interval, which is not
straightforward to generalize to the multidimensional case.

Suppose for the rest of this section that X denotes a one-dimensional subshift. In this section, we
write RFA(X) = RFA(X,1). We can see the shift o as an element of RFA(X) defined by o (%) = 2.

Let ~!, be the relation on the language L, (X) of words of length n appearing on X defined by
u ~ v if there exists x € X such that u and v occur in z. Let ~,, be the transitive closure of ~/,. We

write ~ for ~,, the equivalence relation induced by the collection of ~,, for every n € N.

Definition 3.19. A subshift X = Y% is weakly chain-transitive if for every n € N and u,v € L, (X)

we have u ~ v.

We use the prefix “weak” to distinguish this notion from other (stronger) notions of chain-transitivity
in the literature such as the one found in [26].

For any subshift X, let X [1, Ln(X)/~n be the image of X under the factor map w(x), =
T[o,n—1]/ ~n- Considering X asa dynamical system with a trivial Z-action, it is easy to see that
7: X — X is a factor map: T[o,n—1] ~ T[—1,n—2] for all z € X and n € N, so 7(0(z)) = 7(x) = id(7(z)).
Notice that X is weakly chain-transitive if and only if Xisa singleton.

Recall from Definition 2.7 that given a subshift X ¢ %%, we define a subshift /X < (X U {#1})%

where configurations of X occur in a coset of kZ and all other positions are filled with the symbol #.
Lemma 3.20. Let X be a weakly chain-transitive subshift. Then VX is weakly chain-transitive.

Proof. Let u/,v" be two words of the same length in +/X. Then possibly by extending «’ and v’ we

may write them as subwords of words u” and v” of the form

’LL/ C ’lLI, _ #nflul#kfl,uQ#kfluS . un#kfl’

’Ul C v// _ #k—lvl#k—lv2#k‘—lv3 . 'vn#k_1>
for some n € N and words u,v in L,(X). Since X is weakly chain-transitive, there is a finite chain
U =wy~w; ~ -~ wg = v such that w; and w;,; occur in the same point of X for all .. Then the

corresponding interspersed versions of the w; give a chain between u” and v”, and thus between v’ and
v O

Definition 3.21. We say that T € RFA(X) is an orbitwise shift if for every x € X there exists k € Z
such that

T(z}) = 217" for every i€ 7.
An abstract orbitwise shift is a continuous function f: X — Z such that f(x) = f(o(zx)) for all
x e X. Write OS(X) and AOS(X) for the group of orbitwise shifts and the group of abstract orbitwise
shifts respectively.

Note that orbitwise shifts form a subgroup of RFA(X), and abstract orbitwise shifts form a group
under pointwise addition. Orbitwise shifts are a much smaller group than RFA(X) in general. For
example OS(X) is always abelian, while one can show that RFA(X) may contain a free group on two

generators, see for example [14] or [4].

Lemma 3.22. The abstract orbitwise shifts are precisely the continuous functions f: X — Z that

factor through X in the sense that f = gom for some continuous map g: X -7
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Proof. Suppose that f = g ox for some g: X — Z. Then f is continuous as the composition of two
continuous functions, and

f(@) = g(x(x)) = g(7(0(2))) = f(o(z)),
so f is an abstract orbitwise shift.

On the other hand, if f: X — Z is continuous and f(z) = f(o(z)), then the map g: X — 7 given
by the formula g(w(x)) = f(x) for all € X is well-defined: suppose not, and that 7(z) = 7(y) and
f(z) # f(y). Since f is continuous and X is compact, f(z) depends only on finitely many coordinates
of z, that is, there exists n such that f(z) = f(2) whenever z(_,, .} = 2{_y, .. n}. Since w(z) = 7(y),
U=T{_pn  nyand v =y, ., are connected by a finite chain u = wy ~ wy ~ -+ ~ wy = v such
that w; and w;41 occur in the same configuration of X for all 0 < i < k.

Since the image of f is determined by the restriction to the central 2n + 1 coordinates, we can write
n; = f(w;) for this unique value. Now, since f(z) = f(o(z)) for all z € X, it is easy to see that in fact
n; = n;41 for all 4, by moving along orbits of points connecting the words w; and w;;1. This shows
that ¢ is well-defined. Furthermore, as the image of f is determined by the restriction to the central

2n + 1 coordinates, it follows easily that g is continuous. O

We shall now define our analogue of the index map. Let T' € RFA(X) and let ¢ = ¢ be its
permutation model, so that ¢ is an automorphism of X x (Z/27Z)%. Let r € N such that the biradius of
¢ is bounded by 7 (i.e., the maximum of radii of ¢ and ¢! is bounded by 7 as an automorphism). Let
u € L(X) such that |u| > 4r and let (z,y) € X x (Z/2Z)* be a configuration where

(1) zlo,...juj-1y = u
(2) ym = 1if and only if r < m < |u| — 7.

Recall that the automorphism ¢ preserves the number |y~1(1)|, therefore ¢o(z,y) also has |u| — 2r

heads. We define

Ly(u) = |¢($,y)_1(1) Nn{0,...,2r —1}| —r and Ry(u) = |¢2(x,y)_1(1) N {Jul = 2r, . ful = 1} =

This definition is best explained informally. Count the number of heads on the left side of the
coordinate 2r (exclusive) of u after applying ¢ and call this L% (u). Let R}(u) be the number of heads
on the right side of coordinate |u| —2r (inclusive). We clearly have L} (u) + R} (u) = 2r, as ¢ permutes
the heads on any configuration and since its biradius is r, coordinates in [2r, |u| — 2r — 1] all contain
heads. Then Ly(u) = Lj(u) —r and Rg(u) = Rf(u) — r satisfy that Ley(u) + Rg(u) = 0. For an
illustration in the case where ¢ is the permutation model associated to the square of the shift, see

Figure 4.

FIGURE 4. For T = ¢? its permutation model ¢,> moves the heads to the right twice.
If we choose r = 4 we observe that the sum of the red zones is 2r, the blue zone
remains unchanged, Ly(u) = —2 and Ry (u) = 2.
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Definition 3.23. Let X be a Z-subshift, T € RFA(X) and let ¢ be its permutation model. The head
index map of X and T is the map Hy: X — 7Z given by

Hr(z) = lim L¢($|{o,...,n—1})~

n—aoo0

Notice that the function Hr is well defined, as the values of Ly stabilize after n > 4r, where r is the
biradius of ¢. It is also noteworthy that choosing any value r’ greater than the biradius r does not
change the value. Indeed, as ¢ only permutes the heads in a finite radius, any head which is at the left
of 27’ at a distance greater than the biradius will necessarily stay left of 2r’ |, and thus will not change

the value Lg(u) = L} (u) — 7' as the difference " — 7 is accounted for on L (u).

Lemma 3.24. Let X be a Z-subshift. For every T € RFA(X) we have that Hr € AOS(X) and the
map v: RFA(X) — AOS(X) defined by v(¢r) = Hr is a homomorphism. This homomorphism splits
with section 3: AOS(X) — RFA(X) defined by B(f)(z) = o/ @ (z), and S(AOS(X)) = OS(X), so
gives an isomorphism between AOS(X) and OS(X).

Proof. Consider an arbitrary ¢ in the permutation model acting on X x (Z/2Z)% with biradius . We
first claim that if |u| = 4r and au T X, then Ly(au) = Ly(u). To see this, note that all heads except
the leftmost new one map exactly as before, and thus R}(au) = R}(u). As R}(v)+ L}(v) = 2r for
every v € L(X) we conclude that L§(au) = L}(u) and thus Lg(au) = Lg(u). Symmetrically, one shows
that Ly(ua) = Lg(u).

Suppose now that u,v C x € X. Let w C x be any word containing both u and v, and apply
the observation of the previous paragraph repeatedly to get Lg(u) = Lgy(w) = Lg(v). It follows that
Hp(x) = Hy(o(x)) for all . The function Hr is continuous because the limit stabilizes after n > 4r.
We conclude that Hr € AOS(X).

To see that (7)) = Hr is a homomorphism, we need the following stronger fact about Lg: fix
m e N and let (z,y) € X x (Z/2Z)” be a configuration where o |,—1] = u where |u| > m + 4r, and
let y = ...000.0"v1!*=1*I="000... where v € (Z/2Z)™ is any word of length m. Then the number of
heads in ¢2(x,y)|(0,.. .m+2r—1} 18 [V (1)] + 7+ Hp(x). To see this, simply fill in the gaps of v (turn its
0-symbols to 1-symbols). At each step, the number of heads in the image increases by one, and the
head is always added among the coordinates in {0,...,m + 2r — 1} since ¢ has biradius r. After filling
the gaps in v, we have m +r + Hp(x) heads in ¢2(z,y)l0,....m+2r—13 by the definition of L.

Now, computation of v(T o T")(z) can be done by first applying ¢ = ¢7+ on the left side of a long
word u in z, with heads positioned suitably on coordinates of u, and then applying ¢ = ¢7 to the
resulting scattered set of heads. By the previous paragraph, we see that ~ is a homomorphism, that is,
YT oT)(x) =v(T)(x) + y(T")(z) for all x € X. The map 3 is well-defined essentially by the definition
of AOS(X), and it is clearly a section for +. O

As mentioned, the homomorphism - generalizes the index map defined on elements of the topological
full group. It is well-known that the index map is Z-valued in the minimal case. This is true more
generally for all weakly chain-transitive subshifts, because for a weakly chain-transitive subshift the

maximal invariant symbolic factor is trivial.
Lemma 3.25. If X is weakly chain-transitive, then its orbitwise shifts are precisely the shifts.

Proof. Since Xisa singleton, Lemma 3.22 implies that AOS(X) ~ Z and therefore § oy must map
every element of RFA(X) to a power of o by the definition of . O

A clear example where the previous lemma holds is the full Z-shift ©%. Given any T € RFAg, (X),

we can compose T with orbitwise shifts in order to force the average movement to be zero in every
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orbit, that if, to obtain T' € RFAg,(X) such that v(T') is identically zero. Therefore, it only remains to

find a way to generate all elements of RFAg,(X) with have no average movement on any orbit.

Definition 3.26. Let u,v € ¥*,a € X. A reversible finite-state automaton T = T, o, € RFA(X)
is a controlled position swap if T((zu.avy)]) = (zu.avy);? for j € {0,1}, and T(z) = z for all

z e X x X1 whose image these rules do not determine.

Lemma 3.27. Let u,v € £*,a € ¥. Then the controlled position swap Ty q,. s well-defined and in

RFA(X) whenever uav is non-unary (i.e., when uav ¢ {a}*).

Proof. The cylinders [u.av] and [ua.v] have empty intersection when uav is non-unary. Thus, the
conditions under which we move the head do not overlap, and the finite-state machine T}, 4, is

well-defined. It is clearly an involution, thus invertible. O

More generally, given a clopen set C < X, we define the map T¢ € RFA(X), which we call a
clopen-controlled position swap.
it if o7 (x) e C
To(zh) =14 2t ifo "l (z)eC
x otherwise

As above, these maps are well-defined for any clopen set C' such that C n o(C) = &. Any such T¢
can be obtained as a composition of finitely many controlled position swaps, since clopen sets can be

written as a finite union of cylinder sets.

Theorem 3.28. Let X be a subshift. Then RFA(X) is generated by orbitwise shifts and controlled

position swaps.

Proof. For T € RFA(X), let Pr < {(0,0)} U Z2 be the set of all pairs (m, k) such that there exists
z € X and 7 € Z such that T(xiﬂ) = xi“*m for all 0 < j < k. Order these pairs lexicographically (m
is more significant). The order type is a suborder of 1 + w? =~ w?, thus well-founded. It is now enough
to prove that, whenever T has zero average movement,

(1) Pr has a maximal element My,

(2) if Mrp > (0,0), there exists controlled position swap 7" such that Mo < Mr, and

(3) T is the identity map if and only if Mt = (0,0).
Namely, by well-foundedness we must reach (0,0) in finitely many steps by iterating the second item,
and by the third we have reached the identity map.

Fix now T € RFA(X). To see that a maximum M7 = (m, k) exists, first observe that Pr # ¢J since
(0,0) € Pp. Next, for (m, k) € Pr the local rule of T' clearly gives a finite upper bound on m. Finally, if
m is maximal and (m, k) € Pr for arbitrarily large k, then m > 0 (since Pr < {(0,0)} u Z2 by choice),
and by compactness there exists a configuration = € X satisfying T(z%) = ™™ for all i € Z, thus
average movement on x is clearly nonzero.

Suppose now that My = (m,k) > (0,0). Now, let C = X be the set of configurations = such that
Vie [~k +1,0] : T(z}) = 2i*™. Observe that z € C — T(x}) = 21 where j < m — 2, namely
j < m —1 by the maximality of k, and j = m — 1 would contradict bijectivity of T. Clearly C' is a
clopen set, and C' n o(C) = & because k > 0. We let TV = T¢.

Consider now an arbitrary point x € X and i € Z.

(1) If c7%(z) ¢ C and o~ (z) ¢ C, then (T o T")(xl) = T(z}).
(2) If o=%(x) € C, then (T o T") (%) = T(x{).
(3) If o= (x) € C, then (T o T') (%) = T(xi ™).
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FIGURE 5. The composition T o T” illustrated with m = 3, k = 4. The movement
of heads in the permutation model on a configuration z is shown, and values at the

nodes are those of y (central row) and z (top row). The four nodes forming m* are

highlighted. The configuration « determines these moves, but its contents are not
shown.

Defining y,z € Z% by y; = j where T(z!) = zi*7 and 2 = j where (T o T')(z%) = z'™7, the
difference between y to z is precisely that all subsequences of the form m”j e Z¥+1 are replaced by
mF=1(j 4+ 1)(m — 1). Since j < m — 2, the run of ms become strictly shorter, and no symbols larger

than m are introduced, thus My < My are required. See Figure 5 for an illustration. O

Remark 3.29. In the proof above, only the part about non-zero average movement and orbitwise
shifts crucially depends on the properties of X. The other part does not: if T'e RFA(Y'), T has average
movement zero (on Y), and X < Y, then one can perform all choices in the proof canonically so that
decomposing T into controlled position swaps on Y and then restricting to X is equivalent to first

restricting to X and then applying our construction on X.

Let us use Lemma 2.8 to extract corollaries in the case where we have more than one state. If
k > 2, then recall that the isomorphism between RTM(X, k) and RTM(A/X, 1) simply uses the different
positions on #-segments to encode the state. Thus, moving a head one step to the right along a
contiguous segment of #-symbols corresponds to increasing the state by one. Moving a head from the
rightmost #-symbol to non-# symbol to the right of it means corresponds to changing the state to 1
and stepping to the right.

Thus, translating the previous result amounts to the following: Let X < 3% be a locally aperiodic
subshift and & > 2. For w,v € ¥* and ¢ € {1,...,k — 1} define the controlled state swap
fu.go € RFAG (X, k) as

fugo(®,d) = (2,4")
where ¢" = ¢ if ¢ ¢ {q,q + 1} or if x(_},,.. |v|-1} # wv, and otherwise let ¢" € {q,q + 1}\{¢'}. For
u,v € ¥* a € ¥, define a stateful controlled position swap as f(zu.avy,k) = (zua.vy,1) and
flzuavy, 1) = (zy.avy, k) for all tails z,y, and f(z) = z for all points not of this form. This is a

well-defined involution for all u, v (since k > 2).

Corollary 3.30. Let X be a weakly chain-transitive locally aperiodic subshift and k = 2. Then
RFA(X, k) is generated by the shift map, controlled state swaps, and stateful controlled position swaps.

3.4. Elementary Turing machines are finitely generated. In this section, we prove Theorem 1.1.

That is, we show that for any n, k = 1 the group EL(Z, n, k) is finitely-generated.
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Proof of Theorem 1.1. The case n = 1 is easy. Suppose thus that n > 2. Let X = X%, Since OB(X) is
finitely generated and OS(X) = (o), we only need to show that the controlled position swaps can be
implemented when k = 1, and that the stateful controlled position swaps and controlled state swaps
can be implemented when k > 2. We work in the fixed-head model.

Suppose first that k = 1. Let s, = T, ; o¢. By conjugating with an element of OB(X), these swaps
generate all controlled swaps where the left control is e. Namely, to generate T, , where av is not

unary (see Lemma 3.27), conjugate sy where ¢ = |v| with any local permutation mapping
f(z.avy) = 2.10° and f(za.vy) = £1.0%.

Such f exists because av is not unary and thus does not overlap with its 1-shift — simply map these
patterns correctly, and fill the permutation arbitrarily. Swaps at other positions are obtained by
conjugating with o. Thus, we only need to show that sy can be decomposed into elements of OB(X),
shifts, and finitely many controlled swaps. We do this by induction on ¢.

We begin with a construction in the case when n is even. We begin with the intuitive description.
Since whether the head is on the coordinate 0 or 1 in the word 10 can be checked locally, we can
consider the position to be just a binary digit ¢ (so ¢ = 0 means we are on the zero-coordinate of a
word 10, ¢ = 1 means we are on the one-coordinate of such pattern, and otherwise we fix the point
anyway). Note that using elements of OB(X), we can swap positions to the right of the pattern 10
independently of ¢. Thus, our controlled swaps may depend on positions arbitrarily far to the right
from the central 10, as long as they do not depend on more than a constant number of coordinates.

We begin with state cwb where ¢ is the head position (either 0 or 1, marking whether we are on the
first or second coordinate of w), and w = 10u where u € ¥*~! is the control word that we are checking
for value 0°~'. The permutation is the following: First, flip ¢ if b = 0 (by moving b next to the initial
10 of w performing a small-radius controlled swap, and moving b back). Then add 1 (modulo n) to b
(by an element, of OB(X)) if u = 0°~1. Then repeat these two steps n times. The end result is that c is
flipped once if u = 0°~1, since b = 0 at exactly one of the c-flipping steps, and otherwise ¢ is flipped
either 0 or n times and thus is not changed.

More precisely, define first g € RFA(X) as the controlled swap Tt 1,00, that is,

g(21.00y) = 2.100y, g¢(x.100y) = x1.00y

and ¢(z) = z for points not of this form. This is clearly in RFA(X), and we take it in our set of
generators. Also define h € OB(X) as any local permutation such that

h(z1.0uby) = x1.0buy, h(x.10uby) = z.10buy

for all w € ¥~ b e ¥ (and h(z) may be arbitrary for points not of this form), which is again well-defined
since no point is of both forms.

Now, defining f' = h~' o g o h we have
f/(21.0u0y) = 2.10u0y, f'(x.10u0y) = 21.0uly

for all u e X! and f’(z) = z for points not of this form.
Next, define f” € OB(X) by

F(x.10%y) = 2.10°(b + 1)y, f"(x1.0%y) = z1.0°(b + 1)y

for all be {0,1,...,n — 1} (where increment is modulo n) and f”(z) = z for all z € X not of this form.
Then (f” o f)™ is our desired map.
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Suppose then that n is odd. We will use the proof structure of [39]. Again, consider the input to
be ¢10ub where ¢ € {0, 1} indicates the position of the head (either on the symbol 1 or the symbol 0
of the word 10 after ¢), and v € X*~! and b € ¥. We construct the machine by induction. Suppose
we have already constructed a machine that flips ¢ conditioned on u = 0!, and let us show how to
check b = 0. First flip b between 0 and 1 if u = 0°~! (and fix the value of b if b € ¥\{0,1}), using a
machine in OB(X). Then flip the bit ¢ if b = 0 using a machine in RFA(X) conjugated by a machine
in OB(X), as above. Repeat these steps. The resulting machine g2 is in EL(X) and will flip ¢ if and
only if b e {0,1} and u € 0°~1.

Now, conjugate the machine by affine translations: let h € OB(X) add 2 to the value of b. Then
" o (g% o h)r%1 will flip the value of ¢ if and only if w = 0°~" and b # 0. Finally, flip ¢ if u = 071,
so that the resulting machine flips ¢ if and only if ub = 0.

The details of translation to machines in RFA(X) and OB(X) are omitted, as they are similar as in
the case of an even alphabet.

In the case k > 2, we need to perform controlled state swaps and stateful controlled position swaps
using finitely many elements of RFA(X) and elements of OB(X). The proof of controlled state swaps
is the same as the proof above, but now the bit ¢ (which indicated the position above) indicates which
state we are in, out of the two we are swapping (and nothing happens if we are in neither state). The
proof of stateful controlled position swaps is also similar; and now the bit ¢ is 0 if we are in state k,

and 1 if we are in state k, and in state 1 the control word is seen through an offset of one. O

4. COMPUTABILITY ASPECTS

In this section we study the computability aspects of RTM(Z%, n, k). We begin the section by briefly
showing which properties of Turing machines are computable. In particular we prove that injectivity
and thus the reversibility of a machine in TM(Z9, n, k) is decidable. This property, along with the
possibility to compute the rule of a composition and an inverse gives a recursive presentation for
RTM(Z4,n, k) which has a decidable word problem.

In this context, we proceed to study the torsion problem of RTM(Z?, n, k) and its subgroups, that
is, whether there exists an algorithm which given a description of T'e RTM(Z?, n, k) always halts and
accepts if and only if there exists n > 1 such that 7" = id. In this context we show that EL(Z, n, k)
has an undecidable torsion problem (Theorem 1.2). Furthermore, we use this result to show that
the automorphism group of any uncountable Z-subshift contains a finitely generated subgroup with
undecidable torsion problem (Corollary 1.3).

Finally, we study the torsion problem for RFA(Z n,k). We show by a simple argument that
RFA(Z,n, k) has a decidable torsion problem. Interestingly, the torsion problem in RFA(Z?, n, k) for
d = 2 is undecidable. We present a detailed proof of this result which draws upon the undecidability
of the snake tiling problem [24]. These two results add up to the Theorem 1.4 we discussed in the

introduction.

4.1. Basic decidability results. First, we observe that basic management of local rules is decidable.

Lemma 4.1. Given two local rules f,g in the moving head model,
e [t is decidable whether Ty = Ty,
o We can effectively compute a local rule for Ty o T,
o It is decidable whether T is injective,
e [t is decidable whether Ty is reversible, and

o We can effectively compute a local rule for TJTI when T is reversible.
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Proof. For the first claim, let f: 1 x Q —» 22 x Q@ x Z% and ¢: 73 x Q — £ x Q x Z? and define
F = F, uF,u Fyu Fy. Extend the rules f, g so that they are defined as f/,¢": 3 x Q — B x Q x 74
satisfying Ty = Ty and Ty = T, If for some (p,q) € B x Q f'(p,q) # ¢'(p,q), then clearly Tj # Ty
Otherwise, we have Ty = Tiy.

Finding a local rule for the composition of two Turing machines is a straightforward, if somewhat
tedious, exercise.

For the decidability of reversibility, we give a semi-algorithm for both directions. First, if T} is
reversible, then it has a reverse T,,. We thus only need to enumerate local rules g, and check whether
Tt o Ty = id, which is decidable by using the two previously described procedures.

If T is not injective, then Ty (x,y) = Ty(2',y’) for some (z,y), (', y’) € S22 x X, with yg # 0. If ris
the move-radius of f, then necessarily the nonzero position of 4 is at distance at most r from the origin
and xy = x; for |0] larger than the radius of 7. Then we can assume xy = x7; = 0 for all such 7. It
follows that if T is not injective, it is not injective on the finite set of configurations (x,y) € Y2 % X &
where (z,y)y = 0 for all |0] larger than the radius of T, which we can check algorithmically.

By Theorem 2.19, injectivity is equal to reversibility, so the decidability of the reversibility of a
Turing machine is a direct consequence of the previous argument.

Finally, if T is reversible, we can effectively construct a reverse 7' f_l for it by enumerating all
Turing machines and outputting the first 7" such that Ty o 7" = T" o Ty = id. O

From the results above, we obtain that the set of all possible local rules f which generate reversible
actions T gives a recursive countable presentation of RTM(Z4,n, k). Furthermore, that presentation

has a decidable word problem.
Proposition 4.2. RTM(Z,n, k) admits a recursive presentation with decidable word problem.

Proof. The set of local rules giving moving head Turing machines can be recursively enumerated. Indeed,
consider the sequence of sets A,, = {—n,...,n}¢ indexed by n € N and list in some lexicographical order
all local rules f: ¥4 x Q — 27 x Q x A,. For each n € N this is a finite set and thus all local rules
can be recursively listed as (f;)ien. By Lemma 4.1 it is decidable which local rules define reversible
Turing machines, and thus one can run that algorithm on each f; to obtain a recursive enumeration
(fo(i))ien of all reversible moving head Turing machines. Also, using Lemma 4.1 one can reduce every
word fo(iy) fo(iz) = fo(in) to some equivalent rule feq. It suffices to test the equality of feq with the

identity machine to decide the word problem of this presentation. O
4.2. The torsion problem of elementary Turing machines.

Definition 4.3. Let G be a group which is generated by S < G. The torsion problem of G is the set

of words w € S* for which there is n € Z, such that the element represented by w™ is the identity of G.

If a group G is recursively presented, then the torsion problem is recursively enumerable. However,
the torsion problem may not be decidable even when G has decidable word problem. Many such
examples are known, and the main result of this section provides a new such example.

As discussed in the introduction, we say a moving head Turing machine is classical if its in- and
out-radii are 0, and its move-radius is 1. Here we characterize reversibility in classical Turing machines.
If Ty has in-, out- and move-radius 0, that is, T only performs a permutation of the set of pairs
(s,q) € £xQ at the position of the head, then we say Ty € LP(Z, n, k) is a state-symbol permutation.
If Ty has in-radius —1, never modifies the tape, and only makes movements by vectors in {—1,0, 1},
then T} € RFA(Z,n, k) is called a state-dependent shift.

If we consider the class of all classical Turing machines on some finite alphabet and number of states

then the torsion problem is undecidable. This result was shown by Kari and Ollinger in [25] —they
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call it the periodicity problem in their setting— using a reduction from the mortality problem which in
turn they also prove to be undecidable following a reduction from the mortality problem of reversible
2-counter machines. In this section, we show that the torsion problem is also undecidable for elementary
Turing machines with a fixed alphabet and number of states. We do this by reducing to the classical

machines. We begin by describing them in our setting.

Proposition 4.4. A classical Turing machine T € RTM(Z,n, k) is reversible if and only if it can be
expressed in the form Ty o Ty where Ty is a state-symbol permutation and Ty is a state-dependent shift.

In particular, classical reversible Turing machines are in EL(Z,n, k).

Proof. We only need to show that if T is reversible then it is of the stated form. Let fr: ¥ x Q —
¥ x @Q x {—1,0,1} be a local rule for T in the moving tape model. We claim that if fr(a,q) = (b,r,d)
and fr(a’,q") = (V',r,d") then d = d’. Namely, if it is not the case, one can easily find two configurations
with the same image. There are multiple cases to consider which can all be treated similarly, for
instance, let z,y be a left and right infinite sequence of symbols of ¥ respectively and suppose d = 0
and d’ = 1. In this case:

T((zb .ay), q) = (xb'.by,r) = T((x.d'by),q’).

Therefore contradicting the reversibility of 7. Repeating this argument over all pairs d # d’ we
obtain that the direction of movement is entirely determined by the output state. Of course, for T’
to be injective, also fr must be injective, so the map g: ¥ x Q — ¥ x @ defined by g¢(a,q) = (b,7)
if fr(a,q) = (b,r,d) is injective, thus a bijection. From here, the only remaining possibility is that
Tp is the permutation g, and Ty as the finite-state automaton with local rule fr, (a,q) = (a,q,d) if
fr(b,q") = (¥, q,d) for some (b,q) € X x Q. O

It follows that the inverse of a reversible classical Turing machine is always of the form Ty o T where
Ty is a state-symbol permutation and T is a state-dependent shift. In the terminology of Section 3,
the theorem implies that all reversible classical Turing machines are elementary.

Now we are ready to prove Theorem 1.2, namely, that the torsion problem of EL(Z% n,k) is
undecidable for all n > 2, k > 1 and d > 1.

Proof of Theorem 1.2. As EL(Z,n,1) embeds into EL(Z%,n, k) for every k,d > 1, It is enough to prove
this for d =1 and k = 1.

The machines constructed in [25] are already elementary, but their alphabets are not bounded
(note that these are classical Turing machines so there are only finitely many machines of any given
state-alphabet pair). However, one can simulate them with elementary Turing machines with fixed
alphabets. That is, given a classical reversible Turing machine 7" (on some finite alphabet and number
of states), one can construct a machine in EL(Z, n, 1) which is periodic if and only if T is. Our result
then follows from the main result of [25].

Let T be a given classical Turing machine with state set ) and tape alphabet X, and let fr be its
local rule. Note that in this proof we use ¥ and () for the alphabet and state set of T', rather than
those of the machines in EL(Z,n, 1).

By Proposition 4.4 we have T = T; o Ty where T is a state-symbol permutation and 73 is a
state-dependent shift. We can further assume that 77 does not use movement by 0: For each state ¢
that would move by 0 we introduce a new state ¢’, and modify shift 77 to move by —1 in state g and by
+1 in state ¢’. We also modify state-symbol permutation Ty to enter always state ¢’ instead, whenever
it would enter ¢, and to map (a,q’) — (a,q) for all tape symbols a. In this way a single non-moving

step gets replaced by two steps moving to the right and to the left, respectively. Clearly the modified
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machine is periodic if and only if the original one is. Let us denote by L < @ and R < @ the sets of
left and right moving states in 73. Then @ is the disjoint union of L and R

Let L be a symbol which is not in @ and m be such that n™ > |Z x (Q u {L})| so that we can
encode tape symbols (represented by pairs in ¥ x {L}) and state-symbol pairs as unique blocks of
length m over the n letter alphabet. Pair (a, q) represents a tape cell containing a € ¥ and being read
by the machine in state ¢ € @, while (a, 1) is a cell containing a € ¥ and not currently read by the
machine. Take an arbitrary one-to-one encoding function ¥ x (Q u {L}) — {1,...,n}™. Let us denote
by [a,r] the encoding of (a,r) € (Q U {L}), a word of length m in the alphabet {1,...,n}.

The idea is that a configuration of 7' with tape content 2 € X%, state ¢ € Q and position p € Z is

im,(i+1)m) [z, L]
for i # p and x’[pm (p+1)m) = [2p,q], and with the stateless head in position pm. Notice that there

represented as the encoded configuration with tape content x’ € {1...,n}%, where x’[

might be many configurations in {1,...,n}? that are not valid encodings.

We construct an element of EL(Z, n,1) that is a composition T} o T} where Tj) € LP(Z,n,1) and
T € RFA(Z,n,1) are both involutions. Informally, the local permutation T implements the state-
symbol permutation Ty on the encoded tape, including writing the new state in the correct position,
while the finite-state automaton 77 simply moves the machine head m positions to the right or to the
left to scan the block containing the new state. We complete the local rules of T and T7 into involutions
that also perform the inverse steps, and act as identities in all other situations. This automatically
causes the machine to reverse its time direction and start retracing it steps backwards if it encounters a
non-valid pattern.

More precisely, the local permutation T} is defined with neighborhood Fy = {—m,...,2m — 1} and
so that the local rule fy is a permutation of {1,...,n}°. The machine sees three m-blocks: the current

block in the center and neighboring blocks on both sides. For every a,b,c,d € ¥ and ¢,p € Q,
(1) if fr(a,q) = (b,p,—1) then fy swaps
e, Lla, ql[d; L] «— [e, pl[b, L][d, L],
(2) if fr(a,q) = (b,p, +1) then fy swaps
e, Lla, ql[d, L] «— [¢, L][b, L][d, p].

All other patterns in {1...,n}° are mapped to themselves. By the reversibility of T this f; is a
well-defined involution.

The reversible single-state finite automaton 77 uses the neighborhood Fy = {—2m,...,3m — 1},
so the machine sees two blocks to the left and to the right from its current block. Its local rule is a
function f;: {1,...,n}f* — Z where f;(u) gives the head movement on tape pattern u.

(1) Let pe L. Then f; maps, for all b,¢,d € X,

« [e,p] [b, L] [d, 1] = - —m,
* * [Ca p] [b7 L] [d7 L] — +m,

where # represents any m-block in {1...,n}™. In other words, if the machine sees a state p € L
on the block to its left and non-states L at its current block and the block on its right, the
machine moves left. If it sees a state p € L at its current block and 1 on the two blocks to its
right, it moves right. These moves are inverses of each other: if one is applicable now, the other
one is applicable on the next time step and it makes the machine return to its original position.

(2) Symmetrically, let p € R. Then f; maps, for all ¢,b,d € &,
* [Cv J—] [bv J—] [d’ p] * — +m,
[C7 L] [b7 L] [d, p] * * — —m.
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Also these moves are inverses of each other.
On all other patterns in {1...,n}f" the movement is by 0. Because L and R are disjoint, 7} is
well-defined. It is also an involution.

Machines T} and T} are so designed that 77 o Tj) simulates one step of T" on valid encodings of its
configurations. It follows that if T' is not periodic neither is T} o Tj).

Suppose then that 7] o T} is not periodic. When iterating T and 77 alternatingly, if at any moment
either machine does not change the configuration then the iteration starts to retrace its steps back in
time. This follows from the fact that T} and T} are involutions. Any orbit containing two such changes
of time direction is periodic. By this and compactness, if 7] o Tj) is not periodic, there exists a bi-infinite
orbit where each application of T} and T} changes the configuration. By the construction, the machine
locally only sees valid encodings. The orbit — in either forward or backward time direction — is then a
valid simulation of 7" on the portion of the tape that T sees. It follows that T has a non-periodic orbit

as well. 0
Combining Theorem 1.2 and Theorem 1.1, we immediately obtain the following corollary.

Corollary 4.5. There is a finitely generated subgroup of RTM(Z,n, k) whose torsion problem is

undecidable.

4.3. The torsion problem of cellular automata. In this section, we show that there is a finitely
generated group of cellular automata whose torsion problem is undecidable. It is tempting to try to
prove this by constructing an embedding from EL(Z,n, k) to Aut(A%), but this is impossible: it is
well-known that Aut(A%) is residually finite, however, the group of finitely supported permutations of
N embeds into LP(Z, n, k) and therefore EL(Z,n, k) can not be residually finite. Nevertheless, there
are standard ways to construct cellular automata from Turing machines, and we show that while one
cannot preserve the complete group structure, one can preserve torsion.

One could do this similarly as in the previous section, by showing directly that an automorphism
simulating a Turing machine will be periodic if and only if the Turing machine is. We will prove a
slightly stronger abstract result, namely we construct a map from EL(Z, n, k) to Aut(A?) that preserves
some of the group structure of EL(Z, n, k) while adding only some “local” identities. To achieve this, it
seems we cannot use the same construction as in the previous section, as discussed below in Remark 4.9.

In the following, the free monoid generated by the elements of a group G is written G*, and consists
of formal words w where w; € G for all i = 1,...,|w|. For we G*, write w = wy - wy - - wy,| € G for

the corresponding element of G.

Definition 4.6. Let G and H be groups and P be a group property. We say a function ¢: G — H
is P-preserving if the following holds: For every finite set F < G* the group (w | w € F) < G has
property P if and only if the group {¢(w1)p(w2) - -- p(w)y|) | w € F) has property P

We remark that P-preserving functions ¢ need not be morphisms as we do not ask that ¢(wyws) =
d(w1)p(wy). We only demand that property P is preserved when applying ¢ to the symbols appearing
in the words in F.

In what follows we are going to use the property P of being finite. We use this property to extend
computability invariants such as the torsion problem of a group onto another group even if no embedding
from the first group to the second exists. This kind of extension obviously demands that the function ¢
is in some way computable. We will say a function ¢: G — H is computable if both G and H have
decidable word problem for some fixed presentation and there is a Turing machine which turns any

word w in the presentation of G such that w = g € GG into a word w in the presentation of H such that

u=¢(g)e H.
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Lemma 4.7. Let G be a finitely generated group with undecidable torsion problem and generating set
S, and suppose there exists a computable finiteness-preserving function ¢: G — H. Then the subgroup
H' = {&(8)}ses) < H has undecidable torsion problem.

Proof. Suppose the group H' generated by the ¢(s) has decidable torsion problem and let w € S*.
As ¢ is finiteness-preserving we have that (w) is finite if and only if (¢(w1)p(w2) - - - p(w),,)) is finite.
This means w has finite order in G if and only if ¢(wq)p(wz) - - ¢(w),|) has finite order in H'. We
can compute ¢(wy)p(ws)--- p(wy,|) from w and from the finite set {$(s)[s € S} = H. Thus, the
algorithm to decide the torsion problem in H’ can be used to decide the torsion problem in G, raising a

contradiction. O

The previous lemma indicates that in order to prove that Aut(A%) contains a finitely generated
subgroup with undecidable torsion problem, it now suffices to provide a computable finiteness-preserving
map from EL(Z,n, k) into Aut(A%).

Lemma 4.8. Let A =%? x ({«<,—>}uQ x {1,1}). There is a computable finiteness-preserving map
¢: RTM(Z,n, k) — Aut(AZ).

Proof. The alphabet A consists of triples and thus A% can be thought of as consisting of three tapes. The
two first tapes carry a configuration in ¥% while the third tape has symbols in ({«,—} U (Q x {1,1}))
and deals with the heads and calculation zones. A head is represented by a tuple in @ x {1, |}, where
Q is the set of states of the Turing machine and {1, |} is the track the machine is in. If this value is 1,
the head is on the first (“topmost”) tape and if it is |, on the second (“bottom”) tape. < means the
head is to the left of the current cell on the current zone (if the current zone contains a head), while —
means the head is to the right.

A configuration in AZ is split into zones by the contents of the third tape. Namely, every finite

* * *

portion of the second track can be split uniquely into pieces of the forms —* (¢,a) «* and —*«
where (q,a) € Q x {1,|}. We call these pieces zones, see Figure 6. To define the finiteness-preserving

map ¢: RTM(Z,n, k) — AZ it is enough to do so in every piece of this form.

[1oJoj1f1]of1]1]1]ojofoj1f1]1]olofof1[of1]1]1]1[0f1[1[0[O]1]

[0T0]T{T]O[T[O|T(I]I[1[0[O0O[1]T[T[0]T]0O]I[L]O[ITO[I[IO]I]T]
— =] =—— (q] ——r— 9|
| ! T ] ll 1 ! | I T | N A D ! ] ! T | NN

FIGURE 6. A finite word in A* is divided into zones by the third layer. The dashed
lines separate each zone and the colours indicate which tape is being pointed at by the
arrow next to the state.

Let T € RTM(Z, n, k) be a moving head Turing machine of radius 7. We define ¢(T) € Aut(A%) by
defining its action over each zone as follows: If the zone has no head or the zone is of size less than
2r 4+ 1, do nothing. Otherwise let ug, ..., u,,—1 and vg,...,v,—1 be the words in the first and second
track respectively, (q,a) € @ x {1, |} be the head and ¢ € {0,...,m — 1} the position of the head in the

third track. Using this information we can construct the configuration = € £% given by:

U if j=( mod2m)e{0,...,m—1}
Xr; =
Vom—j—1 if j = (¢ mod2m)e {m,...,2m —1}
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FIGURE 7. Every zone is wrapped around as a conveyor belt, where ¢(T") acts as if it
were T seeing a periodic word.

And apply T to x, where the position of the head is on £ if @ = 1 and on 2m — £ — 1 otherwise. After
applying the Turing machine’s local rule, recode the result again updating the left and right arrows so
that the zone does not change its shape as shown in Figure 7. With this definition, in each bounded
zone ¢(T') induces a permutation of all possible heads and tape contents while on unbounded zones it
acts as T on an infinite configuration.

The map ¢(T) is clearly continuous and shift invariant and therefore ¢(T') € Aut(A%). Also, ¢ is
clearly a computable map. It suffices to show that ¢ preserves the property of being finite.

Consider F « RTM(Z,n, k)*, and H = {$(w1)p(w2) - - - ¢(w}y) | w € F) generated in Aut(A%). If
(F is infinite, just note that the action of ¢(T") over any configuration such that the third tape is a
single unbounded zone with a head, (that is ... <<« (¢, 1) »>—— ...) replicates exactly the behavior
of T on the first tape. Therefore each element of (F) will act differently over at least one configuration
of this form, implying that H is infinite. Conversely, if (F') is finite, consider the action over any zone
which is unbounded or larger than the maximum movement from the origin attained by a machine in
(F. Obviously such a machine acts as the original machine, so the action on such zones satisfies the
same relations as the action of (F"). Consider then the zones whose length is bounded by a fixed length
h. The number of different machine actions on these zones is bounded as each action is a permutation
over a finite set, thus again the movement of the Turing machine head is bounded. Therefore H is
finite and a rough bound is |H| < [{F)| - (I],,<), (2kmn®™)!) O

Remark 4.9. The above is not the only possible construction for making cellular automata out of
Turing machines. For example in [25], one instead uses a direction bit, and flips the running direction
of the Turing machine (from forward to backward) if it hits the boundary of a computation zone.
This roughly corresponds to the construction in the previous section. This construction does not,
at least without some modifications, give a finiteness-preserving map in the sense of the definition
above: Suppose f and g are Turing machines satisfying no relations. Pick F' = {(f~1g71) - g f} (a
formal product of length 3 in G*) in Definition 4.6. Since id = (f~1g~!)-g- f is torsion as a Turing
machine, we should have that the corresponding cellular automaton ¢(f~1g=1) o ¢(g) o ¢(f) is. But
on a configuration where the direction bit points backwards in time, this cellular automata in fact

simulates the Turing machine go f o g~ o f~! which is of infinite order.

Using that EL(Z?, n, k) is finitely generated and considering the restriction of the map of Lemma 4.7
to EL(Z%, n, k) we obtain that:

Corollary 4.10. For some alphabet A with at least two symbols, there is a finitely generated subgroup

G < Aut(A%) with undecidable torsion problem.
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In Lemma 7 of [35], it is shown that for every finite set A, and every uncountable sofic subshift X
we have that End(A4%) embeds into End(X). In particular Aut(A%) embeds into Aut(X). Letting A
be the alphabet of Corollary 4.10 we obtain Corollary 1.3, that is, that the automorphism group of
every uncountable sofic Z-subshift contains a finitely generated subgroup G with undecidable torsion

problem.

4.4. The torsion problem of finite-state machines. The torsion problem of OB(Z, n, k) is not
of much interest, as an element of this group is periodic if and only if its shift component is 0¢. The
group RFA(Z% n, k) for n > 2, however, is quite interesting. Namely, the decidability of the torsion
problem turns out to be dimension-sensitive as stated in Theorem 1.4. In this section we prove that
theorem in two parts, namely, the one-dimensional part is a corollary of Theorem 4.11 whereas the
multidimensional result is given in Theorem 4.12.

We first show that for d = 1 the torsion problem is decidable. In fact, we obtain this from a more
general result. We say the finiteness problem of a group presentation is decidable if there exists a Turing
machine which on input a finite set of words in the presentation accepts if and only if the elements of
the group represented by those words generate a finite subgroup. This generalizes the torsion problem
which can be regarded as the special case where the set is a singleton.

The proof we presented in the appendix of the conference version [4] contained errors, here we
present a new proof which is based on a strong form of the pigeonhole principle, namely the Ramsey

theorem. A dynamical proof of the same result is given in [36].

Theorem 4.11. Let X be a sofic Z-subshift. Then the finiteness problem of RFA(X,n, k) is decidable

for every n, k = 1.

Proof. Let F be a finite set of Turing machines represented by their local rules and n € N. By Lemma 4.1
given u, v € F'* we can compute the relation ~ where u ~ v if and only if u = v. A semialgorithm which
F™)/ ~ and accepts if U,, = U, 11 for

some n. In other words, the finiteness problem is recursively enumerable, it suffices thus to show it is

accepts if and only if (F) is finite computes the set U, = (|,,<,
co-recursively enumerable.

For the other direction, we may assume that the movement of the machines in F' only depends on
the current symbol under them, and the machines move by at most one cell on each step. To see this,
take a higher power presentation of X by a sufficiently large power p (see Section 1.4 of [30]), and
record the position in a cell modulo p in the state, so that the size of @ changes to kp.

Now, to each word u C X associate
B(u): {om ) x Q = 217,

where the interpretation of (d’,q’) € ¢(u)(q, d) is that, when entering the word u in state ¢ by moving
in direction d, it is possible to apply a finite sequence of finite-state machines in F' so that eventually
the machine exits u by moving in direction d’ in state ¢’. For example by (—,¢’) € ¢(u)(—, ¢) we mean
that there exist f1, fo,..., fr € F' such that

(fro---o fi)lg, zuy) = (¢, vu.y)

where = and y are tails such that xuy € X, and the head does not leave u during the “intermediate
steps”, i.e. for all 1 < j < k we have (fj o---o f1)(q, zu'.u"y) where v = v'u” and |u'[, [u”| > 0.

Recall that sofic Z-subshifts have a regular language [30] and thus have an associated syntactic monoid.
Associate to each nonempty w its class ¢ (u) in the syntactic monoid of L(X). Write I(u) = (¢(u), ¥ (u)).
Then [ is a semigroup homomorphism where defined in the sense that if uv C— X then

I{uv) = (¢(uv), Y(uv)) = ($(u)d(v), Y(u)ip(v)) = I(u)I(v),
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where maps ¢(u) € {«—, >} x Q — 2 >1*Q are given a semigroup structure by observing that the
possible ways one can exit uv after entering it from the left or right are entirely determined by the
corresponding information for u and v.

Now, by the Ramsey theorem, there exists N such that in every word w C X of length at least
N, there is a subword uv such that u and v are nonempty, and I(u) = I(v) = I(uv). To see this,
let w be such a word and color the 2-subset {i,j} = N by I(wy; ;). If N is large enough, there is a
monochromatic subset of size 3, which corresponds to the word wv. In particular, by the previous

paragraph it follows that

for all k.3

If F generates an infinite group, then there are arbitrarily long words w that the head can walk over,
under a suitable application of elements of F'. Otherwise, every long enough word blocks movement,
so F' must generate a finite group. More precisely, we have arbitrarily long words w € X which are
traversable, meaning

(—,d) € B(w)(—,q) or (—,q) € B(w)(—,q)

for some q,q’' € Q.

If w has this property, then all its subwords do. It follows that if F' generates an infinite group then
there is a traversable word u such that I(u) = I(uu). Once we find such a word u, we have u* = X for

all k and that each u” is traversable, thus F must be infinite. O

Before tackling the problem in the multidimensional case, we recall the snake tiling problem
introduced and shown to be undecidable in [24]. In this problem, a set T of square tiles with colored
edges which have an associated direction arrow is given, and the goal is to find a partial tiling of Z2 —
that is, some positions can be left without tiles — such that if among two adjacent tiles the arrow of one
points to the other then they share the same color on the adjacent edge. Furthermore we require that at
least one infinite path appears in the partial tiling while following the direction associated to the tiles.

For the next proof we are going to use a slightly modified version of the snake tiling problem,
which is also undecidable [24]. Instead of using Wang tiles with just an outgoing direction we are
going to use tiles which have both a left and right direction. Formally, let T be a finite set of tiles
with colored edges and functions left,right: T'— D where D = {(1,0), (—1,0),(0,1), (0, —1)} which
satisfy left(t) # right(t) for each t € T. We are going to ask for a partial tiling 7: Z? — T U {e}
such that there exists a function p: Z — Z? such that 7(p(n)) € T, p(n + 1) — p(n) = right(r(p(n)))
and p(n) —p(n + 1) = left(7(p(n + 1))) for all n € Z and all tiles match their non-e neighbors along
the arrows. If a partial tiling 7 with such a path exists, we say the instance (T,left,right) of the
problem admits a snake.

One way to think about this version is that right arrows give instructions on how to walk to +c0 in

this path, while left arrows point to —oo.

Theorem 4.12. For alln = 2,k > 1,d > 2, there is a finitely generated subgroup of RFA(Z%, n, k)

whose torsion problem in undecidable.

Proof. For the rest of the proof we assume d = 2. In the general case, the result follows from the
obvious fact that RFA(Z?,n, k) embeds into RFA(Z?, n, k).

ernatively, one can apply the well-known fact that every finite semigroup has an idempotent, but the argument of the
Al tivel ly th 11-k fact that finit i h id, tent, but th f th
present paragraph makes it more explicit why one can pick the idempotent w in the language of X and so that it has the
traversability property.
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First, let us explain why, if we let the alphabet ¥ be arbitrary and take the local rule of an element
f € RFA(Z?,]%|,2), it is undecidable whether 7T is a torsion element in that group. We then explain
how to do this construction in the case of a fixed alphabet and number of states. Finally, we show
that the torsion problem still remains undecidable in a finitely generated subgroup of RFA(Z2,n, k) for
every n > 2 and k > 1.

Consider an instance of our modified snake tiling problem (7', left,right) where T is the set of tiles.
We choose |X| > |T'| and associate the first |T'| symbols in 3 to the tiles in 7" and the rest to the empty
tile. We construct a local rule f which gives a non-torsion element T if and only if (T, left,right)
admits a snake.

In this instance we ask for two states, we will call them direction bits Q@ = {R, L} standing for
right and left. The machine T has radius F = {(i,j) € Z? | |i| + |j| < 1} and acts as follows:

e Let t be the tile at (0,0). If ¢ = ¢, do nothing.
e Otherwise:
— If the state is L. Check the tile in the direction left(¢). If it matches correctly with ¢
move the head to that position, otherwise switch the state to R.
— If the state is R. Check the tile in the direction right(t). If it matches correctly with ¢
move the head to that position, otherwise switch the state to L

The machine T is reversible and its inverse is given by the machine which does the same but switches
the roles of R and L. If (T,left,right) admits a snake, it suffices to consider the configuration in
22 x X, that contains an infinite snake and such that the head of the machine is positioned somewhere
in the snake. Clearly Ty walks to infinity in that configuration without repeating positions, thus
showing that T is a non-torsion element (recall we are using the moving head model). Conversely, if
(T, left,right) does not admit a snake, then there is an uniform bound on how far Ty can walk from
its starting position before encountering an error or entering a cycle and henceforth T has finite order.
This concludes the proof of undecidability of the torsion problem when the alphabet is arbitrary.

Now we explain how to pass to a fixed alphabet and how to avoid using states. For this we encode
the tiles into squares of size n x n. By having the bottom left corner of the coding contain }1 and
having no two adjacent 1s elsewhere, we ensure that there is a unique way to “parse” a given tiling into
encodings of squares. Clearly, the movements of the machine 7y are now inflated by n and anything
which is not a valid coding of a tile is interpreted as the empty tile. Also, as there is a unique way to
parse correct squares, one can also use the position of the head in the bottom left corner to code the
states. Say, the lower left corner of 11 codes L and the lower right corner of (1,0) codes R. Thus the
state change amounts to a shift by either (1,0) or (—1,0).

The inconvenient part of the previous construction is that the subgroup of machines defined by it
is not necessarily finitely generated. Thus a priori it might be the case that every finitely generated
subgroup of RFA(Z?,n, k) still has decidable torsion problem. In order to show this does not hold we
construct a finite set of machines which simulates the previous construction. For this we are going to use
a specific 7 x 7 square coding which is shown on Figure 8. This coding is composed of three zones. The
outer zone consists of a ring of 1s of side length 7 which serves to code unambiguously the boundary
of the structure. The four bottom left 1s of this zone are used to code the states, this is obtained by
forcing the head of the machine to always stay in one of these positions modulo Z2/7Z2. The middle
zone consists of a ring of Os of side length 5 which serves to separate the three zones so no ambiguity
is possible. Finally there is the inner zone consisting of a 3 x 3 square containing a configuration in
{0,1}°. Four of these bits Iy, 12,71, 72 serve to code two directions in D = {(1,0), (—1,0), (0,1), (0, —1)}.
The rest of the bits are going to be specified later on.
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FIGURE 8. Basic coding of the construction. The outer ring of 1s (blue) codes the
boundary of the cell and the state. The middle ring of Os separates the zones The
inner ring (green) codes the information.

For this construction we are going to use a two bit string s € {0, 1}? as the set of states (which is to
be coded by the head position amongst the four fixed places in the outer ring of 1s). The first bit is the
direction bit, that is, it takes the role of L and R for the first construction. The second bit is the
auxiliary bit, whose role will become clear later on.

Let C be the set of all patterns of shape as in Figure 8 centered in one of four fixed positions in the
ring of 1s —that is, such that the support is of the form ([—i,7 —i] x [0, 7]) n Z? for some i € {0, 1,2, 3}-.
We consider the following finite set of machines as our generating set S.

(1) {Ts}vep that walks in the direction ¥ € D independently of the configuration.
(2)
(3) {gc}eec that flips the direction bit if the current pattern is ¢ € C,
(4) {hc}eec that flips the auxiliary bit if the current pattern is ¢ € C,
(5)
(6) {h4.c}leec that adds the direction bit to the auxiliary bit if the current pattern is ¢ € C,

Tua1x that walks along the direction codified by Iy, 15 or r1, 72 depending on the direction bit.

{9+ c}cec that adds the auxiliary bit to the direction bit if the current pattern is ¢ € C, and

The machine Tya1x is the only one which needs to be carefully defined. It acts similarly to 7'y defined
in the beginning. Formally it does the following:
e If the pattern around the identity does not correspond to a ¢ € C', do nothing.
e Otherwise:
— If the direction bit is 0 check the pattern centered in 71left(¢) from the actual head position.
If it is a valid ¢’ € C' in the same state and its two right bits code —left(t) then move the
head by 7left(t). Otherwise flip the direction bit to 1.
— If the direction bit is 1. Check the pattern centered in 7right(t) from the actual head
position. If it is a valid ¢’ € C' in the same state and its two left bits code —right(¢) then
move the head by Tright(t). Otherwise flip the direction bit to 0.
The machines Ty simply act as the shift by @€ D which is clearly reversible. As (D) = Z? we have
that for every vector @ € Z? the machine T; which moves the head by @ belongs to (S).
Let p* be a pattern consisting of the concatenation of patterns from ¢ which are well aligned along the

columns and lines of 1s. More formally, for a finite F < Z2, p*

is a pattern with support 7F + (([—4,7 —
i]x[0,7])nZ?) for some i € {0, 1,2, 3} and such that for every 7 € F then o~ "% (p*)| (s ,7—ix[0,7))nz2 € C.
We define g,+ and hpx as the machines which flip the direction bit and the auxiliary bit respectively if
they read p*. We claim g,x, hpx € (S). If p* is defined by some singleton F' = {#} it suffices to note
that g, = T_75 0 g. o Try and hyx = T_75 o h. o T7y for the appropriate c € C'. Inductively, we can

choose ¥ € F' and separate p* as the disjoint union of the pattern p}’;\{g} defined by F\{¢}, and the
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pattern p% defined by ¥ and thus write:

_ . . 2 _ . . 2
Gp* = (Tf7v ©Gg+,c© Trzo hpﬁ\{ﬁ}) , and hp* (Tf7v © h+,c oTrzo0 gpﬁ\{ﬁ}> :

Consider an instance (T, left,right) of the snake tiling problem. The information associated to
each tile t € T consists of a 4-tuple of colors (cq, ¢, c3,c4) and the directions left(t) and right(t).
Suppose the tiles of T' are defined using N colors. Let M € N such that M? > log,(N). We define for
each t € T' a macrotile M(t) as a fixed square array of patterns of shape as in Figure 8 of side length
M (see Figure 9). We fix an enumeration of these patterns from the bottom left to the upper right as
{cj}1<j<m2 and denote the bit b; of ¢; as b; ;. We demand M(t) to satisfy the following properties:

e For i€ {1,2,3,4} the sequence of bits {b; j}1<j<n2 codifies the color ¢;.

e b5 =1 and for all j > 1 the bit b5 ; = 0.

e The bits l1,1l5 and 1,75 of ¢; code left(t) and right(t) respectively.

o If left(t) = (1,0) then for all 2 < j < M we have that l;,ly and 71,72 of ¢; code (1,0) and
(—1,0) respectively.

o If right(t) = (1,0) then for all 2 < j < M we have that [y, and r, 72 of ¢; code (—1,0) and
(1,0) respectively.

o If left(t) = (0,1) then for all 1 < j < M — 1 we have that I1,ly and 1,72 of c14 5 code (0,1)
and (0, —1) respectively.

o If right(¢) = (0,1) then for all 1 < j < M — 1 we have that I1,ly and 71,72 of ¢14,m code
(0,—1) and (0, 1) respectively.

As M? > log,(N) it is possible to satisfy the first requirement. The rest are possible to satisfy as
left(t) # right(t) . An example of such a macrotile is represented in Figure 9.

i
i
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||| 1| ||| 0| | || |
||| 1| ||| 0| | || |
||| 1| ||| ™0 || || |
=== =
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!
!
!
!
!

FIGURE 9. An example of macrotile M(t) of side M = 6. The red arrows represent
the function left(¢) = (1,0) while the blue arrows represent right(¢) = (0,1). The
bottom left black square represents b5 1 = 1.

Associate all arrays of M x M codings which do not represent some ¢t € T' to the € tile. Also, let M
be the set of all patterns given as an array of 3 x 3 macrotiles which represent a valid local pattern of
the snake problem and such that the middle tile is not an € tile and are centered in the bottom left

position of the middle macrotile.
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Consider the machine T* € (S given by:

T = (Twalk)M o H gp* © 1_[ ge

preM ceC

We claim that T* is a torsion element if and only if (T, left,right) does not admit a snake.

If (T, 1left,right) admits a snake, it suffices to take a configuration with a snake, replace each tile
and € in it by a corresponding macrotile and put the head of the machine in the lower left corner of
a macrotile belonging to the snake. The machine T* will first detect some pattern ¢ € C, so exactly
one g. will flip the direction bit once. Then it will detect a valid pattern p* of the snake problem and
thus g, will flip again the direction bit amounting to no action at all. Finally, (T, walk)M will just walk
towards the lower left corner of the next macrotile. As the initial configuration codes a snake, repeating
this procedure will make T* walk to infinity, and thus 7% is not a torsion element.

For the converse, we need to analyze more carefully the behavior of T*. First of all, if in the initial
configuration the head is not over a pattern ¢ € C, then T* by definition acts trivially. Otherwise,
suppose the head is over a ¢ € C. The application of HP*GM Gp# © | [.ec 9e can at most do a state
change, and thus the head still sees some ¢’ € C afterwards. Also, by definition of Tya1x, the head will
always see an element of C' after applying (Tya1x)? . This means that the head will always be seeing a
pattern in C' after applying T*.

There are two possible behaviors of T* starting from a pattern in C. If the head is not over a valid
array of macrotiles in M then the direction bit is flipped by g., the second part does nothing, and T3a1x
is applied M times. Otherwise the direction bit is flipped two times, amounting to no flip at all and
Tua1x is applied M times.

These two behaviors translate into the following: If the head is over a valid array of macrotiles in M
then T* can either move into another valid array (and correctly simulate the working of Ty defined
at first in the proof), or it can fall outside a valid array of macrotiles. It it does this, then another
application of T* undoes the last M steps of Tya1x and changes the direction bit. Therefore the machine
continues to live inside a valid array of M and simulate 7. In this case we can use the uniform bound
on the length of the snake to find a bound N such that (T*)" acts trivially over all these configurations.
The only case remaining is when initially the head is not over an array in M and after one application
of T* it stays that way. In this case, we just have that (7%)? acts trivially over these configurations.
Thus showing that (T%)2Y = id and thus T* is a torsion element of {S). O

In the special case where k = 1 the previous result can be expressed in dynamical terms. Namely,
RFA(Z%,n,1) is exactly the topological full group of the full Z2-shift on n symbols. This yields
Corollary 1.5, that is, for every d > 2 the topological full group of the full Z2-shift on n symbols

contains a finitely generated subgroup with undecidable torsion problem.
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APPENDIX A. DICTIONARY OF GROUPS AND MONOIDS

TM(Z4,n,k): the monoid of moving-head Turing machines on Z? with n symbols and k states
(Definition 2.2).

RTM(Z?, n, k): the group of reversible moving-head Turing machines on Z? with n symbols and k
states (Definition 2.2).

TMisx(Z%, n, k): the monoid of moving-tape Turing machines on Z? with n symbols and k states
(Definition 2.12).

RTMg, (7%, n, k): the group of reversible moving-tape Turing machines on Z¢ with n symbols and k
states (Definition 2.12).

SP(Z%,n, k): the group of state permutations, that is, reversible moving-head Turing machines which
do not move the head nor change the tape, and may only permute the state.

LP(Z% n,k): the group of local permutations, that is, reversible moving-head Turing machines which
do not move the head (Definition 3.1).

RFA(Z?,n,k): the group of reversible finite-state automata, that is, reversible moving-head Turing
machines which do not modify the tape (Definition 3.3).

SHIFT(Z%, n, k): the group of reversible moving-head Turing machines that shift by some vector
independent of the tape (this group is naturally isomorphic to Z%).

OB(Z%n,k): the group of oblivious Turing machines, that is, the group generated by LP(Z4, n, k)
and SHIFT(Z%,n, k) (Definition 3.1).

EL(Z%, n, k): the group of elementary Turing machines, that is, the group generated by LP(Z, n, k)
and RFA(Z4,n, k) (Definition 3.9).
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