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Abstract. We give a new characterization of biinfinite Sturmian sequences in terms of indistin-
guishable asymptotic pairs. Two asymptotic sequences on a full Z-shift are indistinguishable if the
sets of occurrences of every pattern in each sequence coincide up to a finitely supported permutation.
This characterization can be seen as an extension to biinfinite sequences of Pirillo’s theorem which
characterizes Christoffel words. Furthermore, we provide a full characterization of indistinguishable
asymptotic pairs on arbitrary alphabets using substitutions and biinfinite characteristic Sturmian
sequences. The proof is based on the well-known notion of derived sequences.
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1. Introduction

Let α P r0, 1s and consider the lower and upper sequences cα and c1α given respectively by

cα : Z Ñ t0, 1u

n ÞÑ tαpn` 1qu´ tαnu
and c1α : Z Ñ t0, 1u

n ÞÑ rαpn` 1qs´ rαns.

When α is rational, the sequences cα and c1α are periodic and their period corresponds to Christoffel
words [9], see Figure 1. More precisely, the shortest periodic pattern and smallest for the lexicographic
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0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

Figure 1. The lower and upper sequences cα and c1α when α “ 5{13 are periodic.

order of cα is the lower Christoffel word of slope p{q where p and q are nonnegative coprime integers
such that α “ p{pp`qq. For example, when α “ 5{13, the lower sequence cα has period 0010010100101

which is the lower Christoffel word of slope 5{8 and the upper sequence c1α has period 1010010100100

which is the upper Christoffel word of slope 5{8. When α is irrational, then cα and c1α are not periodic.
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The restrictions of cα and c1α to Zě1 are equal and correspond to the well-known one-sided characteristic
Sturmian sequence of slope α [22]. In this work, we consider biinfinite sequences as opposed to one-
sided sequences. Over the domain Z, we say that cα and c1α are respectively the lower and upper
characteristic Sturmian sequences of slope α whenever α is irrational.

Sturmian sequences have many equivalent definitions, for example, in terms of aperiodic balanced
sequences [22], irrational rotations [2, 20], factor complexity [12] or return words [27]. On the other
hand, Christoffel words also have many equivalent definitions, including 14 characterizations listed in
[7], see also [8, 9]. A recent book [26] gathers exhaustively the combinatorial properties of Christoffel
words and uses them to prove two important theorems of Markoff for Diophantine approximations and
quadratic forms [21].

In this work, we study a surprising connection between Sturmian sequences and asymptotic pairs
satisfying a natural combinatorial property which originates in thermodynamical formalism. This
property characterizes asymptotic pairs which induce the trivial linear functional on a space of contin-
uous and shift-invariant cocycles on the asymptotic relation of the full Z-shift. See Section 3 of [4] for
further details.

Concretely, given a finite set Σ, we consider the space of sequences ΣZ “ tx : ZÑ Σu endowed with
the prodiscrete topology and the shift action Z σ

ñ ΣZ. In this setting, two sequences x, y P ΣZ are
asymptotic if x and y differ in finitely many positions of Z. The finite set F “ tn P Z : xn ‰ ynu is
called the difference set of px, yq.

Given two asymptotic sequences x, y P ΣZ with the difference set F , we want to compare the number
of occurrences of a fixed pattern. As x and y are asymptotic, occurrences of patterns whose support
do not intersect F are the same, so we only need to consider the occurrences of patterns that appear
intersecting F . As an example, we can take a fixed symbol a P Σ and define ∆apx, yq as the number
of positions n P F such that yn “ a minus the number of positions n P F such that xn “ a. As F is
finite, this value is well defined. More generally, for any given pattern p : S Ñ Σ where S is a finite
subset of Z, we can consider the difference ∆ppx, yq of the number of occurrences of p in y intersecting
F minus the number of occurrences of p in x intersecting F .

We say that px, yq is an indistinguishable asymptotic pair if px, yq is asymptotic and ∆ppx, yq “

0 for every pattern p. A trivial example of an indistinguishable asymptotic pair is px, xq for any x P ΣZ.
Another simple example is x, y P t0, 1uZ where x is equal to 1 at the origin, and 0 everywhere else,
and y is equal to 1 at some nonzero n P Z and 0 everywhere else. Note that in both of these examples
x and y lie on the same orbit of Z σ

ñ ΣZ.
In [4] the authors define the following norm on asymptotic sequences of ΣZ

‖px, yq‖˚NS “ sup
SĎZ

S finite

1
|S|

ÿ

pPΣS

|∆ppx, yq|.

Every asymptotic pair induces an evaluation map on the space of continuous cocycles on the equiv-
alence relation of asymptotic pairs. The authors show that this norm coincides with the dual norm
in the space of linear functionals on the space of continuous cocycles. In other words, the asymptotic
pairs which induce the trivial linear functional are precisely the indistinguishable pairs. In this article,
we provide a full characterization of which asymptotic pairs induce the trivial linear functional.

Using the notion of indistinguishability, we provide a characterization of the lower and the upper
characteristic Sturmian sequences.

Theorem A. Let x, y P t0, 1uZ and assume that x is recurrent. The pair px, yq is an indistinguishable
asymptotic pair with difference set F “ t´1, 0u such that x´1x0 “ 10 and y´1y0 “ 01 if and only if
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there exists α P r0, 1szQ such that x “ cα and y “ c1α are the lower and upper characteristic Sturmian
sequences of slope α.

Theorem A is proved in Section 3. The auxiliary claims in this section bring a new understanding of
Sturmian sequences. In particular, for all n P N the words x´nx´n`1 ¨ ¨ ¨xn´1 and y´ny´n`1 ¨ ¨ ¨ yn´1

of length 2n are optimal representations of the language of cα as both contain exactly one occurrence
of every factor of length n, see Corollary 3.6. Removing the hypothesis that x is recurrent, we obtain a
unifying description of the lower and upper characteristic Sturmian sequences and their limits as their
slope tends towards a rational value.

Theorem B. Let x, y P t0, 1uZ. The pair px, yq is an indistinguishable asymptotic pair with difference
set F “ t´1, 0u such that x´1x0 “ 10 and y´1y0 “ 01 if and only if there exists pαnqnPN with
αn P r0, 1szQ such that

x “ lim
nÑ8

cαn
and y “ lim

nÑ8
c1αn

.

In the case where x is not recurrent, then x and y lie on the same orbit and there exist coprime
integers p, q P Zě0 such that px, yq is the limit of asymptotic pairs formed by the lower and upper
characteristic Sturmian sequences of slope αn as αn converges toward the rational slope p{pp ` qq P

r0, 1sXQ either from above or from below, see Theorem 4.5. Limits of the lower and upper characteristic
Sturmian sequences as their slope tends to a rational number are expressed in terms of Christoffel words,
see Lemma 4.2. The proof of Theorem B follows from Theorem A and Theorem 4.5 and is proved
in Section 4.

Theorem A and Theorem B are related to a famous theorem of Pirillo [23] which provides a char-
acterization of Christoffel words of slope p{q where p and q are positive coprime integers. If p and q

are nonzero, the lower Christoffel word of slope p{q starts with letter 0 and ends with letter 1, so it
can be written as 0m1 for some finite word m P t0, 1u˚ and the corresponding upper Christoffel word
is 1m0. Pirillo gave the following elegant characterization of Christoffel words. Recall that two words
w,w1 P t0, 1u˚ are conjugate if there exists u, v P t0, 1u˚ such that w “ uv and w1 “ vu.

Pirillo’s Theorem ([23]). The word 0m1 P t0, 1u˚ is a lower Christoffel word if and only if 0m1 and
1m0 are conjugate.

0m1 = 0010010100101

1m0 = 1010010100100

(−8,−5)

(0, 0)

(8, 5)

Figure 2. Pirillo’s theorem characterizes Christoffel words: the lower Christoffel
word 0m1 P t0, 1u˚ is conjugate to the upper Christoffel word 1m0.
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Pirillo’s theorem is illustrated in Figure 2. We observe that the conjugacy of 0m1 into 1m0 is
done via their factorization into a product of two palindromes: 0m1 “ 00100 ¨ 10100101 and 1m0 “

10100101 ¨ 00100. The factorization of 0m1 as a product of two palindromes and the fact that the
central word m is a palindrome [9, Prop. 4.2] is also a characterization of Christoffel words, see [13]
and [26, Theorem 12.2.10].

Pirillo’s theorem can be restated for biinfinite sequences as follows: cα is the lower sequence asso-
ciated to the rational slope α “ p{pp` qq for some coprime nonnegative integers p, q if and only if cα
is a shift of c1α. It is natural to ask if there is an analogous statement which holds as we take the
limit p

p`q Ñ α for some irrational α P r0, 1szQ. In this light, Theorem B can be considered as the
extension of Pirillo’s theorem to aperiodic biinfinite sequences where the notion of conjugacy of words
is replaced by the notion of indistinguishability of an asymptotic pair. This seems to be the correct
approach since other alternatives (e.g., having the same language, see Remark 3.8) fail.

The next result provides a full characterization of non-trivial indistinguishable asymptotic pairs for
Z which does not depend upon the form of the difference set or the alphabet. More precisely, we show
that every indistinguishable asymptotic pair can be obtained from limits of pairs of lower and upper
characteristic Sturmian sequences by means of shifts and substitutions.

Given finite sets Σ,Γ, a map ϕ : Σ Ñ Γ` which replaces symbols of Σ by nonempty words on
Γ is called a substitution. This map is naturally extended by concatenation to a continuous map
ϕ : ΣZ Ñ ΓZ.

Theorem C. Let Σ be a finite alphabet and x, y P ΣZ a non-trivial asymptotic pair. Then x, y is
indistinguishable if and only if either

‚ x is recurrent and there exists α P r0, 1szQ, a substitution ϕ : t0, 1u Ñ Σ` and an integer
m P Z such that

tx, yu “ tσmϕpσpcαqq, σ
mϕpσpc1αqqu,

‚ x is not recurrent and there exists a substitution ϕ : t0, 1u Ñ Σ` and an integer m P Z such
that

tx, yu “ tσmϕp80.108q, σmϕp80.0108qu.

This means that every indistinguishable asymptotic pair in Z consists either of (1) two sequences
in the same orbit, which are shifts of a sequence of the form 8v.uv8 for some u, v P Σ`, or (2) two
sequences which, up to translation, can be obtained through a substitution from a pair of lower and
upper characteristic Sturmian sequences. In simpler terms, all non-trivial examples of one-dimensional
indistinguishable asymptotic pairs arise from irrational circle rotations. The proof of Theorem C is
given in Section 5. It is based on the well-known notions of return words and derived sequences [14].

Acknowledgments: The first two authors were supported by the Agence Nationale de la Recherche
through the projects CODYS (ANR-18-CE40-0007) and CoCoGro (ANR-16-CE40-0005). S. Barbieri
was also supported by the FONDECYT grant 11200037. Š. Starosta acknowledges the support of the
OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics”.
This work originated from a visit of the first two authors to Prague in October 2019 supported by
PHC Barrande, a France-Czech Republic bilateral funding and grant no. 7AMB18FR048 of MEYS of
Czech Republic.

2. Preliminaries

Let N denote the set of nonnegative integers. Intervals consisting of integers will be written using
the notation Jn,mK “ rn,ms X Z, for n,m P Z.
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Let Σ be a finite set to which we refer as an alphabet. An element x P ΣZ “ tx : ZÑ Σu is called
a biinfinite sequence. We shall often omit the word “biinfinite” and use the word “one-sided” to refer
to functions with domain Zě1. For n P Z, we write xn to denote the value xpnq. The set ΣZ of all
sequences is endowed with the prodiscrete topology, which is generated by the metric

dpx, yq “ 2´ inft|n| : nPZ and xn‰ynu.

The shift is the map σ : ΣZ Ñ ΣZ where

pσpxqqm “ xm`1 for every m P Z and x P ΣZ.

Let us represent pictorially a sequence x P ΣZ by marking the position of the zero coordinate with
a point as follows:

x “ . . . x´5x´4x´3x´2x´1.x0x1x2x3x4 . . .

Given words u,w P Σ` and y, z P Σ˚ we shall use the notation

x “ 8uy.zw8 P ΣZ

to indicate that the sequence consists of repeated concatenations of u to the left of y, and of repeated
concatenations of w to the right of z.

Definition 2.1. We say that two sequences x, y are asymptotic, or that px, yq is an asymptotic pair,
if the set F “ tn P Z : xn ‰ ynu is finite. F is called the difference set of px, yq. If x “ y we say
that the asymptotic pair is trivial.

Equivalently, x, y are asymptotic if for every sequence tniuiPN of elements of Z such that |ni| Ñ 8,
the distance dpσnipxq, σnipyqq converges to zero.

For finite S Ď Z, a function p : S Ñ Σ is called a pattern and the set S is its support. Given a
pattern p P ΣS , the cylinder centered at p is rps “ tx P ΣZ : x|S “ pu. We say a pattern p appears in
x P ΣZ if there exists n P Z such that σnpxq P rps. Let us also denote by occppxq “ tn P Z : σnpxq P rpsu
the set of occurrences of p in x P ΣZ.

Given a pattern p and sequences x, y P ΣZ, we want to define a number which counts the difference
between the occurrences of p in y compared to the occurrences of p in x. Naively, if 1rps is the indicator
function of rps, we would like to sum over all integers n the difference 1rpspσ

npyqq ´ 1rpspσ
npxqq.

For arbitrary x, y P ΣZ this sum is not well defined. However, it can be given meaning if x, y are
asymptotic. Indeed, if F denotes the difference set of x, y and S denotes the support of p, then
F ´ S “ tf ´ s : f P F, s P Su is the set of all integers for which there exists an s P S such that
n` s P F . In consequence, we have that if n P ZzpF ´ Sq then for every s P S we have that n` s R F
and thus σnpxqs “ σnpyqs, which implies in turn that 1rpspσnpxqq “ 1rpspσ

npyqq. This motivates the
following definition.

Definition 2.2. Let p be a pattern with finite support S Ď Z and x, y P ΣZ be asymptotic sequences
with difference set F . The discrepancy of the pattern p associated to the pair px, yq is given by

∆ppx, yq “
ÿ

nPF´S

1rpspσ
npyqq ´ 1rpspσ

npxqq.

For example, the discrepancy of the pattern p “ abcabc in the sequences

x “ ¨ ¨ ¨ bcabcbcabcabcbcabc. abc bcabcbcabcabcbcabcbc ¨ ¨ ¨ ,

y “ ¨ ¨ ¨ bcabcbcabcabcbcabc. bca bcabcbcabcabcbcabcbc ¨ ¨ ¨

is ∆abcabcpx, yq “ 1 ´ 1 “ 0, because both x and y contain exactly one occurrence of the pattern
p “ abcabc intersecting the difference set F “ t0, 1, 2u.
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Definition 2.3. We say that an asymptotic pair px, yq is an indistinguishable asymptotic pair if
the discrepancy of every pattern p of finite support is ∆ppx, yq “ 0.

A related notion is the one of local indistinguishability given in [3, § 5.1] which corresponds symbol-
ically to having two sequences with the same language (as defined in the next section). This notion
applies to a more general context as it can be defined for pairs which are not asymptotic. An indistin-
guishable asymptotic pair is locally indistinguishable but the converse is not true even for asymptotic
pairs as explained in Remark 3.8.

Whenever x, y are asymptotic, for every pattern p the sets occppxq and occppyq are asymptotic when
seen as sequences in t0, 1uZ. In consequence, the condition ∆ppx, yq “ 0 is equivalent to having occppxq
and occppyq coincide up to a finitely supported permutation of Z. More precisely, we have:

#poccppxq X pF ´ Sqq “ #poccppyq X pF ´ Sqq.

We are interested in understanding which asymptotic pairs are indistinguishable. In order to avoid
simple cases, we will restrict our search to asymptotic pairs which are non-trivial. Notice that non-
trivial indistinguishable asymptotic pairs may consist of sequences that lie in the same orbit. For
example,

x “ 80000 00.11 00008 and y “ 80000 11.00 00008

is an indistinguishable asymptotic pair for Σ “ t0, 1u where the difference set F “ J´2, 1K is shown in
boxes. Here y “ σ2pxq.

2.1. Basic properties of indistinguishable asymptotic pairs. We defined indistinguishable as-
ymptotic pairs through patterns whose support is an arbitrary subset of Z. Next, we show that we
can equivalently characterize indistinguishability using factors, first recalling the definitions.

A pattern w whose support is the set J0, n ´ 1K for some n P N is a word, and we write w “

w0 . . . wn´1. The length of w is denoted by |w| “ n. Let us denote the set of all finite words with
symbols in Σ by Σ˚ “

Ť

nPN ΣJ0,n´1K.
A word w is a factor of x if it appears in x. We write Lnpxq for the set of all factors of x of length

n and the language of x is the union Lpxq of the sets Lnpxq for every n P N.

Proposition 2.4. An asymptotic pair x, y P ΣZ is indistinguishable if and only if for every w P Σ˚

we have
∆wpx, yq “ 0.

Proof. One direction is obvious. Let us suppose that for every w P Σ˚ we have ∆wpx, yq “ 0 and let
S Ď Z be a support and p P ΣS . For every m P Z we can define p1 P Σm`S by p1pm ` sq “ ppsq for
every s P S. For every sequence x P ΣZ we have that x P rps if and only if σ´mpxq P rp1s. Consequently
we have that occppxq “ occp1pxq `m and thus,

∆p1px, yq “ ∆ppx, yq for every asymptotic pair x, y P ΣZ.

By the former argument, without loss of generality, we may assume that S Ď J0, n ´ 1K for some
large enough n.

Notice that rps is the disjoint union of all rws where w is a word of length n such that w|S “ p.
It follows that for any z P ΣZ we have 1rpspzq “ 1 if and only if there is a unique such w such that
rws Ď rps and 1rwspzq “ 1. Letting F be the difference set of x, y we obtain,
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∆ppx, yq “
ÿ

nPF´S

1rpspσ
npyqq ´ 1rpspσ

npxqq

“
ÿ

nPF´J0,n´1K

1rpspσ
npyqq ´ 1rpspσ

npxqq

“
ÿ

nPF´J0,n´1K

ÿ

wPΣJ0,n´1K

rwsĎrps

1rwspσ
npyqq ´ 1rwspσ

npxqq.

Exchanging the order of the sums yields

∆ppx, yq “
ÿ

wPΣJ0,n´1K

rwsĎrps

∆wpx, yq “ 0.

And thus x, y is an indistinguishable asymptotic pair. �

Given a sequence x P ΣZ, define its reversal xR by setting xRpnq “ xp´nq for every n P N. The
next proposition states that indistinguishable asymptotic pairs are stable under actions of the affine
group of Z.

Proposition 2.5. Let x, y P ΣZ be an indistinguishable asymptotic pair.

(1) For every n P Z, pσnpxq, σnpyqq is an indistinguishable asymptotic pair.
(2) pxR, yRq is an indistinguishable asymptotic pair.

Proof. Given a pattern p with support S, denote by ´p the pattern with support ´S such that
´pp´sq “ ppsq. It is clear that if x P ΣZ and n P N, then for every pattern p,

occppxq “ occppσnpxqq ´ n and occppxq “ ´occ´ppxRq.

Note that if x, y is an asymptotic pair with difference set F , then the difference set for σnpxq, σnpyq is
F ´ n and the difference set for xR, yR is ´F .

From the relations on the occurrence sets, we obtain that for every pattern p we have that

∆ppx, yq “ ∆ppσ
npxq, σnpyqq “ ∆´ppxR, yRq.

In particular, x, y is indistinguishable if and only if σnpxq, σnpyq is indistinguishable if and only if
xR, yR is indistinguishable. �

Let us recall that a sequence pxmqmPN of sequences in ΣZ converges to x̄ P ΣZ if for every n P Z we
have that pxmqn “ x̄n for all large enough m P N. If pxm, ymqmPN is a sequence of asymptotic pairs, it is
natural to ask that both pxmqmPN and pymqmPN converge to say that pxm, ymqmPN converges. However,
if we only asked for that there would be no guarantee that the limit is also an asymptotic pair. We
shall consider a slightly stronger notion of convergence for asymptotic pairs which ensures that the
limit is also an asymptotic pair.

Definition 2.6. We say that a sequence pxn, ynqnPN of asymptotic pairs converges to a pair px, yq if
pxnqnPN converges to x, pynqnPN converges to y, and there exists a finite set F Ď Z so that xn|ZzF “
yn|ZzF for all large enough n P N.

This notion of convergence is also used in the theory of topological orbit equivalence of Cantor
minimal systems. An interested reader can refer to [24] for further information. The advantage of this
notion in our context is that it preserves indistinguishability.

Proposition 2.7. Let pxn, ynqnPN be a sequence of asymptotic pairs in ΣZ which converges to px, yq.
If for every n P N we have that pxn, ynq is indistinguishable, then px, yq is indistinguishable.
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Proof. Let p P ΣS be a pattern. As pxn, ynqnPN converges to px, yq, there exists a finite set F Ď Z and
N1 P N so that xn|ZzF “ yn|ZzF for every n ě N1. In particular we have that the difference sets of
px, yq and pxn, ynq for n ě N1 are contained in F . It suffices thus to show that

#toccppxq X pF ´ Squ “ #toccppyq X pF ´ Squ.

As pxnqnPN converges to x and pynqnPN converges to y, there exists N2 P N such that

xn|pF´Sq`S “ x|pF´Sq`S and yn|pF´Sq`S “ y|pF´Sq`S for all n ě N2.

This implies that occppxqX pF ´Sq “ occppxnqX pF ´Sq and occppyqX pF ´Sq “ occppynqX pF ´Sq
for every n ě N2. Taking N “ maxtN1, N2u, as pxn, ynq is indistinguishable with the difference set
contained in F , it follows that for n ě N we have #toccppxnq X pF ´ Squ “ #toccppynq X pF ´ Squ.

Therefore we obtain #toccppxq X F ´ Su “ #toccppyq X F ´ Su. As this argument holds for every
pattern p, we conclude that px, yq is indistinguishable. �

2.2. Recurrence of indistinguishable asymptotic pairs. In this section, we study the recurrence
of indistinguishable asymptotic pairs. To that end, we shall first show that if x, y is an indistinguishable
asymptotic pair, then every pattern with support I Ď Z which appears in x must necessarily appear
at some position n P Z so that n ` I intersects the difference set of x, y. More precisely, let us say
that the occurrences of a word w P Lpxq intersect F in x if occwpxq X pF ´ J0, |w| ´ 1Kq ‰ ∅.
Equivalently, there exist i P F and j P J0, |w| ´ 1K such that σi´jpxq P rws.

Lemma 2.8. Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair with the difference set
F . The occurrences of every w P Lpxq intersect F in x.

Proof. Without loss of generality, let us suppose that F is contained in J0, k ´ 1K, x0 ‰ y0, and
xk´1 ‰ yk´1. Let us write I “ J0, |w| ´ 1K. If pF ´ Iq X occwpxq “ ∅, then there is u P occwpxq such
that either (1) u is the smallest value satisfying u ě k or (2) u is the largest value satisfying u ď ´|w|.
We shall deal with case the (1), the second case is analogous.

As J0, k ´ 1K contains the difference set of x, y we have that xu . . . , xu`|w|´1 “ yu . . . , yu`|w|´1.
Let w1 “ yk´1 . . . yu`|w|´1. As xk´1 ‰ yk´1, we obtain σk´1pyq P rw1s but σk´1pxq R rw1s. As
∆w1px, yq “ 0, there must be some j1 P F and i1 P J0, u ` |w| ´ kK such that j1 ´ i1 ‰ k ´ 1 and
σj
1
´i1pxq P rw1s and, since w is a suffix of w1, σj1´i1`u´pk´1qpxq P rws.
Let u1 “ j1 ´ i1 ` u´ pk ´ 1q. On one hand, we have j1 ´ i1 ă k ´ 1 and thus u1 ă u. On the other

hand, u1 ě 0´pu`|w|´kq`u´pk´1q “ ´|w|`1. Since u is the smallest value of occwpxq satisfying
u ě k, we obtain u1 P F ´ I which is a contradiction. �

A sequence x P ΣZ is called recurrent if every w P Lpxq occurs at least twice in x. It is quite easy
to see that x is recurrent if and only if occwpxq is in fact an infinite set for every w P Lpxq.

We say that x is uniformly recurrent if every w P Lpxq appears with bounded gaps, that is, for
every w P Lpxq there exists an integer g ě 1 such that for every n P Z there is 0 ď m ď g such that
σn`mpxq P rws.

It is clear that if px, yq is an indistinguishable asymptotic pair, then x is (uniformly) recurrent if
and only if y is (uniformly) recurrent.

Proposition 2.9. Let x, y P ΣZ be an indistinguishable asymptotic pair. If x is not recurrent, then x

and y lie in the same orbit.

Proof. If x is not recurrent, there is a word w P Lpxq such that #poccwpxqq “ 1. Without loss of
generality let us assume that w occurs at the origin, that is, occwpxq “ t0u. As ∆wpx, yq “ 0, it follows
that #poccwpyqq “ 1 as well. Let m be the only integer such that σmpyq P rws.
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Let n P N be larger than the length of w. Let qn “ x|J´n,nK. As x P rqns and ∆qn
px, yq “ 0, there

exists k P Z so that σkpyq P rqns. Furthermore, as qn|J0,|w|´1K “ w, it follows that σkpyq P rws and
thus k “ m. Therefore we obtain that σmpyq P rqns for every large enough n. As

Ş

nPNrqns “ txu we
deduce that σmpyq “ x. �

Next we are going to show that recurrent indistinguishable asymptotic pairs are in fact uniformly
recurrent. To that end, we recall the notions of return word [14, 18, 27] and complete return word [15].

Definition 2.10. A word u P Σ` is a complete return word to w P Σ` in x P ΣZ if u appears in
x, u “ ws “ pw for some nonempty words p, s P Σ`, and there are only two occurrences of w in u,
one as a prefix and one as a suffix. The word p is called a return word to w in x.

Note that the two occurrences of w in a complete return word u “ ws “ pw to w may overlap.
Denote the set of all complete return words to w in x by CRWwpxq and the set of all return words to w
in x by RWwpxq. The following fact is elementary.

Lemma 2.11. Let x P ΣZ. The following are equivalent.
(1) x is uniformly recurrent.
(2) x is recurrent and for every w P Lpxq we have that CRWwpxq is finite.
(3) x is recurrent and for every w P Lpxq we have that RWwpxq is finite.

Lemma 2.12. Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair. If x is recurrent, then
x is uniformly recurrent.

Proof. Without loss of generality, suppose the difference set of px, yq is contained in F “ J0, k ´ 1K.
Suppose x is not uniformly recurrent. By Lemma 2.11 there is a word w P Lpxq such that CRWxpwq

is infinite. As CRWxpwq is infinite, there exist distinct v1, v2, v3 P CRWxpwq such that mint|v1|, |v2|u ą

k ` 2|w| and |v3| ą k ` 2 maxt|v1|, |v2|u. By Lemma 2.8 the words v1, v2 and v3 must occur in x at
positions such that their support intersects F “ J0, k ´ 1K.

As mint|v1|, |v2|u ą k ` 2|w|, exactly one of the two occurrences of w in v1 must be completely
contained in the support L1 “ J´|v1| ` 1,´1K or the support R1 “ Jk, k` |v1| ´ 1K. Similarly, exactly
one occurrence of w in v2 appears in L2 “ J´|v2| ` 1,´1K or R2 “ Jk, k ` |v2| ´ 1K. As v1, v2 are
distinct complete return words, if an occurrence of w coming from v1 appears in L1, then another
coming from v2 appears in R2. Analogously, if there is an occurrence of w coming from v1 in R1, then
an occurrence of w coming from v2 appears in L2.

In consequence with the reasoning above, the word w appears completely contained both in the
interval J´maxt|v1|, |v2|u`1,´1K and in the interval Jk, k`maxt|v1|, |v2|u´1K. As v3 is also a complete
return word which appears intersecting F and |v3| ą k ` 2 maxt|v1|, |v2|u, this means that there are
no copies of w completely contained in either J´maxt|v1|, |v2|u ` 1,´1K or Jk, k`maxt|v1|, |v2|u ´ 1K,
contradicting the above statement. �

Gathering Proposition 2.9 and Lemma 2.12 we obtain the following beautiful dichotomy.

Corollary 2.13. Let x, y P ΣZ be a non-trivial asymptotic indistinguishable pair. Then exactly one of
the following statements holds

(1) x “ σnpyq for some nonzero n P Z,
(2) x and y are uniformly recurrent.

Proof. If x is not recurrent, then by Proposition 2.9 we obtain that x “ σnpyq for some n P Zzt0u. If
x is recurrent, then y is also recurrent. Applying Lemma 2.12 we obtain that x and y are uniformly
recurrent.
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Let us assume that both conditions happen at the same time. As x “ σnpyq for some nonzero
n P Z and x, y are asymptotic, we obtain that x is eventually periodic. Furthermore, as x is uniformly
recurrent, we obtain that x is a periodic sequence. Hence the only possibility to have a finite difference
set is having x “ y, which contradicts the non-triviality assumption. �

3. Lower and upper characteristic Sturmian sequences on Z

The purpose of this section is to prove Theorem A, that is, that recurrent indistinguishable as-
ymptotic pairs x, y P t0, 1uZ whose difference set is of size 2 consist of lower and upper characteristic
Sturmian sequences and vice versa. The proof of the first implication is based on the description of
Sturmian sequences as lower and upper mechanical words, a terminology introduced by Morse and
Hedlund [22]. Notice that here the word “mechanical word” is used to refer to a biinfinite sequence
in our context. The proof of the reciprocal is based on the description of Sturmian sequences by their
factor complexity [12]. Schematically, the proofs in this section are done as follows:

x, y are mechanical words

x, y is an indistinguishable asymptotic pair

x, y have complexity n+ 1

The fact that recurrent sequences with complexity n`1 are mechanical words of irrational slope implies
that all the aforementioned are equivalent.

3.1. Mechanical words. Given two real numbers α and ρ with 0 ď α ă 1, we define two sequences

sα,ρ : ZÑ t0, 1u, s1α,ρ : ZÑ t0, 1u

by

sα,ρpnq “ tαpn` 1q ` ρu´ tαn` ρu,

s1α,ρpnq “ rαpn` 1q ` ρs´ rαn` ρs.

The sequence sα,ρ is the lower mechanical word and s1α,ρ is the upper mechanical word with
slope α and intercept ρ, see Chapter 2 of [20]. It is clear that if ρ´ρ1 is an integer, then sα,ρ “ sα,ρ1

and s1α,ρ “ s1α,ρ1 . Thus we may always assume 0 ď ρ ă 1.
The mechanical words sα,ρ, s1α,ρ are in fact codings of trajectories of irrational circle rotations,

namely, consider the isometry Rα : R{Z Ñ R{Z, where Rαpρq “ pρ ` αq mod 1 for every ρ P R{Z.
Consider the partition P “ tI0, I1u of R{Z given by I0 “ r0, 1 ´ αq and I1 “ r1 ´ α, 1q. For ρ P R{Z,
define

νpρq “ i if ρ P Ii for i P t0, 1u.

We obtain
sα,ρpnq “ νpRnαpρqq for every n P Z,

i.e., sα,ρ is the coding of the trajectory of ρ with respect to the partition P, see Section 2.2.2 of [20].
Similarly, sα,ρ is the coding of the trajectory of ρ with respect to the partition P 1 “ tI 10, I 11u of R{Z
given by I 10 “ p0, 1´ αs and I 11 “ p1´ α, 1s.

Since 1` tαn` ρu “ rαn` ρs whenever αn` ρ is not an integer, one has sα,ρ “ s1α,ρ except when
αn` ρ is an integer for some n P Z. As α R Q, this can happen for at most one n P Z, in this case,

sα,ρpn´ 1q “ 1, s1α,ρpn´ 1q “ 0,

sα,ρpnq “ 0, s1α,ρpnq “ 1,
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and elsewhere
sα,ρpkq “ s1α,ρpkq whenever k R tn´ 1, nu.

In what follows, we say that the sequence cα “ sα,0 is the lower characteristic Sturmian
sequence of slope α and the sequence c1α “ s1α,0 is the upper characteristic Sturmian sequence
of slope α. Notice that cαpnq “ c1αpnq if and only if n P Zzt´1, 0u.

Remark 3.1. For one-sided sequences, the characteristic Sturmian sequence of slope α is usually the
one having two distinct extensions to the left, see [6], [5] or [1, §9]. Here, we consider biinfinite Sturmian
sequences as in [2, §6.2], and we believe it is more natural to define sα,0 and s1α,0 with intercept ρ “ 0
as the lower and upper “characteristic” ones.

3.2. Pairs of characteristic Sturmian sequences are indistinguishable.

Proposition 3.2. The lower and upper characteristic Sturmian sequences pcα, c1αq form a non-trivial
indistinguishable asymptotic pair for every irrational α P r0, 1szQ.

Proof. From the above discussion, it follows that cα and c1α are asymptotic with the difference set
t´1, 0u. The pair is non-trivial since the difference set is nonempty. Note that in this case,

cαp´1q “ 1, c1αp´1q “ 0,

cαp0q “ 0, c1αp0q “ 1.

Let m P N and w P t0, 1um. We shall show that

(1)
m
ÿ

i“0
1rwsσ

´ipcαq “
m
ÿ

i“0
1rwsσ

´ipc1αq.

Note that this sum above has m ` 1 indexes. As cα, c1α are Sturmian of angle α, we have that
Lmpcαq “ Lmpc1αq is of size m` 1. Together with showing that for each word w P Lmpcαq there exist
i, i1 P J0,mK such that σ´ipcαq P rws and σ´i1pc1αq P rws, it implies that such i and i1 are unique, which
implies (1).

Let us consider the refinement Pm “
Ž

jPJ0,m´1KR
´j
α pPq. That is, the partition obtained by

intersecting the semiclosed intervals of each shifted partition R´jα pPq between themselves. By definition
of the coding ν, for each w P Lmpcαq there is I P Pm such that for every x P I we have

νpxqνpRαpxqq ¨ ¨ ¨ νpR
m´1
α pxqq “ w.

In consequence, there are m`1 semiclosed intervals in Pm representing each word in Lmpcαq. Note
that the set of (closed) endpoints of the semiclosed intervals in Pm is given by the collection:

t0,´α mod 1,´2α mod 1, . . . ,´mα mod 1u .

As for i P J0,mK we have σ´ipcαq “ sα,´iα, we obtain that each of these shifts σ´ipcαq begins in
one of the above endpoints. This proves that there exists i P J0,mK such that σ´ipcαq P rws.

The situation for the upper characteristic word c1α is analogous with the following distinction: all
intervals are left-open right-closed, that is, the initial partition is I 10 “ p0, 1 ´ αs and I 11 “ p1 ´ α, 1s.
The analogous partition pP 1qm has the same set of endpoints as Pm and thus the same conclusion
follows.

Equality (1) implies ∆wpx, yq “ 0 for all w P Lmpcαq and all m. By Proposition 2.4, the lower and
upper characteristic words form an indistinguishable pair. �

Remark 3.3. If tαn ` ρ : n P Zu X Z “ ∅, then sα,ρ “ s1α,ρ and then sα,ρ and s1α,ρ form a trivial
indistinguishable asymptotic pair. Otherwise, if there exists n P Z such that αn ` ρ P Z, then
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cα “ σnpsα,ρq and c1α “ σnps1α,ρq. By Propositions 2.5 and 3.2 it follows that sα,ρ and s1α,ρ form a
non-trivial indistinguishable asymptotic pair.

3.3. Recurrent indistinguishable asymptotic pairs are Sturmian. The goal of this subsection
is to prove the reciprocal about recurrent indistinguishable asymptotic pairs with difference set F “
t´1, 0u. In order to do that, we shall first show that their factor complexity, which counts the number
of words of each length in their language, coincides with that of a Sturmian sequence.

The factor complexity of a sequence x P t0, 1uZ is the mapping n ÞÑ #Lnpxq. Let us recall that
a sequence x P t0, 1uZ is Sturmian if its factor complexity #Lnpxq “ n` 1 for every n P N and it is
not eventually periodic [2, Def. 6.2.4, Prop. 6.2.5]. Moreover, a sequence is Sturmian if and only if it
is a lower or upper mechanical word for some irrational slope α [22, 12], see also [20, Theorem 2.1.13].

The study of factor complexity is closely related to special factors, a notion which is used in the next
proof to provide a lower bound. A word w P Lnpxq is called right special (left special resp.) in x if
there exists at least two distinct letters a, b P Σ such that wa,wb P Ln`1pxq (such that aw, bw P Ln`1pxq

resp.), see [11].
A consequence of Lemma 2.8 is that the factor complexity of indistinguishable asymptotic pairs can

be bounded above by the size of the smallest interval that contains their difference set.

Proposition 3.4. Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair whose difference set
F is contained in an interval I. We have that for every n ě 1

n` 1 ď #Lnpxq ď n`#pIq ´ 1.

Proof. By Lemma 2.8, the occurrences of every w P Lnpxq intersect F in x. In other words, for each
w P Lnpxq there exists u P F ´ J0, n´ 1K such that σupxq P rws. Without loss of generality, by shifting
x and y we may assume that F Ď J0, k´ 1K (hence I “ J0, k´ 1K), so there exists a surjective function
from J´n` 1, k ´ 1K to Lnpxq. In particular, #Lnpxq ď n` k ´ 1 “ n`#pIq ´ 1.

In order to obtain the lower bound, notice that as x ‰ y, we have F ‰ ∅ and thus we can define
m “ maxti P Z | xi ‰ yiu. For all n ě 0, we have that the word

w “ xm`1 . . . xm`n “ ym`1 . . . ym`n

can be left-extended to a word of length n` 1 in Ln`1pxq in two different ways, namely

w1 “ xmw, w2 “ ymw.

Thus, w is a left special factor in x. Since every factor in Lnpxq can be extended to the left by one
symbol to get a word in Ln`1pxq and for every n there exists a left special factor of length n in x, it
implies that #Ln`1pxq ´#Lnpxq ě 1 for every n ě 0. Since x ‰ y, then #L1pxq “ #Σ ě 2 and we
conclude #Lnpxq ě n` 1. �

As a consequence, when the difference set of x and y is of size 2, the factor complexity must be
n` 1.

Corollary 3.5. If x, y P ΣZ is a non-trivial indistinguishable asymptotic pair with difference set
F “ t´1, 0u, then #Lnpxq “ n` 1.

Proof. By Proposition 3.4 we deduce that n` 1 ď #Lnpxq “ #Lnpyq ď n`#F ´ 1 “ n` 1 for every
n P N and thus #Lnpxq “ #Lnpyq “ n` 1 for every n P N. �

It is known that for each Sturmian sequence and each nonnegative integer n, some factor of length
2n of the sequence contains the n`1 factors of length n of the sequence, see for instance [10, Corollary
5.2]. It turns out that the central factors of x and y of length 2n provide two such words.
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Corollary 3.6. If x, y P ΣZ is a non-trivial indistinguishable asymptotic pair with difference set
F “ t´1, 0u, then each of the words x´nx´n`1 ¨ ¨ ¨xn´1 and y´ny´n`1 ¨ ¨ ¨ yn´1 contain exactly one
occurrence of each word in Lnpxq.

Proof. From Corollary 3.5, #Lnpxq “ #Lnpyq “ n ` 1 for every n P N. From Lemma 2.8, both
x´nx´n`1 ¨ ¨ ¨xn´1 and y´ny´n`1 ¨ ¨ ¨ yn´1 contain an occurrence of every factor of Lnpxq. All of the
occurrences must be distinct or otherwise #Lnpxq ă n` 1. �

For example, the following two words of length 26 contains the same 14 factors of length 13:

1010010100101.0010010100101

1010010100100.1010010100101

It is well-known that one-sided sequences of complexity n ` 1 are not eventually periodic, see [2,
Th. 6.1.8] and [20, Th. 2.1.13]. This is no longer true for biinfinite sequences of complexity n` 1, e.g.,
consider 80.18 or 80.108. A way to exclude eventually periodic sequences of complexity n ` 1 in
the biinfinite setting is to consider recurrent sequences. For completeness, we provide a proof of the
following result which can be considered as folklore even if not mentioned in [2, §6.2].

Proposition 3.7. x P t0, 1uZ is Sturmian if and only if x is recurrent and #Lnpxq “ n` 1.

Proof. Sturmian sequences are recurrent, see [2, Exercise 6.2.10].
Assume now that x is recurrent and #Lnpxq “ n`1. For contradiction, assume that x is eventually

periodic. Let x “ vp8 where p is the shortest such word (and v is a one-sided left infinite word). The
choice of p implies that the set of factors of length |p| of the word p8 has exactly |p| elements. As
L|p|pxq “ |p|`1, there is a word u P Lpxq which does not occur in p8, and there is a last occurrence of
u in x. The last occurrence of u in x is followed by an arbitrarily long factor s with no occurrence of u,
and, as x is recurrent, the factor us has infinitely many occurrences in v. Therefore, u has unbounded
gaps between its occurrences. In particular, there are at least three distinct complete return words
tr1, r2, r3u to u in Lpxq. More precisely, for each a P t1, 2, 3u, ra contains exactly two occurrences of
u, one as a prefix and one as a suffix. Let pab denote the longest common prefix of ra and rb. Up to
some permutation of the complete return words, we have

|p12| “ |p13| ă |p23|.

The word p12 is a right special factor in Lpxq, that is, there exist two distinct letters a, b P t0, 1u
such that p12a, p12b P Lpxq. The suffix s of p23 of length |p12| is also a right special factor in Lpxq.
Moreover, p12 ‰ s since u is a prefix of p12 and s contains no occurrence of u. This implies that
#LN`1pxq ´#LN pxq ě 2 for some integer N P N, a contradiction.

The case with w being eventually periodic to the left, i.e., w “ 8pv, is analogous. We conclude that
x is not eventually periodic, and thus it is Sturmian by definition. �

These complexity bounds are the main tools to provide the characterization of pairs consisting of
lower and upper characteristic Sturmian sequences by recurrent indistinguishable asymptotic pairs.

Proof of Theorem A. By Proposition 3.2, the lower characteristic word cα and the upper characteristic
word c1α form an indistinguishable asymptotic pair for every irrational α with F “ t´1, 0u as their
difference set where x´1x0 “ 10 and y´1y0 “ 01 for x “ cα and y “ c1α. If α P r0, 1szQ, then x and y

are recurrent.
Conversely, from Corollary 3.5 we have #Lnpxq “ n` 1. From Proposition 3.7, recurrent sequences

on Z of complexity n` 1 are Sturmian sequences. We conclude that x and y are Sturmian sequences
13



with the same language associated to some irrational slope α P r0, 1szQ. Since x|ZzF “ y|ZzF with
F “ t´1, 0u such that x´1x0 “ 10 and y´1y0 “ 01 we conclude that x “ cα and y “ c1α are
respectively the lower and upper characteristic Sturmian sequences with slope α. �

Remark 3.8. One might wonder if it is possible to prove Theorem A with weaker assumptions, for
instance, by asking just that Lpxq “ Lpyq instead of indistinguishability. This particular condition does
not suffice, even if we further ask that the sequences are uniformly recurrent. Indeed, let z P t0, 1uZzt0u

be defined by zpnq “ k mod 2 whenever k ě 1 and n “ 2k´1 mod 2k. Notice that z is well defined for
every nonzero integer and looks as follows

z “ . . . 101110101011101.?101110101011101 . . .

Let x, y P t0, 1uZ be the asymptotic pair defined by

xpnq “

$

&

%

0 if n “ 0

zpnq otherwise
and ypnq “

$

&

%

1 if n “ 0

zpnq otherwise
.

The sequences x and y are limits of Toeplitz sequences which were defined in [17]. They are
uniformly recurrent (see for instance [19, Section 4.6]), have the same language and are not Sturmian.
Furthermore, if one wishes to construct an example with difference set t´1, 0u, one can consider
the Thue-Morse substitution ϕ : t0, 1u Ñ t0, 1u˚ given by ϕp0q “ 01 and ϕp1q “ 10 and consider
x1 “ σpϕpxqq and y1 “ σpϕpyqq. Then x1, y1 are uniformly recurrent, form an asymptotic pair with the
same language, and have difference set t´1, 0u. A direct inspection of their language shows that they
are not Sturmian.

4. Limits of Sturmian sequences toward rational slopes

In this section, we describe limits of Sturmian sequences toward a rational slope from above or
from below and we show that they also constitute indistinguishable asymptotic pairs in Z. Such words
were already considered for instance in [25] and in [16] (see condition B4 and Figure 2). We prove
Theorem 4.5 about non-recurrent sequences which, together with Theorem A, implies Theorem B.

4.1. Christoffel words. Christoffel words have many equivalent definitions, see [8, 7] and the books
[9, 26]. Let p, q P Z be coprime integers such that p{q P Qě0 Y t8u where the limit cases are written
as 0 “ 0{1 and 8 “ 1{0. The lower Christoffel word of slope p{q is the factor of length p ` q of
the lower mechanical word of slope α “ p{pp` qq and intercept ρ “ 0 starting at index 0:

cαp0qcαp1q ¨ ¨ ¨ cαpp` q ´ 1q.

Similarly, the upper Christoffel word of slope p{q is the factor of length p ` q of the upper
mechanical word of slope α “ p{pp` qq and intercept ρ “ 0 starting at index 0:

c1αp0qc1αp1q ¨ ¨ ¨ c1αpp` q ´ 1q.

If p “ 0 and q “ 1, then the lower and upper Christoffel word of slope p{q “ 0 is 0. If p “ 1 and q “ 0,
then the lower and upper Christoffel word of slope p{q “ 8 is 1.

4.2. Limits of Sturmian sequences. The lower and upper characteristic Sturmian sequences are
related to each other as one is the shifted reversal of the other. More precisely we have the following
elementary result based on the symmetry of floor and ceiling functions.
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Lemma 4.1. The lower characteristic Sturmian sequence is the shifted reversal of the upper charac-
teristic Sturmian sequence in the sense that cαpnq “ c1αp´n´ 1q for every n P Z. Moreover

cαpnq “ cαp´n´ 1q and c1αpnq “ c1αp´n´ 1q

for every n P Zzt´1, 0u.

Proof. For all x P R, we have txu “ ´r´xs. Thus cαpnq “ tαpn`1qu´ tαnu “ rαp´nqs´ rαp´n´1qs “
c1αp´n´1q. Also, if n P Zzt´1, 0u, then cαpnq “ c1αp´n´1q “ cαp´n´1q. The same holds for c1α. �

Limits of lower or upper characteristic Sturmian sequences toward rational slopes are eventually
periodic sequences of complexity n` 1 which can be expressed in terms of Christoffel words.

Lemma 4.2. Let p, q P Zě0 be coprime integers. Limits of lower or upper characteristic Sturmian
sequences as their slope tends towards p{pp ` qq are of one of the following forms depending on the
value of p and q. If p ‰ 0 and q ‰ 0, then

lim
αÑ p

p`q
`
cα “

8
p1m0qp1m1q.p0m1qp0m1q8,

lim
αÑ p

p`q
`
c1α “

8
p1m0qp1m0q.p1m1qp0m1q8,

lim
αÑ p

p`q
´
cα “

8
p0m1qp0m1q.p0m0qp1m0q8,

lim
αÑ p

p`q
´
c1α “

8
p0m1qp0m0q.p1m0qp1m0q8,

where 0m1 and 1m0 are respectively the lower and upper Christoffel word of slope p{q with m P t0, 1u˚.
When p “ 0 and q “ 1 and the limit is done from above, then

lim
αÑ p

p`q
`
cα “ lim

αÑ0`
cα “

801.008,

lim
αÑ p

p`q
`
c1α “ lim

αÑ0`
c1α “

800.108.

When p “ 1 and q “ 0 and the limit is done from below, then

lim
αÑ p

p`q
´
cα “ lim

αÑ1´
cα “

811.018,

lim
αÑ p

p`q
´
c1α “ lim

αÑ1´
c1α “

810.118.

Proof. Recall that cαpnq “ tαpn ` 1qu ´ tαnu. Let p{q P Qą0 where p, q P Zą0 are coprime integers.
We compute the values of limαÑ p

p`q
` cαpnq at n “ ´1, n “ 0 and n “ p` q ´ 1:

lim
αÑ p

p`q
`
cαp´1q “ lim

αÑ p
p`q

`
tαp´1` 1qu´ tαp´1qu “ 0´ p´1q “ 1,

lim
αÑ p

p`q
`
cαp0q “ lim

αÑ p
p`q

`
tαp0` 1qu´ tαp0qu “ 0´ 0 “ 0,

lim
αÑ p

p`q
`
cαpp` q ´ 1q “ lim

αÑ p
p`q

`
tαpp` q ´ 1` 1qu´ tαpp` q ´ 1qu “ p´ pp´ 1q “ 1.

For 0 ď n ď p`q´1, we have limαÑ p
p`q

` cαp1q ¨ ¨ ¨ cαpp`q´1q “ 0m1 P t0, 1u˚ is the lower Christoffel
word of slope p{q. We now prove that p` q is a period of n ÞÑ limαÑ p

p`q
` cαpnq on the domain Zě0.
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Let n ě 0, we have

lim
αÑ p

p`q
`
cαpn` p` qq “ lim

αÑ p
p`q

`
tαpn` p` q ` 1qu´ tαpn` p` qqu

“ lim
αÑ p

p`q
`

tαpn` 1qu` p´ tαnu´ p

“ lim
αÑ p

p`q
`

tαpn` 1qu´ tαnu “ lim
αÑ p

p`q
`
cαpnq.

From Lemma 4.1, we have cαpnq “ cαp´n´1q for every n P Zzt´1, 0u and this shows the first equality
since m is a palindrome:

lim
αÑ p

p`q
`
cα “

8
p1m0qp1m1q.p0m1qp0m1q8.

The other equalities are proved similarly. �

Remark 4.3. In general, the pair
`

8
p1m0qp1m1q.p0m1qp0m1q8,8p1m0qp1m0q.p1m1qp0m1q8

˘

is not
indistinguishable. For instance, when m “ 0011 the asymptotic pair

x “
8
p100110qp100111q.p000111qp000111q8,

y “
8
p100110qp100110q.p100111qp000111q8

is not indistinguishable because the pattern 00111 appears in x intersecting the difference set F “

t´1, 0u, but it does not appear in y intersecting the difference set F .

4.3. Non-recurrent indistinguishable asymptotic pairs. We first prove that limits of pairs con-
sisting of lower and upper characteristic Sturmian sequences whose slope tends towards a rational
number are indistinguishable asymptotic pairs. Then, we show in Theorem 4.5 that non-recurrent
indistinguishable asymptotic pairs whose difference set is of size 2 are limits of Sturmian sequences.
This result together with Theorem A implies Theorem B.

Proposition 4.4. Let p, q P Zě0 be coprime integers. The limits of pairs consisting of lower and upper
characteristic Sturmian sequences whose slope tends towards p{pp` qq from above or from below

˜

lim
αÑ p

p`q
`
cα, lim

αÑ p
p`q

`
c1α

¸

and
˜

lim
αÑ p

p`q
´
cα, lim

αÑ p
p`q

´
c1α

¸

.

form two indistinguishable asymptotic pairs in Z.

Proof. From Lemma 4.2, we observe that limαÑ p
p`q

` cα and limαÑ p
p`q

` c1α form an asymptotic pair
whose difference set is t´1, 0u. From Proposition 2.7, the property of being an indistinguishable pair
is preserved by the limit. Therefore, it is an indistinguishable asymptotic pair. The same holds for the
second pair. �

Theorem 4.5. Let x, y P t0, 1uZ and assume that x is not recurrent. The pair px, yq is an indistin-
guishable asymptotic pair with difference set F “ t´1, 0u such that x´1x0 “ 10 and y´1y0 “ 01 if and
only if there exist coprime nonnegative integers p, q such that px, yq is the limit of pairs consisting of
lower and upper characteristic Sturmian sequences whose slope tends to p{pp` qq P r0, 1s XQ either

‚ from above, that is, px, yq “ limαÑ p
p`q

`pcα, c
1
αq and x “ σp`qpyq is a shift of y, or,

‚ from below, that is, px, yq “ limαÑ p
p`q

´pcα, c
1
αq and y “ σp`qpxq is a shift of x.

Proof. Let p, q P Zě0 be coprime integers. From Proposition 4.4, the limits of pairs consisting of lower
and upper characteristic Sturmian sequences whose slope tends to p{pp` qq from above or from below
form an indistinguishable asymptotic pair px, yq with F “ t´1, 0u as a difference set where x´1x0 “ 10

and y´1y0 “ 01.
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Since x is not recurrent, from Proposition 2.9, we have that x is a shift of y, i.e. x “ σkpyq for
some k P Z. We know that k ‰ 0 since x ‰ y. If k “ 1, then x “ 801.008 and y “ 800.108. From
Lemma 4.2, we conclude that

x “ lim
αÑ0`

cα and y “ lim
αÑ0`

c1α

are limits of pairs consisting of lower and upper characteristic Sturmian sequences whose slope tends
to 0 from above. Similarly, if k “ ´1, then x “ 811.018 and y “ 810.118. From Lemma 4.2, we
conclude that x “ limαÑ1´ cα and y “ limαÑ1´ c

1
α are limits of pairs consisting of lower and upper

characteristic Sturmian sequences whose slope tends to 1 from below.
Assume now that k ě 2. Thus yk´1yk “ 10. But yk´1yk “ xk´1xk so that xk´1xk “ 10. Thus

ynk´1ynk “ xnk´1xnk “ 10 for all n ą 0. Moreover x´k´1x´k “ y´1y0 “ 01 and xnk´1xnk “

ynk´1ynk “ 01 for all n ă 0. Let m “ x1 ¨ ¨ ¨xk´1. We have m “ xnk`1 ¨ ¨ ¨xnk´2 “ ynk`1 ¨ ¨ ¨ ynk´2 for
every n P Z. Thus we have

x “
8
p1m0qp1m1q.p0m1qp0m1q8,

y “
8
p1m0qp1m0q.p1m1qp0m1q8.

We observe that the factor 1m0 appears in y intersecting the difference set F . By the hypothesis, it must
appear in x intersecting the difference set F . Thus 1m0 is a factor of 1m1.0m1, but certainly not as a
prefix. Therefore 1m0 is a factor of m1.0m1. We conclude that 1m0 is a factor of 0m1.0m1 “ p0m1q2.
This implies that 1m0 and 0m1 are conjugate. From Pirillo’s Theorem, we conclude that 0m1 is a
lower Christoffel word of slope p{q for some coprime integers p, q P Zě0 satisfying p ` q “ k. From
Lemma 4.2, we conclude that

x “ lim
αÑ p

p`q
`
cα and y “ lim

αÑ p
p`q

`
c1α

are limits of pairs consisting of lower and upper characteristic Sturmian sequences whose slope tends
to p{pp` qq from above.

The proof for k ď ´2 follows the same line as when k ě 2 or can even be deduced from it by
considering the reversal of x and y. We obtain that x “ limαÑ p

p`q
´ cα and y “ limαÑ p

p`q
´ c1α are

the limits of a sequence of lower and upper characteristic Sturmian sequences respectively whose slope
converges to p{pp` qq from below. �

We may now deduce Theorem B.

Proof of Theorem B. We have two cases to consider depending on whether x is recurrent or not. If x
is recurrent, then from Theorem A, we have that the pair px, yq is an indistinguishable asymptotic pair
with difference set t´1, 0u such that x´1x0 “ 10 and y´1y0 “ 01 if and only if there exists α P r0, 1szQ
such that x “ cα and y “ c1α are the lower and upper characteristic Sturmian sequences respectively.
In this case, we consider the constant sequence pαnqnPN where αn “ α for every n P N. We have
x “ cα “ limnÑ8 cαn and y “ c1α “ limnÑ8 c

1
αn

.
If x is not recurrent, then from Theorem 4.5 the pair px, yq is an indistinguishable asymptotic pair

with difference set t´1, 0u such that x´1x0 “ 10 and y´1y0 “ 01 if and only if there exist coprime
nonnegative integers p and q such that px, yq is the limit of a sequence of pairs of lower and upper
characteristic Sturmian sequences whose slope tends toward the rational slope p{pp ` qq P r0, 1s X Q
from above or from below. Let pαnqnPN be the sequence defined as αn “ p

p`q `
1?
2n if the limit is

from above or αn “ p
p`q ´

1?
2n if the limit is from below. Then αn P r0, 1qzQ for all n P N and

px, yq “ limnÑ8pcαn
, c1αn

q. �
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5. Indistinguishable asymptotic pairs on an arbitrary alphabet

The purpose of this section is to prove Theorem C and hence provide a full characterization of indis-
tinguishable asymptotic pairs in the case where the alphabet and difference set are arbitrary. Theorem C
will follow from Propositions 5.3, 5.8 and 5.9.

5.1. Substitutions preserve indistinguishability. We shall now show that indistinguishable as-
ymptotic pairs are preserved under substitutions.

Definition 5.1. Let Σ,Γ be alphabets. A substitution is a map ϕ : Σ Ñ Γ`.
The extension of ϕ to a morphism from Σ` Ñ Γ` by concatenation is denoted (by abuse of notation)

again ϕ. Moreover, every substitution induces a continuous map denoted (again, by abuse of notation)
ϕ : ΣZ Ñ ΓZ in the following way:

ϕpxq :“ . . . ϕpx´5qϕpx´4qϕpx´3qϕpx´2qϕpx´1q.ϕpx0qϕpx1qϕpx2qϕpx3qϕpx4q . . .

Lemma 5.2. Let ϕ : Σ Ñ Γ` be a substitution and x, y P ΣZ. If px, yq is an indistinguishable asymp-
totic pair such that its difference set F is contained in J0, k´1K, then pϕpxq, ϕpyqq is an indistinguishable
asymptotic pair.

Proof. From F Ď J0, k ´ 1K it follows immediately that for all m ă 0, ϕpxqm “ ϕpyqm. Let a P Σ. As
∆apx, yq “ 0, we deduce that a appears the same number of times Na in both x and y in J0, k ´ 1K.
We deduce that

K :“ |ϕpx0q . . . ϕpxk´1q| “
k´1
ÿ

i“0
|ϕpxiq| “

ÿ

aPΣ
Na|ϕpaq| “

k´1
ÿ

i“0
|ϕpyiq| “ |ϕpy0q . . . ϕpyk´1q|,

and thus ϕpxqm “ ϕpyqm for every m ě K. This shows that ϕpxq and ϕpyq are asymptotic and their
difference set is contained in D “ J0,K ´ 1K.

As Lpxq “ Lpyq, we conclude that Lpϕpxqq “ Lpϕpyqq. Fix w P Lnpϕpxqq. It suffices to show that

(2) #poccwpϕpxqq X pD ´ J0, n´ 1Kqq “ #poccwpϕpyqq X pD ´ J0, n´ 1Kqq.

Every i P occwpϕpxqq X pD ´ J0, n ´ 1Kq can be uniquely associated to a word ui P Σ` and a
nonnegative integer ki such that σi´kipϕpxqq P rϕpuiqs, ϕpuiqki

. . . ϕpuiqki`n´1 “ w and so that ui is
the shortest such word. As ∆ui

px, yq “ 0, we have that ui occurs the same number of times in x and
y in the support F ´ J0, |ui| ´ 1K. Therefore there is a bijection between occui

pxq X pF ´ J0, |ui| ´ 1Kq
and occui

pyq X pF ´ J0, |ui| ´ 1Kq which induces a bijection between the set

Aw,u,kpxq “ ti P poccwpϕpxqq X pD ´ J0, n´ 1Kqq : i is associated to the pair pu, kq P Σ` ˆ Nu,

and the set

Aw,u,kpyq “ ti P poccwpϕpyqq X pD ´ J0, n´ 1Kqq : i is associated to the pair pu, kq P Σ` ˆ Nu.

As occwpϕpxqq X pD ´ J0, n´ 1Kq can be written as the union of the Aw,u,kpxq over all pairs pu, kq,
and the same holds exchanging x by y, we obtain that Equation (2) holds. Thus ∆wpϕpxq, ϕpyqq “ 0.
By Proposition 2.4, this implies that ϕpxq, ϕpyq form an indistinguishable asymptotic pair. �

We may now prove part of Theorem C based on Proposition 3.2 and Lemma 5.2.

Proposition 5.3. Let α be irrational and cα, c
1
α be the lower and upper characteristic words of slope

α respectively. For any substitution ϕ : t0, 1u Ñ Σ` the sequences ϕpσ1pcαqq and ϕpσ1pc1αqq form an
indistinguishable asymptotic pair.
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Proof. By Proposition 3.2, we have that cα, c1α form a non-trivial indistinguishable asymptotic pair.
By Proposition 2.5, σ´1pcαq and σ´1pc1αq are also a non-trivial indistinguishable asymptotic pair with
difference set F “ t0, 1u. By Lemma 5.2, we have that ϕpσ´1pcαqq, ϕpσ

´1pc1αqq is an indistinguishable
asymptotic pair.

Note that if we let m “ |ϕp0q| ` |ϕp1q| then σmpϕpσ´1pcαqqq “ ϕpσ1pcαqq and σmpϕpσ´1pc1αqqq “

ϕpσ1pc1αqq. Then again by Proposition 2.5, we obtain that ϕpσ1pcαqq and ϕpσ1pc1αqq form an indistin-
guishable asymptotic pair. �

Note that in Proposition 5.3 we do not ensure that after applying the substitution the words remain
non-trivial. For instance, we may consider a substitution sending all symbols to a fixed symbol and
thus trivialize the pair.

5.2. Derived sequences preserve indistinguishability. We shall find a sequence of inverse sub-
stitutions which will allow us to “desubstitute” the asymptotic pair until we arrive to a Sturmian
sequence. The main tool is the notion of derived sequence introduced by Durand [14].

Definition 5.4. Let x P ΣZ and w P Lpxq which appears with bounded gaps in x. Let tikukPZ be the
enumeration of occwpxq which is strictly increasing and such that i0 is the smallest value of occwpxq
such that i0 ą ´|w|

The derived sequence Dwpxq P pRWwpxqqZ is the sequence given by

pDwpxqqk “ xik . . . xik`1´1.

The derived sequence of a uniformly recurrent sequence is also uniformly recurrent. Note that the
alphabet of the derived sequence consists of symbols in RWwpxq which formally are words in Σ˚. It is
possible to recover the original sequence x (up to a shift) by applying the morphism ϕ : RWwpxq Ñ Σ˚

such that ϕpuq “ u0 . . . u|u|´1.

Lemma 5.5. Let x, y P Σ˚ and assume that a P Σ appears with bounded gaps in x. If px, yq is an
indistinguishable asymptotic pair whose difference set F is contained in J0, k´ 1K, then pDapxq,Dapyqq

is an indistinguishable asymptotic pair.
Moreover, the difference set of pDapxq,Dapyqq is contained in J0, NaK where

Na “ #pti P J0, k ´ 1K : xi “ auq.

Proof. Rewrite the sets occapxq and occapyq in increasing order as sequences titutPZ and tjtutPZ as
in Definition 5.4 respectively. As F Ď J0, k´1K, and x, y are asymptotic, we have that it “ jt for every
t ă 0 and so pDapxqqt “ pDapyqqt for every t ă 0.

As ∆apx, yq “ 0, a occurs the same number of times Na in the interval J0, k ´ 1K in x and y,
Therefore using again that x, y are asymptotic, we have that it “ jt for every t ě Na ` 1 and thus
pDapxqqt “ pDapyqqt for every t ě Na ` 1. This shows that Dapxq and Dapyq are asymptotic and that
their difference set is contained in J0, NaK.

Let ϕ : RWapxq Ñ Σ˚ be the morphism such that ϕpuq “ u0 . . . u|u|´1. Given a word w “ w1 . . . wm P

pRWapxqq˚, let |ϕpwq| “
řm
i“1 |ϕpwiq|. It follows that

∆wpDapxq, Dapyqq “
Na
ÿ

`“´p|w|´1q
1rwspσ

`pDapyqqq ´ 1rwspσ
`pDapxqqq

“

k´1
ÿ

`“´p|ϕpwq|´1q
1rϕpwqspσ

`pyqq ´ 1rϕpwqspσ
`pxqq

“ ∆ϕpwqpx, yq “ 0.
19



It follows that Dapxq,Dapyq form an indistinguishable asymptotic pair. �

Remark 5.6. An analogous statement holds if instead of considering a P Σ we take an arbitrary
w P Lpxq and we consider the pair Dwpxq, Dwpyq. We shall not need this general statement.

5.3. Proof of Theorem C. We will first show that, as long as the difference set of an indistinguishable
asymptotic pair is contained in an interval of length at least 3, we can use derived sequences to construct
a new indistinguishable pair whose difference set is contained in a strictly smaller interval. This will
later provide a way to reduce the general case to the case where the difference set is t´1, 0u.

Lemma 5.7. Suppose x, y P ΣZ is a non-trivial indistinguishable asymptotic pair whose difference
set is contained in an interval F “ J0, k ´ 1K. If x is recurrent, there is a P Σ such that Dapxq

and Dapyq form a non-trivial indistinguishable asymptotic pair with a difference set contained in the
interval J0, tk2 uK.

Proof. As x, y are non-trivial, we have that #pΣq ě 2. Let a P Σ be the symbol such that occapxq X
J0, k ´ 1K is the smallest. By the pigeonhole principle, Na :“ #poccapxq X J0, k ´ 1Kq ď tk2 u.

By Lemma 2.12, both x and y are uniformly recurrent and so the sequences Dapxq and Dapyq are
well defined. By Lemma 5.5 Dapxq and Dapyq form an indistinguishable asymptotic pair with difference
set contained in J0, NaK Ď J0, tk2 uK, which is clearly non-trivial as x, y are non-trivial. �

Proposition 5.8. Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair. If x is recurrent,
then there exists α P r0, 1qzQ, a substitution ϕ : t0, 1u Ñ Σ` and an integer m P Z such that

tx, yu “ tσmpϕpσpcαqqq, σ
mpϕpσpc1αqqqu

where cα and c1α are the lower and upper characteristic Sturmian sequences of slope α respectively.

Proof. Let J`, `` k ´ 1K be the smallest interval containing the difference set F of px, yq. Since px, yq
is non-trivial and indistinguishable, we have that k ě 2. We shall proceed by induction on k. If k “ 2,
by Proposition 3.4 we have that the alphabet has size at most #L1pxq ď 1 ` k ´ 1 “ 2. Therefore,
up to a relabeling of the alphabet and a shift, we have an asymptotic pair of sequences which satisfies
the assumptions of Theorem A and therefore tσ``1pxq, σ``1pyqu “ tϕpcαq, ϕpc

1
αqu are the lower and

upper characteristic Sturmian sequences for some α P r0, 1qzQ up to some function ϕ : t0, 1u Ñ Σ. We
conclude that tx, yu “ tσ´`´2pϕpσpcαqqq, σ

´`´2pϕpσpc1αqqqu.
Now suppose k ě 3 and the result holds for all 2 ď j ă k. By Proposition 2.5, x˚ “ σ`pxq and

y˚ “ σ`pyq are an indistinguishable asymptotic pair whose difference set is contained in J0, k ´ 1K.
By Lemma 5.7 there is a P Σ such that x1 :“ Dapx

˚q and y1 :“ Dapy
˚q are a non-trivial indistin-

guishable pair in pRWapxqqZ and their difference set is contained in the interval J0, tk2 uK. As k ě 3,
we have that tk2 u ă k ´ 1 and thus the result holds for x1, y1. It follows that there is a substitution
ϕ1 : t0, 1u Ñ pRWapxqq` and m1 P Z so that

tx1, y1u “ tσm
1

pϕ1pσpcαqqq, σ
m1pϕ1pσpc1αqqqu.

Let φ : RWapxq Ñ Σ` and s P Z be respectively the substitution and integer such that σspφpx1qq “ x˚

and σspφpy1qq “ y˚. Let ϕ :“ φ˝ϕ1. Note that the difference set of x1, y1 is contained in J0, tk2 uK and the
difference set of σpϕ1pcαqq, σpϕ1pc1αqq is contained in J´p|ϕ1p0q| ` |ϕ1p1q|q,´1K. Let us first show that
there is N P N so that φpσm1pϕ1pσpcαqqqq “ σ´N pϕpσpcαqqq and φpσm

1

pϕ1pσpc1αqqqq “ σ´N pϕpσpc1αqqq.
Let K P N be the smallest positive integer such that J´K,´1K contains the difference set of

ϕ1pσpcαqq, ϕ
1pσpc1αqq. As the difference set of x1, y1 is contained in J0, tk2 uK, we obtain that m1 ď ´K`1.
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Consider the words

w1 “ ϕ1pσpcαqqm1 . . . ϕ
1pσpcαqq´1

w2 “ ϕ1pσpc1αqqm1 . . . ϕ
1pσpc1αqq´1.

By construction, every symbol in RWapxq occurs the same number of times in w1 and w2. Letting
N “ |φpw1q| “ |φpw2q| we obtain that φpσm1pϕ1pσpcαqqqq “ σ´N pϕpσpcαqqq and φpσm

1

pϕ1pσpc1αqqqq “

σ´N pϕpσpc1αqqq.
Finally, we conclude that

tx, yu “ tσ``spφpx1qq, σ``spφpy1qqu “ tσ``s´N pϕpσpcαqqq, σ
``s´N pϕpσpc1αqqqu

which is what we wanted to prove. �

We deal with the case when x is non-recurrent in the following proposition.

Proposition 5.9. Let x, y P ΣZ be a non-trivial indistinguishable asymptotic pair. If x is not recurrent,
then there exists a substitution ϕ : t0, 1u Ñ Σ` and an integer m P Z such that

tx, yu “ tσmϕp80.108q, σmϕp80.0108qu.

Proof. By Proposition 2.9, x and y lie on the same orbit, i.e., there exists s P Zzt0u with x “ σspyq.
Possibly exchanging x and y, we may assume s ą 0. Let r “ minti P Z : xi ‰ yiu, then the difference
set of σrpxq, σrpyq is contained in the interval J0, k ´ 1K for some k ą s. Let us denote x1 “ σrpxq and
y1 “ σrpyq.

A word u that cannot be written as a repeated concatenation of another word is called primitive.
Let u be a primitive word such that un “ x1k . . . x

1
k`s´1 for some positive integer n. Since x1|Jk,8K “

y1|Jk,8K “ σspx1q|Jk,8K, we obtain that x1 and y1 are eventually periodic to the right, more precisely

x1|Jk´s,8K “ u8 and y1|Jk,8K “ u8

Similarly, let w be a primitive word such that wn1 “ x1´s . . . x
1
´1 for some positive integer n1. Since

we have y1|J´8,´1K “ x1|J´8,´1K “ σ´spy1q|J´8,´1K we obtain that x1 and y1 are eventually periodic to
the left, more precisely

x1|J´8,´1K “
8w and y1|J´8,s´1K “

8w

As we took k ą s, letting v “ x10 . . . x
1
k´s´1 we can write

x1 “ 8w.vuu8, and y1 “ 8w.wvu8.

We claim that w and u are conjugate. Indeed, as x1 and y1 are indistinguishable, we have that

#poccwpx1q X J´|w| ` 1, k ´ 1Kq “ #poccwpy1q X J´|w| ` 1, k ´ 1Kq.

First, note that there cannot be any occurrence of w in y1 on the indexes J´|w| ` 1,´1K, otherwise
we would have that w occurs as a factor of ww neither as a prefix nor suffix, which would contradict the
primitivity of w. Also note that every occurrence of w in y1 on an index j P J1, k ´ 1K can be mapped
uniquely to an occurrence of w in x1 on index j ´ |w|. Therefore, the only remaining occurrence of w
in y1 at index 0 must necessarily be mapped to an occurrence of w in x1 as a factor of uu. Therefore
w is a factor of uu. Since u and w have the same length, it implies that they are conjugate, that is,
u “ pz and w “ zp for some words z, p. Letting t “ vp we can rewrite x1 and y1 in the following way

x1 “ 8w.tw8, and y1 “ 8w.wtw8.
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Setting ϕ : 0 ÞÑ w, 1 ÞÑ t we get x1 “ ϕp80.108q and y1 “ ϕp80.0108q. Letting m “ ´r we obtain

x “ σmpϕp80.108qq and y “ σmp80.0108q.

Which is what we wanted, modulo exchanging x and y. �

Proof of Theorem C. Let ϕ : t0, 1u Ñ Σ` be a substitution. From Proposition 5.3, if α is irra-
tional, then the sequences ϕpσpcαqq and ϕpσpc1αqq form an indistinguishable asymptotic pair and
thus by Proposition 2.5, the asymptotic pair σmϕpσpcαqq, σ

mϕpσpc1αqq is indistinguishable. Sim-
ilarly, as 80.108,80.0108 is indistinguishable, we have that for every integer m P Z, the pair
σmϕp80.108q, σmϕp80.0108q is indistinguishable.

Conversely, if x is recurrent, the result is proved in Proposition 5.8. If x is non-recurrent, the result
is proved in Proposition 5.9. �
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