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Abstract

We construct a �nite-range potential on a bidimensional full shift on a �nite al-

phabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter

and Ruszel. This is the phenomenon where there exists a sequence of temperatures

that converges to zero for which the whole set of equilibrium measures at these given

temperatures oscillates between two sets of ground states. Brémont's work shows

that the phenomenon of non-convergence does not exist for �nite-range potentials

in dimension one for �nite alphabets; Leplaideur obtained a di�erent proof for the

same fact. Chazottes and Hochman provided the �rst example of non-convergence in

higher dimensions d ě 3; we extend their result for d “ 2 and highlight the impor-

tance of two estimates of recursive nature that are crucial for this proof: the relative

complexity and the reconstruction function of an extension.

We note that a di�erent proof of this result was found by Chazottes and Shinoda,

at around the same time that this article was initially submitted and that a strong

generalization has been found by Gayral, Sablik and Taati.

1 Introduction

The states of a system at equilibrium in statistical mechanics are usually described by a
family of probability measures indexed by an inverse temperature β called Gibbs states.
There are several ways in the literature to formalize the notion of Gibbs states; the most
common de�nition in probability and mathematical physics literature is considering DLR
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equations, originally proposed by R. Dobrushin [13], and by O. Lanford and D. Ruelle [35],
this is the standard de�nition on textbooks of these areas, see [5, 24, 28].

We adopt a more ergodic approach focusing on equilibrium measures, which for regular
enough potentials correspond to the translation invariant DLR measures, see Ruelle [45],
Muir [43] and Keller [32]. A discussion about when the several notions of Gibbsianness
are equivalent (or not) can be found in [7, 16, 32, 34, 40, 43].

The existence of an equilibrium measure for a continuous potential on the full shift
comes from compactness. In the one-dimensional setting, the equilibrium measure is
unique, whereas uniqueness does not necessarily hold in the two-dimensional case. Our
main goal is to understand the behavior of the whole set of equilibrium measures as the
temperature goes to zero, showing the existence of potentials with a chaotic behavior
in dimension 2. Given a potential ϕ, for each inverse temperature β consider µβ an
equilibrium state associated with the potential βϕ, the existence of weak˚-accumulation
points for the family of invariant Borel probability measures pµβqβě0 as β Ñ `8 is a trivial
consequence of the Banach-Alaoglu theorem. The measures obtained as accumulation
points of such families are particular cases of minimizing measures (or ground states) that
we brie�y recall. A minimizing measure µmin is an invariant probability measure that
satis�es

ż

ϕdµmin “ ϕ̄ where ϕ̄ :“ inf
!

ż

ϕdµ : µ translation invariant
)

.

The real number ϕ̄ is called the ergodic minimizing value or ground-state energy of the
potential ϕ.

The union of the support of minimizing measures is a compact invariant set, called the
Mather set, that prescribes the behavior of the equilibrium measures at zero temperature.
Many of the ideas in ergodic optimization and the terminology as ergodic minimizing
value, minimizing measures and Mather set comes from the theory of Lagrangian dynam-
ics in the continuous setting, see Mather [39], Mañé [38], Fathi [19, 20, 21], and from
Aubry-Mather theory in the discrete setting, Forni, Mather [23], Garibaldi, Lopes [25],
Garibaldi, Thieullen [26], Su, de la Llave [48], Sorrentino [47]. A thorough review of
ergodic optimization is done in Jenkinson [30] in the one-dimensional setting.

For generic norm summable interactions on a �nite alphabet, there exists a unique
minimizing measure µmin of uniquely ergodic support (see Ruelle [44]). Some further
properties of ground states for generic interactions are discussed by van Enter and Miek-
isz, see [17]. Therefore in the case above, for any family of equilibrium measures pµβqβě0

we have µβ Ñ µmin as β Ñ `8 . On the other hand, if there are at least two minimiz-
ing measures, the sequence pµβqβě0 might not converge. The notion of zero-temperature
chaotic behavior was introduced by van Enter and Ruszel in the seminal paper [18], see
also [2] for a more detailed proof. Nowadays, there are many examples potentials with
a non-trivial Mather set that are examples of zero-temperature chaotic behavior. In the
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multidimensional construction of Chazottes and Hochman [9], while the Mather set is
highly complex, the potential is geometrically simple as it is obtained as the distance
function to the Mather set. In the work of Coronel and Rivera-Letelier [11], the space is
one-dimensional and the Mather set is quite simple (it may be equal to two ergodic mea-
sures with disjoint supports), but the potential is less explicit. In the construction of two
of us and E. Garibaldi [4], the Mather set is reduced to two �xed points t08uYt18u, while
the potential does not have �nite-range, but only summable variations; a zero-temperature
phase diagram is then obtained showing a relationship between zero-temperature chaotic
behavior and cancellation of the Peierls barrier. A complete understanding of the low-
temperature behavior and the ground state structure in two or more dimensions, even
for �nite-range interactions, seems currently out of reach. The Lipschitz condition in one
dimension, though similar to a strong decay of interaction, is not enough to guarantee the
convergence of the equilibrium measures. As the present paper illustrates, a �nite-range
condition exhibits a rich set of behaviors. Recent work [27] shows that recursion-theoretic
tools play an important role in the description of said structure.

In the discussion that follows, we shall restrict ourselves to the class of �nite-range
potentials. In the one-dimensional setting, the Mather set of a �nite-range potential
could have a rich structure of minimizing measures. It is a remarkable result that in this
setting, the zero-temperature limit of Gibbs measures always exists and selects a particular
minimizing measure that is not necessarily ergodic. This result was originally proven by
Brémont [6], and was later given other proofs by Chazottes, Gambaudo and Ugalde [8],
Leplaideur [36], and by Garibaldi and Thieullen [26], who also provide an algorithm that
identi�es the limiting minimizing measure. In the one-dimensional setting, for �nite-
range potentials, the Mather set is reduced to a �nite disjoint union of subshifts of �nite
type (including periodic orbits), and the limiting minimizing measure is some barycenter
of the measures of maximal topological entropy of these subshifts. The extension of
Brémont's results to a countable alphabet has been undertaken by Jenkinson, Mauldin
and Urbánski [31], Morris [41], Kempton [33] for the BIP case, and recently the transitive
case in [3].

The status of the zero-temperature chaotic behavior for �nite-range potentials in
higher dimensions, d ě 2, is completely di�erent. Chazottes and Hochman in [9] con-
structed for every d ě 3 an example of a �nite-range potential exhibiting a zero-temperature
chaotic behavior. The dimension in their result needs to be greater or equal to 3 because
the proof relies heavily on a theorem of Hochman [29] which realizes any one-dimensional
e�ective dynamical systems as the topological factor of the subaction of a Z3-subshift of
�nite type. After this result, the only case missing was d “ 2. Our main result is an
extension of their results for dimension 2.

Theorem 1.1. There exists a �nite alphabet A and a �nite-range potential ϕ on a bidi-
mensional full shift that exhibits the phenomenon of zero-temperature chaotic behavior.
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Our construction is based on the simulation theorem of Aubrun and Sablik [1] which
states that every one-dimensional e�ectively closed subshift, extended vertically trivially
to a 2-dimensional subshift, is a topological factor of a subshift of �nite type of zero
topological entropy. We remark that this result was simultaneously proven by Durand,
Romashchenko, and Shen [14, 15], which is the main tool used by Chazottes and Shin-
oda [10] in their alternative proof.

While quite intricate, the extension constructed by Aubrun and Sablik has the advan-
tage of being quite explicit, whereas the proof by Durand, Romashchenko, and Shen is
based on Kleene's �xed point theorem. We use the Aubrun-Sablik construction to produce
a few estimates which are not explicit in [9]. These estimates provide bounds that control
the relative complexity of the SFT extension. More precisely, we give an explicit bound of
the reconstruction function of the extension, thus avoiding the need to use Kleene's �xed
point theorem.

The outline of the proof is the following. In the second section, we give the main
de�nitions, outline the strategy's main ideas, and give the proof of the Theorem 1.1
assuming a number of estimates that arise from a yet unspeci�ed construction. In the
third section we explain the detailed construction of the one-dimensional subshift. In the
fourth section the prove the estimates pertaining the bounds for the topological entropy. In
the �fth section we prove the two estimates on the reconstruction function and complexity
function in the Aubrun-Sablik simulation theorem.

The present paper is part of the thesis of the third author Gregório Dalle Vedove. A
preliminary version was submitted to arxiv [12] at about the same time when a paper of
Chazottes and Shinoda [10] was submitted proving the same result but with a di�erent
proof.

We remark that recently, in a beautiful paper of Gayral, Sablik and Taati [27], the
authors obtain a recursion-theoretic classi�cation of the set of ground states for computable

�nite range interactions up to computable a�ne homeomorphisms. Their result not only
implies ours and that of Chazottes and Shinoda, but provides a strong argument that
recursion theory is not only a tool to obtain zero-temperature chaotic behavior, but that
in fact is a central piece of the puzzle needed to understand the possible sets of ground
states.

2 De�nitions and outline of the proof

We summarize our setting in the following de�nitions.

De�nition 2.1. Let A be a �nite set called alphabet and d ě 1 an integer. The space
of d-dimensional con�gurations ΣdpA q “ A Zd

is the d-dimensional full shift. The shift

action is the Zd-action given σ “ pσuquPZd , σu : ΣdpA q Ñ ΣdpA q de�ned by

σupxq “ y if ypvq “ xpu` vq for every x, y P ΣdpA q and v P Zd.
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We recall that an invariant probability measure µ for the Zd action is a Borel measure
on ΣdpA q such that for every Borel set B we have µpσupBqq “ µpBq for every u P Zd.

The set of invariant probability measures is denoted by M “ M pΣdpA q, σq.
In this article we choose a function ϕ : Σ2pA q Ñ R that is supposed to describe the

energy contribution at the origin of the lattice Zd. A potential is a function ϕ : ΣdpA q Ñ R.

De�nition 2.2. Let ϕ : ΣdpA q Ñ R be a Lipschitz function.

1. The pressure of the potential ϕ is the real number

P pϕq :“ sup
µPM

!

hpµq ´

ż

ϕdµ
)

.

where hpµq denotes the Kolmogorov-Sinai entropy of µ (de�nition 2.20).

2. An equilibrium measure at inverse temperature β, is an invariant probability measure
µβ that maximizes the pressure

P pβϕq “ hpµβq ´

ż

βϕdµβ.

The set of equilibrium measures at inverse temperature β is denoted by Mepβϕq.
The general strategy follows the outlines presented in van Enter and Ruszel [18],

Coronel and Rivera-Letelier [11], and Chazottes and Hochman [9].

De�nition 2.3. The phenomenon of zero-temperature chaotic behavior holds for a poten-
tial ϕ : ΣdpA q Ñ R when there exists a sequence of inverse temperatures pβkqkě0 going to
in�nity and two disjoint compact sets rG1 and rG2 of ΣdpA q such that, if for every k ě 0,
µβk is any choice of an ergodic equilibrium measure µβk P Mepβkϕq, the support of any
weak˚-accumulation point of the odd subsequence pµβ2k`1

qkě0, respectively of the even

subsequence pµβ2kqkě0, is included in rG1, respectively in rG2.

We shall restrict ourselves to the class of �nite-range potentials.

De�nition 2.4. Let A be a �nite set andD ě 1 be an integer. A function ϕ : ΣdpA q Ñ R
is �nite-range (of range Dq if

x|J1,DKd “ y|J1,DKd ñ ϕpxq “ ϕpyq for every x, y P ΣdpA q,

where x|J1,DKd denotes the restriction of a con�guration x to the square J1, DKd.

We recall now several de�nitions.

De�nition 2.5. Let A be a �nite set.
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1. If S is a �nite subset of Zd, a pattern with support S is a partial con�guration
p P A S . The set S “ suppppq is called the support of p. For d “ 1 a pattern is
called a word. If x P ΣdpA q, p “ x|S denotes the pattern obtained by taking the

restriction of x to S. A pattern p of size n is a pattern of the form p P A J1,nKd .

2. The shift action extends to an action over the set of patterns, that is, for every
u P Zd and p P A S we say that σuppq “ p1 if and only if p1 P A S´u and for every
v P S ´ u we have p1pvq “ ppu` vq.

3. A pattern p P A S appears in a con�guration x P ΣdpA q if there exists u P Zd such
that σupxq|S “ p. We write p Ă x. More generally a pattern p P A S appears in a
pattern q P A T if there exists u P Zd such that S Ď T ´ u and σupqq|S “ p.

De�nition 2.6. A subshift X is a closed subset of ΣdpA q which is invariant by the shift
action σ.

Subshifts can also be given a convenient combinatorial description by exhibiting a set
of forbidden patterns, that is, let F Ď

Ů

ně1 A J1,nKd and consider the set of all x P ΣdpA q
such that p Ć x for every pattern p P F , then it follows that this set is closed and invariant
under the shift action. This motivates the following de�nition.

De�nition 2.7. Let A be a �nite set and F Ď
Ů

ně1 A J1,nKd be a set of patterns called
the set of forbidden patterns. A subshift X Ď ΣdpA q is said to be generated by F if for
every x P X and p P F , p does not appear in x. More formally

X “ ΣdpA ,F q :“
 

x P ΣdpA q : @ p P F , p Ć x
(

.

A subshift X “ ΣdpA ,F q is said to be a subshift of �nite type (or SFT) if the set of
forbidden patterns F is a �nite set.

It is clear that every subshift is generated by some set of forbidden patterns, namely,
X is generated by the full set of forbidden patterns FX where p P FX if and only if p does
not appear in any x P X. However, we remark that a �xed subshift X can be generated by
di�erent sets of forbidden patterns. The �rst step of our construction consists in choosing
a 1-dimensional subshift rX Ď Σ1p ĂA q in the following way. The alphabet ĂA is made of

two alphabets ĂA “ ĂA1 Y
ĂA2 where

ĂA1 “ t0, 1u and ĂA2 “ t0, 2u.

The subshift rX “
Ş

kě0
rXk is obtained as the intersection of a decreasing sequence of

subshifts rXk of controlled complexity

rXk`1 Ď rXk.
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Each rXk contains a disjoint union of two subshifts

rXA
k \

rXB
k Ď

rXk.

The subshift rXA
k consists of con�gurations over the symbols t0, 1u and satis�es,

t18u Ă rXA
k`1 Ď

rXA
k Ď Σ1p ĂA1q, rXA :“

č

kě0

rXA
k .

The subshift rXB
k consists of con�gurations over the symbols t0, 2u and satis�es,

t28u Ă rXB
k`1 Ď

rXB
k Ď Σ1p ĂA2q, rXB :“

č

kě0

rXB
k .

The two subshifts rXA
k and rXB

k are chosen so that their relative complexity alternates

depending on whether k is odd or even. We use the symbol 0 P ĂA to measure the
complexity or the frequency of 0 in each word of rXA

k or rXB
k . We �nally make sure that

rX is e�ectively closed as in the following de�nition. In what follows, we use the de�nition
of Turing machine as in Sipser [46, De�nition 3.3].

De�nition 2.8. A subshift rX Ď Σ1p ĂA q is said to be e�ectively closed if there exists a

set of forbidden words ĂF Ď
Ů

ně1
ĂA J1,nK such that rX “ Σ1p ĂA , ĂF q and ĂF is enumerated

by a Turing machine rM. The time enumeration function T
rX : N˚ Ñ N˚ associated to rM

is given for n ě 1 as the smallest positive integer T
rXpnq such that rM halts on every word

of ĂF of size at most n in at most T
rXpnq steps.

In a second step of the construction we use the Aubrun-Sablik simulation theorem.
Their result states that for every e�ectively closed subshift, one can �nd a two-dimensional
subshift of �nite type whose restriction to a one-dimensional subaction is a topological
extension of the original e�ectively closed subshift. More precisely

Theorem 2.9 (Aubrun-Sablik [1]). Let ĂA be a �nite set and rX “ Σ1p ĂA , ĂF q be an
e�ectively closed subshift. There exists a �nite alphabet B, a subshift of �nite type of
zero topological entropy pX “ Σ2p xA , xF q, where xA “ ĂA ˆ B, xF Ď xA J1,DK2 for some

integer D ě 2, such that if pπ : xA Ñ ĂA is the �rst projection and pΠ : Σ2p xA q Ñ Σ2p ĂA q is
the 1-block factor map de�ned component wise by

pΠpxq “ ppπpxuqquPZ2 for every x “ pxuquPZ2 P Σ2p xA q,

then pΠp pXq simulates rX in the sense pΠp pXq “
Ă

ĂX where

Ă

ĂX :“
 

rx P Σ2p ĂA q : @ v P Z, prxpu,vqquPZ “ prxpu,0qquPZ P rX
(

.
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The subshift pX will be called later the Aubrun-Sablik SFT simulating rX. The subshift
Ă

ĂX
will be called later the vertically aligned subshift replicating rX.

The remarkable fact is that, although the initial set of forbidden words ĂF might
be countably in�nite, by adding di�erent �colors� B to the initial alphabet ĂA and by
imposing a �nite set xF of forbidden rules on these juxtaposed colors, the new set of
con�gurations pX which respects these rules, after applying the projection pΠ, describes
exactly the set of vertically aligned con�gurations of rX.

Our proof requires two a priori estimates, see inequalities (1) and (2), that were not
stated explicitly in [9]. We recall �rst several de�nitions.

De�nition 2.10. Let A be a �nite alphabet, F Ď
Ů

ně1 A J1,nKd be a set of forbidden
patterns, and X “ ΣdpA ,F q.

1. A pattern w P A S is said to be locally F -admissible if no pattern p of F appears
in w.

2. A pattern w P A S is said to be globally F -admissible if w appears in some con�g-
uration x P ΣdpA ,F q.

3. The reconstruction function of X is the function RX : N˚ Ñ N˚ such that, if n ě 1,
then RXpnq is the smallest integer R ě n such that, for every locally F -admissible

pattern p P A J´R,RKd , the subpattern p|J´n,nKd is globally F -admissible.

By a standard compactness argument, it follows that every subshift admits a well
de�ned reconstruction function. Our proof relies on the fact that the reconstruction
function of the Aubrun-Sablik SFT increases at most exponentially for a particular choice
of the initial 1-dimensional set of forbidden words ĂF .

The �rst a priori estimate is given in the Inequality (1) of the following proposition:

Proposition 2.11. Let ĂA be a �nite set, ĂF “
Ů

ně1
ĂFn, ĂFn Ď

ĂA J1,nK be a set of

forbidden words enumerated by a Turing machine rM, T
rX be the time enumeration function

associated to rM (De�nition 2.8), and pX be the Aubrun-Sablik SFT simulating rX given

in 2.9. We assume that ĂF satis�es :

1. rM enumerates all patterns of ĂF in increasing order (words of ĂFn are enumerated

before those in ĂFn`1).

2. R
rXpnq ď Cn, for some constant C,

3. T
rXpnq ď P pnq| ĂA |n, for some polynomial P pnq.
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Then

lim sup
nÑ`8

1

n
logpR

pXpnqq ă `8. (1)

The second a priori estimate, see Inequality (2) of the next proposition, improves the
computation of the complexity of the Aubrun-Sablik extension. It is well know that both

the vertically aligned subshift
Ă

ĂX and the Aubrun-Sablik SFT pX have zero topological
entropy. We actually need a stronger notion of complexity.

We recall �rst several de�nitions.

De�nition 2.12. Let X Ď ΣdpA q be a subshift.

1. The language of size n of X is the set of patterns of size n that appear in X

L pX,nq :“
!

p P A J1,nKd : Dx P X, s.t. p “ x|J1,nKd

)

.

2. The language of X is the disjoint union of languages of size n

L pXq :“
ğ

ně1

L pX,nq.

De�nition 2.13. Let rX “ Σ1p ĂA , ĂF q be an e�ectively closed subshift, and pX “ Σ2p xA , xF q
be the Aubrun-Sablik SFT given in theorem 2.9 that simulates rX. The relative complexity

function of the simulation is the function C
pX : N˚ Ñ N˚ de�ned by

C
pXpnq :“ sup

rwPL ppΠp pXq,nq

card
` 

pw P L p pX,nq : pΠp pwq “ rw
(˘

.

By construction the topological entropy of the simulating SFT is zero. This implies
that

lim
nÑ`8

1

n2
logpC

pXpnqq “ 0.

We prove a stronger result.

Proposition 2.14. Let rX “ Σ1p ĂA , ĂF q be an e�ectively closed subshift as described in

proposition 2.11, and pX “ Σ2p xA , xF q be the Aubrun-Sablik SFT given in theorem 2.9
that simulates rX. Then

lim sup
nÑ`8

1

n
logpC

pXpnqq ă `8. (2)

In the third and last step of the construction we enlarge the alphabet xA by duplicating
randomly the symbol 0. Let

Ą

ĄA “ t01, 02, 1, 2u and A “
Ą

ĄA ˆB.
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Let γ : A Ñ xA be the map that collapses 01 and 02 to 0, Γ: Σ2pA q Ñ Σ2p xA q be the
corresponding 1-block factor map de�ned component-wise and extended to patterns, and

F :“
 

p P A J1,DK2 : Γppq P xF
(

, X :“ Σ2pA ,F q “
 

x P Σ2pA q : Γpxq P pX
(

. (3)

The subshift X will be called thereafter the duplicating SFT. The composition maps pπ ˝γ
and pΠ ˝ Γ are denoted by

π :“ pπ ˝ γ : A Ñ ĂA and Π :“ pΠ ˝ Γ : Σ2pA q Ñ Σ2p ĂA q. (4)

Notice that X is a SFT generated by the �nite set of forbidden patterns F .
The �nite-range potential ϕ of Theorem 1.1 responsible for the zero-temperature

chaotic behavior phenomenon may now be de�ned.

De�nition 2.15. Let X “ Σ2pA ,F q be the duplicating SFT. The �nite-range potential
ϕ : Σ2pA q Ñ R is the function

ϕpxq “

#

1 if x|J1,DK2 P F ,

0 if x|J1,DK2 R F .
for every x P Σ2pA q.

Notice that X “ tx P Σ2pA q : ϕ ˝ σupxq “ 0 for every u P Z2u. In particular, the
ergodic minimizing value ϕ̄ of ϕ is zero and the Mather set is the support of the set of
invariant probability measures supported by X.

ϕ̄ “ 0 and Matherpϕq Ď X.

A consequence is that any weak˚ accumulation point of pµβϕqβÑ`8 must be a measure
supported in X.

The �nite-range potential is the characteristic function of a cylinder set. We recall
several de�nitions.

De�nition 2.16. Let A be a �nite alphabet, a P A be a symbol, S Ď Zd be a subset,
p P A S be a pattern of support S, and P Ď A S be a subset of patterns.

1. The cylinder generated by a, denoted by ras0, is the set of con�gurations

ras0 “ tx P ΣdpA q : xp0q “ au.

2. The cylinder generated by p, denoted by rps, is the set of con�gurations

rps :“ tx P ΣdpA q : x|S “ pu.
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3. The cylinder generated by P , denoted by rP s, is the set of con�gurations

rP s :“
ğ

pPP

rps.

The �nite-range potential is thus the characteristic function of the cylinder of forbidden
words F de�ned in (3)

ϕ “ 1rF s : Σ2pA q Ñ R.

Our next task consists in describing the construction of the intermediate subshifts rXk,
rXA
k ,

rXB
k . To this end, we shall introduce the following notations.

De�nition 2.17. Let A be a �nite alphabet, and d ě 1 be an integer.

1. A dictionary of size ` in dimension d is a subset L of patterns of A J1,`Kd .

2. The concatenated subshift of a dictionary L of size ` is the subshift of the form

xLy “
ď

uPJ1,`Kd

č

vPZd

σ´pu`v`qrLs,

“

!

x P ΣdpA q : Du P J1, `Kd, @v P Zd, pσu``vpxqq|J1,`Kd P L
)

.

We construct by induction two sequences of dictionaries in dimension 1, p rAkqkě0 and

p rBkqkě0 using the alphabets ĂA1 and ĂA2 respectively in the following way. We choose
a sequence of integers pNkqkě0, with Nk ě 4 and de�ne by induction the size `k of the
dictionaries rAk and rBk by `0 “ 2 and

`k “ Nk`k´1.

We assume that each word of rAk (respectively rBk) is the concatenation of Nk words of
rAk´1 (respectively rBk´1). We de�ne the corresponding concatenated subshifts

rXA
k :“ x rAky, rXB

k :“ x rBky.

We note rLk :“ rAk
Ů

rBk and assume that the concatenation of two words of rLk is a subword
of the concatenation of two words of rLk`1. We de�ne the corresponding concatenated
subshift

rXk :“ xrLky.

Lemma 2.18. Let ĂA be a �nite alphabet. Let pNkqkě0 be a sequence of integers, Nk ě 4,
p`kqkě0 be a sequence de�ned inductively by `0 “ 2, `k “ Nk`k´1, and prLkqkě0 be a

sequence of dictionaries of size p`kqkě0 in dimension 1 over the alphabet ĂA . We assume
that, for every k ě 0, every word in rLk is the concatenation of Nk words of rLk´1, and
that the concatenation of two words of rLk is a subword of the concatenation of two words
of rLk`1. Let rX :“

Ş

kě0x
rLky. Then

11



1. xrLk`1y Ď xrLky for every k ě 0,

2. rX “ Σ1pA , ĂF q where ĂF :“
Ů

ně0
ĂFn and ĂFn is the set of words of length n that

are not subwords of any concatenation of two words of rLk for some `k ě n,

3. for every n ě 0 and `k ě n, L p rX,nq “ L pxrLky, nq. (In other words, a subword of

length n of the concatenation of two words of rLk is globally ĂF -admissible.)

The previous lemma tells us that rX “
Ş

kě0
rXk is generated by the set of forbidden

words ĂF :“
Ů

ně0
ĂFn where ĂFn is the set of words of length n that are not subwords of

the concatenation of two words w and w1 taken in rAk \ rBk. A direct consequence of this
is that the reconstruction function of rX satis�es

R
rXpnq ď n for every n ě 1.

Later on, we will choose a suitable Turing machine rM which enumerates ĂF in such a way
that the hypotheses 1 and 3 of proposition 2.11 are satis�ed.

Let
Ă

ĂXk,
Ă

ĂXA
k ,

Ă

ĂXB
k be the corresponding vertically aligned subshifts

Ă

ĂXk :“ trx P Σ2p ĂA q : @ v P Z, prxpu,vqquPZq “ prxpu,0qquPZ P xrLky
(

,

Ă

ĂXA
k :“ trx P

Ă

ĂXk :
`

rxpu,0q
˘

uPZ P x
rAkyu,

Ă

ĂXB
k :“ trx P

Ă

ĂXk :
`

rxpu,0q
˘

uPZ P x
rBkyu.

Then Lemma 2.18 implies that

L p
Ă

ĂX,nq “ L p
Ă

ĂXk, nq for every n ě 1 and `k ě n.

By the simulation theorem, as ΠpXq “
Ă

ĂX (Π is de�ned in Equation (4)), we obtain

ΠpL pX,nqq “ L p
Ă

ĂX,nq for every n ě 1.

De�nition 2.19. We denote for k ě 0 by Lk, Ak and Bk the dictionaries of size `k given
by,

1. Lk :“ L pX, `kq Ď A J1,`kK2 ,

2. Ak :“
 

p P Lk : Πppq P L p
Ă

ĂXA
k , `kq

(

,

3. Bk :“
 

p P Lk : Πppq P L p
Ă

ĂXB
k , `kq

(

.

We also denote by Xk, X
A
k , x

B
k the corresponding concatenated subshifts

Xk :“ xLky, XA
k :“ xAky, XB

k :“ xBky.

12



Notice that we obtain a similar structure as in the one-dimensional setting

X “
č

kě0

Xk, Xk`1 Ď Xk, XA
k YX

B
k Ď Xk, XA

k`1 Ď XA
k , XB

k`1 Ď XB
k .

Contrary to what happens in the case of rXA
k ,

rXB
k , the notion of topological entropy will

be su�cient to estimate the complexity of the intermediate subshifts XA
k and XB

k . The
entropy will be evaluated using the frequency of the symbol 0 in the horizontal direction
and the duplication of that symbol in the vertical direction. We recall several de�nitions.
See for instance Walters [49] and Keller [32] for further references.

De�nition 2.20. Let A be a �nite set and X Ď ΣdpA q be a subshift.

1. The topological entropy of X is the non negative real number

htoppXq :“ lim
nÑ`8

1

nd
log cardpL pX,nqq.

2. The canonical generating partition of ΣdpA q is the partition

G :“ tras0 : a P A u.

3. The common re�nement of two partitions P and Q of ΣdpA q is the partition

P
ł

Q :“
 

P XQ : P P P, Q P Q
(

.

4. The dynamical partition of support S Ď Z2 of a partition P is the partition

PS :“
ł

uPS

σ´upPq.

5. The entropy of a �nite partition P with respect to an invariant measure µ is the
quantity

HpP, µq :“
ÿ

PPP

´µpP q lnpµpP qq.

6. The relative entropy of a �nite partition P given a partition Q is the non negative
real number

HpP | Q, µq “

ż

HpP, µQ
x q dµpxq,

where µQ
x is the conditional measure with respect to Q.

13



7. The Kolmogorov-Sinai entropy of an invariant measure µ is the quantity

hpµq :“ sup
!

lim
nÑ`8

1

nd
H
`

PJ1,nKd , µ
˘

: P is a �nite partition of ΣdpA q
)

.

A measure µ supported on X satisfying hpµq “ htoppXq is called a measure of

maximal entropy.

The following proposition is standard (see the references above).

Proposition 2.21. Let A be a �nite set and X Ď ΣdpA q be a subshift.

1. There exists an ergodic invariant probability measure µ supported in X such that

htoppXq “ hpµq.

Such a measure is called measure of maximal entropy.

2. The Kolmogorov-Sinai entropy of an invariant probability measure µ satis�es

hpµq “ lim
nÑ`8

1

nd
HpG J1,nKd , µq,

where G is the canonical generating partition of item (2) in de�nition 2.20.

Let pβkqkě0 be a sequence of inverse temperatures going to in�nity. The heart of
our proof is a double estimate of the pressure of βkϕ that prescribes the statistics of the
equilibrium measures. At low temperature an equilibrium measure tends to a minimizing
measure that maximizes the topological entropy of the Mather set. As Matherpϕq Ď X and
X is obtained as a decreasing sequence of Xk, each containing two distinguished subshifts
XA
k and XB

k , we obtain a zero-temperature chaotic behavior by choosing alternatively

#

htoppX
A
k q ! htoppX

B
k q for k even, k Ñ `8,

htoppX
B
k q ! htoppX

A
k q for k odd, k Ñ `8.

Where ak ! bk for k even, k Ñ `8 means that lim
kÑ`8

a2k

b2k
“ 0, analogously for k odd.

Because of the duplication process, the topological entropy can be estimated using the
frequency of the symbol 0. Let fAk (respectively fBk ) be the largest frequency of the symbol

0 in the words of rAk (respectively rBk)

fAk :“ max
pP rAk

fAk ppq, fAk ppq :“
1

`k
card

`

ti P J1, `kK : ppiq “ 0u
˘

.

14



Our construction of XA
k (and XB

k ) will satisfy that

#

fAk ! fBk ! 1 for k even, k Ñ `8,

fBk ! fAk ! 1 for k odd, k Ñ `8.

We now explain the double estimate for the pressure that are at the heart of the proof:
item 3 of Lemma 2.22 and item 2 of Lemma 2.27.

The �rst estimate is standard

P pβkϕq “ sup
µ
thpµq ´ βkµprF sq ě hpµBk q ´ βkµ

B
k prF sq,

where µBk is an ergodic maximal entropy measure of the subshift XB
k and k is even.

Using the fact that a con�guration in the support of µBk is a tilling of square patterns
of size `k that are globally F -admissible, we obtain easily the following estimates.

Lemma 2.22. Let k ě 0.

1. For every ergodic probability measure µ satisfying supppµq Ď XB
k

µprF sq ď
2D

`k
.

2. The topological entropy of the shift XB
k is bounded from below by

htop
`

XB
k

˘

ě lnp2qfBk .

3. The pressure of βkϕ is bounded from below by

P pβkϕq ě lnp2qfBk ´ 2D
βk
`k
.

A similar estimate is also valid for XA
k , f

A
k , instead of XB

k , f
B
k . The two parameters

βk and `k will be chosen so that the following �rst constraint is valid

#

βk
`k
! fBk , for k even, k Ñ `8,

βk
`k
! fAk , for k odd, k Ñ `8.

(C1)

The second estimate is a bound from above on the pressure at βkϕ. In order to
obtain it, we need to introduce a sequence of intermediate scales p`1kqkě0, two intermediate

dictionaries rA1k and rB1k, and assume that rAk and rBk are built over rA1k and rB1k in the
following way.
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De�nition 2.23. For every k ě 0 we de�ne

`1k “ N 1k`k´1,

where N 1k ě 2 is an integer and Nk is a multiple of N 1k with Nk{N
1
k ě 2. Let rA1k

(respectively rB1k) be some intermediate dictionary over the alphabet ĂA of size `1k

rA1k,
rB1k Ď

ĂA J1,`1kK,

satisfying the property that every word of rA1k (respectively rB1k) is obtained by concate-

nating N 1k words of rAk´1 (respectively N 1k words of rBk´1). We de�ne

rL1k :“ rA1k
ğ

rB1k. (5)

Assume also that each word of rAk (respectively rBk) is a concatenation of Nk{N
1
k words

of rA1k (respectively rB1k).

We introduce the following notations.

1. R1k :“ 2R
pXp`1kq ` 1 be the reconstruction length at the scale `1k (see De�nition 2.10

for the de�nition of the reconstruction function R
pX),

2. M 1
k Ď A J1,R1kK2 be the set of patterns of size R1k that are locally F -admissible

M 1
k :“

 

w P A J1,R1kK2 : @ p P F , @u P J0, R1k ´DK2, p Ć σupwq
(

,

(the set M 1
k is called the reconstruction cylinder at scale `1k),

3. T 1k :“
`XR1k

2

\

´ `1k,
XR1k

2

\

´ `1k
˘

P Z2 be a translation vector to the center of J1, R1kK
2,

4. Q1k :“ T 1k`J1, 2`1kK
2 Ď Z2 be the central block of indices for which for every w PM 1

k,
w|Q1k is globally F -admissible.

The following lemma shows that an ergodic equilibrium measure µβk for βkϕ at low
temperature (βk " 1) has the tendency to give a large mass to sets of con�gurations that
minimize ϕ, that is, to sets of con�gurations that are locally F -admissible. Using the
trivial estimate

0 ď P pβkϕq “ hpµβkq ´

ż

βkϕdµβk ď htoppΣ
2pA qq ´ βkµβkprF sq,

one proves easily the following bound.
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Lemma 2.24. For every k and every ergodic equilibrium measure µβk ,

µβk
`

Σ2pA qzrM 1
ks
˘

ď
pR1kq

2

βk
lnpcardpA qq “: εk.

The parameter εk is supposed to be small at low temperature. Also, εk must actually
be negligible compared to the frequency fBk´1. More precisely

εk ! fBk´1, for k even, k Ñ `8,

and using Hpεkq :“ ´εk logpεkq ´ p1´ εkq logp1´ εkq, we also need

Hpεkq ! fBk´1 for k even, k Ñ `8.

We simplify these two constraints by using ´εk logpεkq !
?
εk, and thus, by imposing

#

pR1kq
2

βk
! pfBk´1q

2, for k even, k Ñ `8,
pR1kq

2

βk
! pfAk´1q

2, for k odd, k Ñ `8.
(C2)

A typical con�guration for µβk sees the reconstruction cylinder with probability 1´εk.

De�nition 2.25. Consider the space Σ2pA q. We de�ne

1. The canonical base partition is given by

rG :“ t rG0, rG1, rG2u, rG
ra :“ tx P Σ2pA q : πpxp0qq “ rau, @ra P ĂA .

2. The reconstruction partition at scale `1k is the partition Uk given by

Uk :“ trM 1
ks,Σ

2pA qzrM 1
ksu.

Notice that rG is a partition of Σ2pA q and not of Σ1p ĂA q. The symbols coming from
the simulation theorem are hidden. The only symbols that remain visible are those from
the one-dimensional subshift.

An upper bound on the pressure of βkϕ is given by the entropy of the equilibrium
measure

P pβkϕq ď hpµβkq.

We decompose the computation of the entropy of µβk into 3 terms using a standard
identity on relative entropies

hpµβkq “ hrelpµβkq ` lim sup
nÑ`8

1

n2

”

H
´

rG J1,nK2 | U
J0,n´R1kK2

k , µβk

¯

`H
´

U
J0,n´R1kK2

k , µβk

¯ı

.
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The �rst term hrelpµβkq is the relative entropy of µβk at scale `1k

hrelpµβkq :“ lim
nÑ`8

1

n2
H
´

G J1,nK2 | rG J1,nK2
ł

U
J0,n´R1kK2

k , µβk

¯

.

The term hrelpµβkq is dominant; it computes the entropy of the canonical generating

partition G in Σ2pA q, see De�nition 2.20, knowing the fact that the ĂA -symbols are �xed
and that large patterns in A J1,nK2 are tiled by almost non overlapping locally admissible
patterns of size R1k. The second term computes the entropy of the canonical base partition
knowing the fact that most the time a con�guration is vertically aligned. That term is
negligible. The last term computes the entropy of a two set partition where one of the
sets, the reconstruction cylinder, has large measure µβkprM

1
ksq ą 1 ´ εk. That term is

again negligible.
We obtain easily the following estimates.

Lemma 2.26. For every k and every equilibrium measure µβk ,

1. lim sup
nÑ`8

1

n2
H
`

U
J0,n´R1kK2

k , µβk
˘

ď Hpεkq,

2. lim sup
nÑ`8

1

n2
H

´

rG J1,nK2 | U
J0,n´R1kK2

k , µβk

¯

ď

ˆ

8

R1k
` εk

˙

lnpcardp ĂA qq.

The hardest part of the proof is to bound from above the relative entropy of µβk
at scale `1k with respect to the complexity of 1-dimensional globally ĂF -admissible words
of length `1k (a square tile of size R1k gives in its center a square tile of size `1k that is
globally admissible). Item (1) in the following lemma shows that the frequency of the
symbol 0p0

1

^ 0
2

q is dominated by the one of the symbol 2 if k is even. Item (2) is
the most di�cult estimate to prove. The computation depends on a particular choice
of the language rL

1

k (see equation 5 ) with respect to rLk´1. If k is even, the frequency

of the symbol 0 in words in rB1k coincides with the frequency fBk´1, the frequency of 0

in rA1k is negligible (of the form fAk´1{N
1
k). If µβk gives some positive mass to rG1, then

the proportion of the space of con�gurations that can be covered by words in B1k (words

containing only the symbols 0 and 2) is thus less than µβk
`

Σ2pA qz rG1

˘

. In particular Item

(3) gives us the means to show that the support of the measure µβk is in rG2 for k even

and in rG1 for k odd.

Lemma 2.27. For every k and every equilibrium measure µβk ,

1. µβkp
rG0q ď

2

N 1k
fAk´1 ` p1´N

´1
k´1q

´1fBk´1 ` εk,
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2. if k is even, then

hrelpµβkq ď
´ 2

N 1k
fAk´1 `

`

1´N´1
k´1

˘´1`
µβk

`

Σ2pA qz rG1

˘

` εk
˘

fBk´1

¯

lnp2q

`
1

`1k
lnpcardp ĂA qq `

lnpC 1kq

`1k
2
` εk lnp2cardp xA qq,

P pβkϕq ď hrelpµβkq `

ˆ

8

R1k
` εk

˙

lnpcardp ĂA qq `Hpεkq.

3. if k is odd, then the previous estimate is valid with fAk´1 and fBk´1 permuted and
rG1 replaced by rG2.

The term fBk´1 lnp2q in item (2) is the entropy of duplicated and vertically aligned words
taken in an intermediate dictionary B1k of scale `1k. The term fAk´1 lnp2q is interpreted
similarly. The term fAk´1{pf

B
k´1N

1
kq re�ects the fact the ratio of the number of 0 between

words in A1k and B1k is 1{N 1k for k even (a word in B1k contains much more 0 that a word
in A1k). The term lnpC 1kq{`

1
k

2 converges to the entropy of the simulating SFT. Though
the entropy of the Aubrun-Sablik subshift has zero entropy, it is not enough to conclude.
This argument seems to be missing in the proof in [9]. The purpose of Proposition 2.14
is to give a stronger a priori bound of the growth of the relative complexity function of
the simulating SFT provided the set of forbidden patterns ĂF are enumerated in a special
way. Then, we will use the estimate

1

`1k
! fBk´1, for k even, k Ñ `8.

In order for fBk´1 lnp2q to be the dominant term in item (3) of Lemma 2.22 and item (2)
of Lemma 2.27, we assume that `1k and `k have been chosen according to the following
additional constraint: we assume

$

&

%

fAk´1

N 1k
! fBk´1, for k even, k Ñ `8,

fBk´1

N 1k
! fAk´1, for k odd, k Ñ `8.

(C3)

Notice that the two conditions (C1) and(C2) give us an interval of temperatures as
follows:

`kf
B
k´1 " βk "

pR1kq
2

pfBk´1q
2
, for k even, k Ñ `8.

These two constraints imply an upper bound of N 1k with respect to Nk. Recalling that
`1k “ N 1k`k´1, R

1
k ě `1k and `k “ Nk`k´1, we have

pN 1kq
2 “

ˆ

`1k
`k´1

˙2

ď

ˆ

R1k
`k´1

˙2

! `k
pfBk´1q

3

`2k´1

“ Nk

pfBk´1q
3

`k´1
! Nk, for k even, k Ñ `8,
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which implies
N 1k ! Nk, for k even, k Ñ `8.

On the other hand, condition (C3) implies a strong constraint on the lower bound of N 1k
with respect to Nk as follows

fAk´1

N 1k
! fBk´1 ! fAk´1, for k even, k Ñ `8,

which implies
1 ! N 1k, for k even, k Ñ `8.

As a conclusion, we are forced to choose N 1k satisfying

1 ! N 1k ! Nk, for k even, k Ñ `8.

The intermediate scale `1k is fundamental for our proof, since it allows us to choose
the sequence pβkqk used to prove the existence of the chaotic behavior. This part of the
argument is not given explicitly in the literature and proofs given by other authors.

We use Proposition 2.11 to obtain an a priori upper bound of the growth of the
reconstruction function. This bound is one of the main ingredients of the construction
and, it seems not be highlighted in the other papers about the question.The shape of
the reconstruction function has logarithmic growth. We don't need the exact growth but
an explicit growth to obtain a recursive sequence; see next De�nition 3.1. The upper
bound depends on two properties of the time enumeration function (De�nition 2.8) of the
1-dimensional set of forbidden patterns. More precisely, the time enumeration function
must satisfy that the forbidden words are enumerated successively according to their
length (and thus the function is non-decreasing), and that the time to enumerate all
words of length n is at most polynomial in n.

We construct by induction ĂFn, the full set of forbidden words of rX of length n. We
de�ne a primary sequence of scales p`kqkě0 and a intermediate sequence of scales p`1kqkě0

so that, by choosing �rst N 1k large enough and `1k “ N 1k`k´1, (C3) is satis�ed, by choosing
secondly Nk large enough and `k “ Nk`k´1, (C1) and (C2) are satis�ed and βk is chosen.
Essentially it all comes down to check that

`kpf
B
k´1q

3 " pR1kq
2, for k even, k Ñ `8,

`kpf
A
k´1q

3 " pR1kq
2 for k odd, k Ñ `8.

As rLk is constructed by concatenating Nk words of rLk´1, it is clear that a Turing ma-
chine might be described such that its time enumeration function is at most exponential
independently of the choice of Nk. Proposition 2.11 shows that it is enough to choose Nk

so that `kpf
A
k´1q

3 is super-exponential in `1k.
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Finally, let us assume that the following constraint holds

#

fBk “ fBk´1 if k is even,

fAk “ fAk´1 if k is odd.
(C4)

Then the double estimates, given in Lemma 2.22 item 3 and Lemma 2.27 item 2, can be
reduced to the estimate (for k even)

lnp2qfBk´1 ` opf
B
k´1q ď P pβkϕq ď µβk

`

Σ2pA qz rG1

˘

lnp2qfBk´1 ` opf
B
k´1q,

using the analogous inequalities, which holds for k odd, A and rG2, instead of B and rG1,
we obtain

lim
kÑ`8

µβ2kp
rG1q “ 0, lim

kÑ`8
µβ2k`1

p rG2q “ 0.

We observe that the two a priori estimates in 2.14 and 2.11 could be simpli�ed drastically.
The only property we need is to have an a priori explicit bound (exponential, super-
exponential, or more) of the growth of the reconstruction function, and an a priori sub-
exponential bound of the growth of the relative complexity function.

We conclude this section by giving the complete proof Theorem 1.1 assuming the
estimates in Lemmas 2.22, 2.24, 2.26, 2.27, and assuming the constraints (C1)�(C4).

Proof of Theorem 1.1. Let µβk be an equilibrium measure at inverse temperature βk. As-
sume k is an even number. Let µBk be the measure of maximal entropy of the concatenated
subshift XB

k . On the one hand, from Lemma 2.22, we have that

P pβkϕq ě hpµBk q ´

ż

βkϕdµ
B
k ě lnp2qfBk ´ 2D

βk
`k
.

From the constraints (C1) and (C4), we have that

βk
`k
! fBk´1 “ fBk , for k even, k Ñ `8, and

P pβkϕq ě lnp2qfBk´1 ` opf
B
k´1q.
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On the other hand, by Lemma 2.27

hpµβkq “ lim
nÑ`8

1

n2
H
´

G J1,nK2 , µβk

¯

“ hrelpµβkq ` lim sup
nÑ`8

1

n2

”

H
´

rG J1,nK2 | U
J0,n´R1kK2

k , µβk

¯

`H
´

U
J0,n´R1kK2

k , µβk

¯ı

,

P pβkϕq ď
´ 2

N 1k
fAk´1 ` p1´N

´1
k´1q

´1
´

µβk
`

Σ2pA qz rG1

˘

` εk

¯

fBk´1

¯

lnp2q

`
1

`1k
lnpcardp ĂA qq `

1

`1k
2

lnpC 1kq ` εk lnp2cardp xA qq

`

´ 8

R1k
` εk

¯

lnpcardp ĂA qq `Hpεkq.

Constraints (C2) and (C3) imply

εk ! fBk´1 and Hpεkq ! fBk´1,
fAk´1

N 1k
! fBk´1, for k even, k Ñ `8.

The fact that N 1k Ñ `8 and `k´1f
B
k´1 ě 1 implies

1

R1k
ď

1

`1k
ď
fBk´1

N 1k
! fBk´1, for k even, k Ñ `8.

Proposition 2.14 implies

lim sup
kÑ`8

lnpC 1kq

`1k
“ 0 ñ

lnpC 1kq

`1k
2

!
1

`1k
“

1

N 1k`k´1
! fBk´1, for k even, k Ñ `8.

We �nally obtain

lnp2qfBk´1 ` opf
B
k´1q ď P pβkϕq ď µβk

`

Σ2pA qz rG1

˘

lnp2qfBk´1 ` opf
B
k´1q, for k even, and

lim
kÑ`8

µβ2kp
rG1q “ 0.

Finally, using item 1 of Lemma 2.27, limkÑ`8 µβkp
rG0q “ 0, we obtain

lim
kÑ`8

µβ2kp
rG2q “ 1.

An analogous argument based on item 3 of Lemma 2.27 yields

lim
kÑ`8

µβ2k`1
p rG1q “ 1.

This concludes the proof.
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3 The detailed construction

We complete section 2 by providing complete proofs of all the previous statements.

3.1 The one-dimensional e�ectively closed subshift

We start by de�ning an iteration process that will generate the language of rX over the
alphabet ĂA “ t0, 1, 2u. Recall that we use the symbol �tilde „� in all the one-dimensional
elements. In a �rst stage, we will de�ne the values p`kqkě0 recursively and we de�ne
the values of the sequence of inverse temperatures pβkqkě0. In order to work only with
integers, instead of the frequencies fAk , f

B
k , we shall de�ne the maximum of the number

of symbols 0 counted over all words in rAk and rBk respectively:

ρAk :“ `kf
A
k , ρBk :“ `kf

B
k .

De�nition 3.1 (The recursive sequence).
There exists a partial recursive function S : N4 Ñ N4

p`k, βk, ρ
A
k , ρ

B
k q “ Sp`k´1, βk´1, ρ

A
k´1, ρ

B
k´1q.

satisfying `0 “ 2, β0 “ 0, ρA0 “ ρB0 “ 1 and de�ned such that the following holds. In the
case k is even:

1. N 1k :“
Q2kρAk´1

ρBk´1

U

, `1k “ N 1k`k´1,

2. βk :“
Q`2k´12k`

1
k

pρBk´1q
2

U

,

3. Nk :“ N 1k

Q kβk
N 1kρ

B
k´1

U

, `k “ Nk`k´1,

4. ρAk “ 2ρAk´1, ρ
B
k “ Nkρ

B
k´1,

In the case k is odd: p`k, βk, ρ
A
k , ρ

B
k q are computed as before with A and B permuted.

The previous sequence p`k, βk, ρ
A
k , ρ

B
k qkě0 has been chosen so that, �rst the induction

step is explicit in terms of simple (computable) operations, and secondly, such that the
four constraints (C1)�(C4) are satis�ed. We �rst observe the following inequalities.

Remark 3.2. For all k ě 1 we have the following properties:

1. 2k ď N 1k ď 2k`k´1,
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2. 2k`
1
k ď βk ď

`k
k ,

3. Nk´1 ď N 1k ď Nk,

4. if k is odd, ρAk ě ρBk , if k is even, ρBk ě ρAk ,

5. βk ď
`kβk`1

k2pk`1q`k
ď βk`1,

6. fAk ! 1, fBk ! 1,
Nk

N 1k
" 1,

N 1k
Nk´1

" 1,
βk`1

βk
" 1,

7. if k is odd, fAk " fBk , if k is even, fAk ! fBk , when k Ñ `8.

Lemma 3.3. The four constraints (C1)�(C4) are satis�ed

Proof. We assume that k is even. The constraint (C4) is satis�ed thanks to item 4 of 3.1.
The constraint (C3) is satis�ed thanks to item 1 of 3.1 and

fAk´1

fBk´1

ď
N 1k
2k
! N 1k, for k even, k Ñ `8.

The constraint (C2) is satis�ed thanks to item 2 of 3.1 (especially the fact that we chose
a superexponential growth 2k`

1
k instead of 2`

1
k) and the assumption on the bound for the

reconstruction function (see Proposition 2.11),

lim sup
kÑ`8

lnpR1kq

`1k
ă `8 and βk ě

2k`
1
k

pfBk´1q
2
"
pR1kq2

pfBk´1q
, for k even, k Ñ `8.

The constraint (C1) is satis�ed thanks to item 3 of 3.1 and

βk ď
Nkρ

B
k´1

k
ď
`kf

B
k´1

k
! `kf

B
k´1 “ `kf

B
k , for k even, k Ñ `8.

We now construct the e�ectively closed 1-dimensional subshifts rAk and rBk

De�nition 3.4. For each k ě 0 the dictionaries rAk and rBk are made of two words of
length `k

rAk “ tak, 1
`ku Ă ĂA

J1,`kK
1 , rBk “ tbk, 2

`ku Ă ĂA
J1,`kK

2 ,

de�ned by induction as follows:

1. `0 “ 2, a0 “ 01 and b0 “ 02,

rA0 “ t01, 11u and rB0 “ t02, 22u.
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2. if k ě 1 is odd

ak “ ak´1ak´1 ¨ ¨ ¨ ak´1
loooooooooomoooooooooon

Nk-times

, bk “ bk´12pNk´2q`k´1bk´1, (R1)

3. if k ě 2 is even

ak “ ak´11pNk´2q`k´1ak´1, bk “ bk´1bk´1 ¨ ¨ ¨ bk´1
looooooooomooooooooon

Nk-times

. (R2)

Notice that by de�nition, every word in rLk “ rAk
Ů

rBk is the concatenation of Nk

words of rLk´1, and that the concatenation of two words of rLk is a word of rLk`1. It
follows that the assumptions of Lemma 2.18 are satis�ed. We now proceed to prove that
lemma. Recall that

rX :“
č

kě0

xrLky,

and let ĂF :“
Ů

nPN
ĂF pnq be the set of all forbidden patterns which are obtained by taking

all words of length n that are not subwords of the concatenation of two words of rLk for
some k ě 0 such that `k ě n.

Proof of Lemma 2.18.

Proof of item 1. By assumption every word in rLk`1 is a concatenation of words in rLk.
Then the concatenated subshifts obviously satisfy xrLk`1y Ď xrLky.

Proof of item 2. Let x P rX and n ě 1. Then x P xrLky for some n ď `k. Therefore

x P Σ1pĂA ,ĂFnq and rX Ď Σ1p ĂA , ĂF q. Conversely let x P Σ1p ĂA , ĂF q and k ě 0. De�ne the
interval

Ik :“
r

1´
Y`k

2

]

, `k ´
Y`k

2

]z
.

For any j ě k, as x P Σ1p ĂA , ĂF`j q, x|Ij is a subword of the concatenation of two words of

length `j of rLj . As xrLjy Ď xrLky, x|Ij is a subword of the concatenation of words of length

`k of rLk. Let yj P xrLky such that yj |Ij “ x|Ij . By compactness of xrLky, the sequence

pyjqjě0 admits an accumulation point y “ x P xrLky. Therefore x P rX.
Proof of item 3. We have obviously

@n ď `k, L p rX,nq Ď L pxrLky, nq.

Conversely consider two words un, vn P rLn. We want to show that the concatenation
wn :“ unvn is a subword of some x P rX. We may assume that wn is a pattern of support
Kn :“ J1 ´ `n, 2`n ´ `nK. We construct by induction a sequence of patterns pwmqměn of
support Km “ Jam, bmK, bm ´ am “ 2`m ´ 1, such that
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� wm is equal to the concatenation of two words of Lm,

� Km Ď Km`1 and wm`1|Km “ wm,

� if m is even then bm`1 ą bm, if m is odd then am`1 ă am.

Indeed, assume m is even and wm has been constructed. Then, by hypothesis on the
language rLm, wm is the subword of the concatenation of two words of rLm`1. Let
rwm`1 “ rum`1rvm`1 be the corresponding pattern of support rKm`1 Ě Km of length
2`m`1 containing wm. If bm`1 ą bm we choose Km`1 “ rKm`1 and wm`1 “ rwm`1. If
bm`1 “ bm, as `m`1 ě 2`m (`m`1 ą `m and rLm`1 is obtained by concatenating words
of rLm), then wm is a subword of the rightmost word of rwm`1, that is wn Ă rvm`1. We
choose any word vm`1 in rLm`1, de�ne the pattern wm`1 “ rvm`1vm`1, and call Km`1 the
corresponding support. In the case m is odd we do the analogous construction but on the
left-hand side.

Let x be the con�guration such that x|Km “ wm for every m ě n. Let ym P xLmy be
a con�guration such that wm “ ym|Km. It follows that the sequence pymqměn admits an
accumulation point y P rX which satis�es x|Km “ y|Km for every m ě n, and therefore
x “ y P rX. This shows that wn P L pX, 2`nq.

It is clear from the above arguments that Σ1p rA, ĂF q is an e�ectively closed subshift.

The following lemma shows that ĂF satis�es items (1)�(3) of Proposition 2.11.

Lemma 3.5. The following holds:

1. The reconstruction function satis�es R
rXpnq “ n.

2. For every n ě 0, there exist unique integers k ě 1 and Nk ě p ě 2 satisfying

`k´1 ă n ď `k and pp´ 1q`k´1 ă n ď p`k´1.

If pNk ´ 1q`k´1 ă n ď Nk`k´1, de�ne ĂF 1pnq “ ĂF pnq. If n ď pNk ´ 1q`k´1, de�ne
ĂF 1pnq as the set of words of length n that are not subwords of any word of the
form ÝÑw1

ÐÝw2 where ÝÑw1 is a terminal segment of w1 of length pp ` 1q`k´1,
ÐÝw2 is an

initial segment of w2 of length pp` 1q`k´1, and w1 or w2 are either one of the words
ak, bk, 1k, 2k. Then

@n P J1, `kK, ĂF 1pnq “ ĂF pnq.

3. There exists a Turing machine rM such that the patterns of ĂF are enumerated
in increasing order, and such that there is a polynomial P pnq such that the time

enumeration function satis�es T
rXpnq ď P pnq| ĂA |n for every n ě 0.
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Proof. Proof of item (1). A word w of length n that is not in ĂF is a subword of the
concatenation of two words of length `k of rLk. Lemma 2.18 shows that w P L p rX,nq.

Proof of item (2). We may assume n ď pNk ´ 1q`k´1 and p ă Nk. We have obviously
ĂF pnq Ď ĂF 1pnq. If we assume that k is even, from De�nition 3.4 we have that

ak “ ak´1p1
`k´1qNk´2ak´1 and bk “ pbk´1q

Nk .

We set
ÐÝakp1q “

ÝÑakp1q “ ak´1,
ÐÝ
bkp1q “

ÝÑ
bkp1q “ bk´1,

ÐÑ
1k p1q “ 1k´1 :“ 1`k´1 and

ÐÑ
2k p1q “ 2k´1 :“ 2`k´1 .

Then we de�ne by induction: if 2 ď p ă Nk then

ÐÝakppq “
ÐÝakpp´ 1q1k´1 “ ak´1p1k´1q

p´1

and
ÝÑakppq “ 1k´1

ÝÑakpp´ 1q “ p1k´1q
p´1ak´1,

else ÐÝakpNkq “
ÝÑakpNkq “ ak. We also de�ne

ÐÝ
bkppq “

ÐÝ
bkpp´ 1qbk´1 “ pbk´1q

p,

ÝÑ
bkppq “ bk´1

ÝÑ
bkpp´ 1q “ pbk´1q

p,

ÐÑ
1k ppq “

ÐÑ
1k pp´ 1q1k´1 “ p1k´1q

p

and
ÐÑ
2k ppq “

ÐÑ
2k pp´ 1q1k´1 “ p2k´1q

p.

If w has length less than p`k´1 and is a subword of some w1w2, say w1 “ ak and w2 “

bk, by dragging w from the left end point of w1w2 to the right end point of w1w2, the word
w appears successively as a subword ofÐÝakpp` 1q,

ÐÑ
1k pp` 1q, ÝÑakpp` 1q, ÝÑakpp` 1q

ÐÝ
bkpp` 1q,

ÐÝ
bkpp` 1q. A similar reasoning is also true for w1 “ bk and w2 “ ak. We have shown that
ĂF pnq “ ĂF 1pnq.

Proof of item (3). To compute the time to enumerate successively the words of ĂF pnq

when `k´1 ă n ď `k, we can produce instead an algorithm which enumerates ĂF 1. The time
to read/write on the tapes, to update the words pÐÝakppq,

ÝÑakppq,
ÐÝ
bkppq,

ÝÑ
bkppq,

ÐÑ
1k ppq,

ÐÑ
2k ppqq

by adding a word of length `k´1, to concatenate two words ÝÑw1
ÐÝw2 from that list, and

to check that a given word w of length n is a subword of ÝÑw1
ÐÝw2 is polynomial in n.

Therefore, the time to enumerate every word up to length n in an alphabet ĂA is bounded
by P pnq| ĂA |n where P pnq is some �xed polynomial.

27



3.2 The intermediate dictionaries

We shall now study the complexity of the set of words L p rX, `1kq of length `
1
k “ N 1k`k´1.

De�nition 3.6. Let rA1k and rB1k be the sub-dictionaries of rAk and rBk that are made of

subwords of length `1k that are either initial or terminal words of a word in rAk and rBk.
Formally,

1. if k is odd, rA1k “ ta
1
k, 1

`1ku, rB1k “ tb
1
k, b

2
k, 2

`1ku,

a1k :“ ak´1 ¨ ¨ ¨ ak´1
loooooomoooooon

N 1k times

, b1k :“ bk´12pN
1
k´1q`k´1 , b2k :“ 2pN

1
k´1q`k´1bk´1, (R'1)

2. if k is even, rA1k “ ta
1
k, a

2
k, 1

`1ku, rB1k “ tb
1
k, 2

`1ku,

a1k :“ ak´11pN
1
k´1q`k´1 , a2k “ 1pN

1
k´1q`k´1ak´1 and b1k :“ bk´1 ¨ ¨ ¨ bk´1

loooooomoooooon

N 1k times

. (R'2)

3. rL1k :“ rA1k
Ů

rB1k.

Notice that rA1k and
rB1k have been chosen so that the words of rAk (respectively rBk) are

obtained by concatenating Nk{N
1
k words of rA1k (respectively rB1k). In particular we have

x rAky Ă x rA
1
ky and x rBky Ă x rB

1
ky.

We will say that two words a, b P ĂA ` overlap if there exists a non-trivial shift 0 ă s ă `
such that the terminal segment of length s of the word a coincides with the initial segment
of the word b of the same length, or vice-versa by permuting a and b. Note that we exclude
the overlapping where a and b coincide.

The next three results are technical lemmas about the possible types of overlapping of
words of A1k or B

1
k. The �rst lemma asserts that there is no possible overlapping between

words of rA1k and words of rB1k. The next two lemmas characterize the possible overlaps
between any two words at each stage k of the iteration process.

Lemma 3.7. In our construction described above, a word from rA1k and a word from rB1k
do not overlap. Similarly, a word from rAk and a word from rBk do not overlap.

Proof. Every word in rA1k ends with the symbol 1 which does not appear in any word in
rB1k. Conversely, every word in rB1k ends with the symbol 2 that does not appear in any

word in rA1k. The same argument is valid for the words in rAk and rBk.
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The next lemma is formulated for the case k even, but a similar lemma holds for the
case k odd. First we need to �x some notations. Consider the rules described in (R2)
and (R'2). The initial segment of ak and a1k, the terminal segment of ak and a2k, and the
marker are the following subwords, for k even

ak “ ak´1
loomoon

aIk´1

1pNk´2q`k´1 ak´1
loomoon

aTk´1

, b1k “ bk´1
loomoon

bIk´1

b
pN 1k´2q

k´1 bk´1
loomoon

bTk´1

,

a1k “ ak´1
loomoon

aIk´1

1pN
1
k´1q`k´1

looooomooooon

marker

a2k “ 1pN
1
k´1q`k´1

looooomooooon

marker

ak´1
loomoon

aTk´1

.

Note that aIk´1 “ aTk´1 “ ak´1 and bIk´1 “ bTk´1 “ bk´1.

Lemma 3.8. Let k ě 1 be even, ak P rAk and bk P rBk as described in (R2). Then

1. two words of the same type ak can only overlap on their initial and terminal segment,
that is, the segment aIk´1 of one of the two words overlaps the segment aTk´1 of the
other word ak;

2. on the other hand, two words of the same type bk overlaps itself exactly on a power
of bk´1 or they have an overlap of length `k´2 between bIk´1 and bTk´1.

Proof. Proof of item (1). Consider a non-trivial shift 0 ă s ă `k and a word w P ĂA J1,s``kK

made of two overlapping ak:

ak “ w|J1,`kJ, rak :“ w|s`J1,`kK, @ i P J1, `kK, rakps` iq “ akpiq.

We assume �rst that 0 ă s ă `k´1. On the one hand aTk´1 of ak starts with the symbol
0 at the index i “ pNk´ 1q`k´1` 1. On the other hand the symbol 1 appears in rak at the
indexes in the range Jri,rjK :“ Js` `k´1 ` 1, s` pNk ´ 1q`k´1K. Since i P Jri,rjK we obtain a
contradiction.

We assume next that `k´1 ď s ă pNk´1q`k´1. On the one hand the symbol 1 appears
in ak at the indexes in the range Jri,rjK :“ J`k´1 ` 1, pNk ´ 1q`k´1K. On the other hand rak
starts with the symbol 0 at the index i “ s` 1. We obtain again a contradiction.

We conclude that s should satisfy s ě pNk ´ 1q`k´1: two words of the form ak can
only overlap on their initial and terminal segments.

Proof of item (2). We notice that k ´ 1 is odd and bk´1 has the same structure as ak
in the �rst item. Two words of the form bk´1 only overlap on their initial and terminal
segments. Then bk´1 cannot be a subword of the concatenation c “ bk´1bk´1 of two
words bk´1 unless bk´1 coincides with the �rst or the last bk´1 in c. If bk and rbk overlap,
either rbk has been shifted by a multiple of `k´1, s P t`k´1, 2`k´1, . . . , pN

1
k ´ 1q`k´1u. Note
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that k ´ 1 is an odd number, and so bk´1 has the same behavior of ak described in the
previous item. Therefore, it is only possible to have an overlap of a word bk´2 of length
`k´2 between bTk´1 and rbIk´1.

Lemma 3.9. Let k ě 1 be an even integer and a1k and a2k as described in (R'2). Then
the following holds:

1. two words of the same form a1k never overlap; the same is true for two words of the
same form a2k;

2. two words a1k and a2k overlap if and only if they overlap either partially on their
marker or partially on their initial and terminal segments, respectively.

Proof. Proof of item (1). We consider a non-trivial shift 0 ă s ă `1k and two overlapping

words of the form a1k shifted by s. Let w P ĂA J1,s``1kK such that

a1k “ w|J1,`1kK, ra1k :“ w|s`J1,`1kK, @ i P J1, `1kK, ra
1
kps` iq “ a1kpiq.

We assume �rst that `k´1 ď s ă `1k. On the one hand, ra1k starts with the symbol
0, wps ` 1q “ 0; on the other hand, w|J`k´1`1,`1kK contains only the symbol 1. Since

s` 1 P J`k´1 ` 1, `1kK we obtain a contradiction.
We assume next that 0 ă s ă `k´1. We observe that k ´ 1 is odd and the two initial

segments aIk´1 of a
1
k and ra1k are of the same form as bk in the second item. They overlap on

a multiple of words of the form ak´2 or at their initial and terminal segments. Necessarily
s ě lk´2 ě 2. On the one hand, the initial segment of ra1k ends with the symbols 01,
wps ` `k´1 ´ 1q “ 0, on the other hand, w|J`k´1`1,`1kK contains only the symbol 1. Since

s``k´1´1 P J`k´1`1, `1kK we obtain a contradiction. A similar proof works for a2k instead
of a1k.

Proof of item (2). We divide our discussion in two cases. Consider �rst,

a1k “ w|J1,`1kK, ra2k :“ w|s`J1,`1kK, @ i P J1, `1kK, ra
2
kps` iq “ a2kpiq.

Suppose that 0 ă s ă `k´1. On the one hand the terminal segment of ra2k is a word like ak´1

and then it starts with the symbol 0 which appears in w at the index s` pN 1k ´ 1q`k´1 P

J`k´1, `
1
kK. On the other hand w|J`k´1,`

1
kK contains only the symbol 1. Thus we obtain a

contradiction. We conclude that necessarily `k ď s and the two words a1k and a2k overlap
(partially or completely) on their markers.

We consider next the case,

a2k “ w|J1,`1kK, ra1k :“ w|s`J1,`1kK, @ i P J1, `1kK, ra
1
kps` iq “ a1kpiq.

Suppose that 0 ă s ă pN 1k´1q`k´1. On the one hand the initial segment of ra1k starts with
the symbol 0 which is located at the index s ` 1 P J1, pN 1k ´ 1q`k´1K in w. On the other
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hand w|J1,pN 1k´1q`k´1K is the marker of a2k and contains only the symbol 1. We obtain a

contradiction. We conclude that it is only possible to have s ě pN 1k´1q`k´1, which means
that the terminal segment of a2k overlaps with the initial segment of a1k. Both segments
are copies of ak´1 and as we are in the case where k ě 2 is even, we have that k ´ 1 is
odd and thus ak´1 has the same behavior described in Lemma 3.8 item (2). Therefore the
possible overlap can occur (partially or completely) on their initial and terminal segments
by the rules described as in Lemma 3.8 item (2).

3.3 The vertically aligned subshift

We estimate the entropy of the Gibbs measure µβk from above in Lemma 2.27 by measuring
the frequency of the duplicated symbol 01, 02. If k is even most of the symbols 0 are in
the words bk P rBk. As bk does not use the symbol 1, a positive frequency of the symbol
1 for a generic µβk -con�guration tends to decrease the occurrence of the words bk. The
purpose of this section is to quantitatively justify this intuition.

De�nition 3.10. Let
Ă

ĂA1k Ď
ĂA J1,`1kK2 be the bidimensional dictionary of length `1k of

vertically aligned patterns that project onto rL1k, formally de�ned as

Ă

ĂA1k :“
 

p P ĂA J1,`1kK2 : Drp P rA1k, s.t. @, pi, jq P J1, `1kK
2, ppi, jq “ rppiq

(

.

The dictionary
r

rB1k Ď
ĂA J1,`1kK2 is de�ned analogously. Let

Ă

ĂX be the set of vertically aligned

con�gurations that project onto rX

Ă

ĂX :“
 

x P ĂA Z2
: Drx P rX,xpi, jq “ rxpiq for every pi, jq P Z2

(

.

We use the notation r

rπ :
Ă

ĂX Ñ rX or r

rπ :
Ă

ĂA1k Ñ
rA1k to represent the projection of a

vertically aligned con�guration or pattern.

Let p P ĂA J1,nK2 be a large pattern (not necessarily vertically aligned) and consider
the set of translates u of small squares of size 2`1k inside this pattern p that are vertically

aligned and project onto a pattern of rA1k or rB1k. We introduce the following notations.

De�nition 3.11. Let k ě 2, n ą 2`1k, and p P
ĂA J1,nK2 . We de�ne

1. Ipp, `1kq :“

"

u P J0, n´ 2`1kK
2 : σuppq|J1,2`1kK2 P L p

Ă

ĂX, 2`1kq

*

,

2. IApp, `1kq :“

"

u P J0, n´ `1kK
2 : σuppq|J1,`1kK2 P

Ă

ĂA1k

*

,
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3. JApp, `1kq :“
ď

uPIApp,`1kq

`

u` J1, `1kK
2
˘

.

We de�ne IBpp, `1kq and JBpp, `1kq similarly with replacing
Ă

ĂA1k for
r

rB1k in (2) and (3),
respectively.

Lemma 3.12. Let k ě 2, n ą 2`1k, p P
ĂA J1,nK2 and Ipp, `1kq, J

App, `1kq, J
Bpp, `1kq as in

De�nition 3.11. Let τ 1k “: p`1k, `
1
kq P N2. Then JApp, `1kq X J

Bpp, `1kq “ ∅ and

τ 1k ` Ipp, `
1
kq Ă JApp, `1kq \ J

Bpp, `1kq.

Proof. The fact that JApp, `1kq and J
Bpp, `1kq do not intersect is a consequence of Lemma

3.7. Let u P Ipp, `1kq and w˚ “ σuppq|J1,2`1kK2 . There exists w P L pxrLky, 2`
1
kq such that

w˚pi, jq “ wpiq for all pi, jq P J1, 2`1kK
2. By de�nition of xrLky, w Ă w1w2 is a subword of

the concatenation of two words of rLk. By De�nition 3.6 we have that xrLky Ď xrL
1
ky, and

also L pxrLky, 2`
1
kq Ď L pxrL1ky, 2`

1
kq.

On the other hand, a word in rLk is either a word of rAk or a word of rBk. As x rAky Ă x rA
1
ky

and x rBky Ă x rB
1
ky, w1 and w2 are obtained as a concatenation of words of rA1k or

rB1k. There
exists 0 ď s ă `1k such that

σspwq|J1,`1kK P
rA1k

ğ

rB1k.

Then
u` ps, sq P IApp, `1kq

ğ

IBpp, `1kq,

and therefore
u` τ 1k P J

App, `1kq
ğ

JBpp, `1kq.

This concludes the proof. See Figure 1 for an illustration of this result.

Lemma 3.13. Let k ě 2 be an even integer, n ą 2`1k, and p P
ĂA J1,nK2 . Let IApp, `1kq,

JApp, `1kq, I
Bpp, `1kq, J

Bpp, `1kq as in De�nition 3.11. De�ne

KApp, `1kq “
 

v P JApp, `1kq : ppvq “ 0
(

, KBpp, `1kq “
 

v P JBpp, `1kq : ppvq “ 0
(

.

Then

1. cardpKBpp, `1kqq ď
`

1´N´1
k´1

˘´1
cardpJBpp, `1kqqf

B
k´1,

2. cardpKApp, `1kqq ď
2

N 1k
cardpJApp, `1kqqf

A
k´1.
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n

n

2`1k

2`1k

u` τ 1k

u

`1k

u` ps, sq

Figure 1: The biggest square is the square pattern p P ĂA J0,nK2 . Let u P Ipp, `1kq. The

dashed square of size 2`1k is a pattern in L p
Ă

ĂX, 2`1kq. The pattern located in the innermost

square of size `1k belongs to rA1k
Ů

rB1k. The innermost dot represents u` τ 1k.

Proof. Let k ě 2 even, n ą 2`1k and a �xed p P
ĂA J1,nK2 . To simplify the notations, we write

IA “ IApp, `1kq, J
A “ JApp, `1kq and so on. As the symbol 0 does not appear in the markers

1N
1
k`k´1 P rA1k and 2N

1
k`k´1 P rB1k, we only need to consider translates u P J0, n´ `1kK

2 of IA

(resp. IB) such that w˚ “ σuppq|J1,`1kK2 satisfying r

rπpw˚q P ta
1
k, a

2
ku (resp.

r

rπpw˚q “ b1k).

Item 1. We �rst enumerate IB “ tu1, u2, . . . , uHu. Let uh “ pu
x
h, u

y
hq P Z

2. Let

JB :“
H
ď

h“1

Jh where Jh :“ uh ` J1, `1kK
2, r

rπpσuhppqq|J1,`1kK2 “ b1k,

that is, we are only considering the Jh squares of J
Bpp, `1kq that contains vertically aligned

word b1k. For each box Jh, we divide it into N
1
k vertical strips of length `k´1. Formally we

have

Jh “

N 1k
ď

i“1

Jh,i where Jh,i :“ uh ` J1` pi´ 1q`k´1, i`k´1Kˆ J1, `1kK.

We construct a partition of JB inductively by,

JB “
H
ğ

h“1

J˚h , J˚1 “ J1, @h ě 2, J˚h :“ Jhz pJ1 Y ¨ ¨ ¨ Y Jh´1q .
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Let

K˚
h :“ tv P J˚h : ppvq “ 0u, KB :“

H
ğ

h“1

K˚
h .

It will be enough to show that for every h P J1, HK

cardpK˚
hq ď

`

1´N´1
k´1

˘´1
cardpJ˚h qf

B
k . (6)

By de�nition of uh, rwh “ r

rπpp|puh`J1,`1kK2qq= b1k P
ĂA `1k ,

@ i, j P J1, `kK2, rwhpu
x
h ` iq “ b1kpiq.

Since b1k can be decomposed into N 1k subwords of the form bk´1, we denote by rwh,i P ĂA `k´1

the successive subwords for every 1 ď i ď N 1k. Formally,

rwh,i :“ rwh|puxh`J1`pi´1q`k´1,i`k´1Kq and σ
uxh`pi´1q`k´1p rwh,iq “ bk´1.

Consider now a �xed position h. We will show that J˚h is equal to a disjoint union of

N 1k vertical strips pJ˚h,iq
N 1k
i“1 of the following forms:

� the initial strip J˚j,1,

uh ` pJ1` `k´2, `k´1Kˆ Jch,1, dh,1Kq Ď J˚j,1 Ď puh ` J1, `k´1Kq ˆ Jch,1, dh,1K;

� the intermediate strips, J˚h,i, 1 ă i ă N 1k,

J˚h,i “ uh ` pJpi´ 1q`k´1 ` 1, i`k´1Kˆ Jch,i, dh,iKq ,

� the terminal strip J˚h,N 1k
,

uh `
´

J1` pN 1k ´ 1q`k´1, `k ´ `k´2Kˆ Jch,N 1k , dh,N 1kK
¯

Ď

Ď J˚h,N 1k
Ď uh `

´

J1` pN 1k ´ 1q`k´1, `
1
kKˆ Jch,N 1k , dh,N 1kK

¯

.

Here for each i P J1, N 1kK, the values 1 ď ch,i, dh,i ď `1k are integers that represent the
vertical length of each strip. Note that it possible that ch,i ą dh,i, which denotes an
empty strip J˚h,i.

Indeed, for a �xed 1 ď i ď N 1k, we �rst consider the previous Jg, 1 ď g ă h, that
intersects the strip Jh,i so that the word rwg overlaps rwh on a power of bk´1 (see item (2)
of Lemma 3.8). Then ch,i is the largest upper level of those Jg X Jh,i, more precisely,

ch,i “ max
g

 

uyg ` `
1
k ` 1 : uyg ď uyh,

`

uxh ` pi´ 1q`k´1 ` J1, `k´1K
˘

Ď
`

uxg ` J1, `1kK
˘(

, (7)
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`1k Jg

Jh

`1k

Jf

J˚h,i

uyg ` 1

uyh ` 1

uyg ` `1k

uyh ` `
1
k

uyf ` 1

uyf ` `
1
k

uxg ` 1 uxg ` `
1
k

Figure 2: We represent the intermediate strip J˚j,i in Jh that is obtained after discarding
Jg and Jf constructed before.

and similarly dh,i is the smallest lower level of those Jg X Jh,i, formally we have

dh,i “ min
g

 

uyg ` 1 : uyg ě uyh,
`

uxh ` pi´ 1q`k´1 ` J1, `k´1K
˘

Ď
`

uxg ` J1, `1kK
˘(

. (8)

We have just constructed the intermediate strips J˚h,i for 1 ă i ă Nk, se Figure 2.
We now construct the initial strip (the terminal strip is constructed similarly). We

intersect the remaining Jg with Jh,1. The terminal segment bTk´1 of rwg overlaps the initial
segment bIk´1 of rwh. By item (1) of Lemma 3.8, as k´1 is odd, bk´1 has the same structure
as ak, and hence the overlapping can only happen at their end segments of the form bk´2.
We have just proved that J˚h,1 contains a small strip

`

uh` J1` `k´2, `k´1K
˘

ˆ Jch,1, dh,1K of
base bIk´1zbk´2 and is included in a larger strip

`

uh` J1, `k´1K
˘

ˆ Jch,1, dh,1K of base bk´1.
For the initial and terminal strip the vertical extension (Jch,1, dh,1K and Jch,N 1k , dh,N 1kK) of
the elements J˚h,1 and J˚h,N 1k

are de�ned as in (7) and (8).
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Let K˚
h,i :“ tv P J˚h,i : pv “ 0u. We show that

cardpK˚
h,iq ď

`

1´N´1
k´1

˘´1
cardpJ˚h,iqf

B
k for every 1 ď i ď Nk. (9)

For the intermediate strips J˚h,i, where 1 ă i ă N 1k, we use the fact that J
˚
h,i is a square

strip of base bk´1, and the fact that the frequency fBk´1 of the symbol 0 in the word bk´1

is identical to the frequency fBk of the symbol 0 in bk. We have,

cardpK˚
h,iq “ `k´1pdh,i ´ ch,i ` 1qfBk “ cardpJ˚h,iqf

B
k .

For the initial strip J˚h,1, we use the fact J
˚
h,1 resembles largely a square strip of base

bk´1. We have,

cardp K˚
h,iq ď `k´1pdh,1 ´ ch,1 ` 1qfBk

ď
`k´1

`k´1 ´ `k´2
p`k´1 ´ `k´2qpdh,1 ´ ch,1 ` 1qfBk

ď
`

1´N´1
k´1

˘´1
cardpJ˚h,iqf

B
k .

We have proven (9) and by summing over i P J1, N 1kK we have proven (6).
Item 2. As before we will consider IA, but only consider the translates u P J0, n´ `1kK

2

such that r

rπpσuppq|J1,`1kK2q P ta
1
k, a

2
ku. If Jg X Jh ‰ ∅, the two projected words rwg “

r

rπpσugppq|J1,`1kK2q and rwh “ r

rπpσuhppq|J1,`1kK2q may coincide in three ways: either uxg “ uxh
and rwg “ rwh, or rwg and rwh intersect on their markers, or rwg and rwh intersect on their
initial and terminal segments, as in Lemma 3.9.

We rede�ne again IA by clustering into a unique rectangle formed by adjacent squares
where the overlap occurs in the whole word, that is, we group the squares Jg and Jh
that pairwise satisfy Jg X Jh ­“ ∅, uxg “ uxh, rwg “ rwh and |uyg ´ uyh| ă `1k. Then, after

re-indexing IA, one obtains,

JA “
H
ď

h“1

Jh, Jh “ uh `
`

J1, `1kKˆ J1, dhK
˘

,

where dh is the �nal height of each rectangle obtained after the clustering. Thus w˚h “

σuhppq|J1,`1kKˆJ1,dhK is a vertically aligned pattern whose projection rwh “ r

rπpw˚hq is a word

of the form a1k or a2k, and such that whenever Jg X Jh ­“ ∅, rwg and rwh intersect at their
initial and terminal segments, see Figure 3.

We now show that an index v “ pvx, vyq P JA may belong to at most two rectangles
Jf and Jh. Indeed, by construction, as uxg ­“ uxh, if v

x belongs to two overlapping words of

the form a1k, a
2
k, then v

x belongs to either the intersection of the two markers 1pN
1
k´1q`k´1
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`1k

`1k

Jf

aIk´1

Jh

Jg

aTk´1

Jh,1

aTk´1

v

uyh ` 1

uyh ` dh

Figure 3: We represent a clustering of two squares of the kind Jh that intersects on the
right Jg along their markers and on the left Jf along their initial and terminal segments.

or the intersection of the terminal segment aTk´1 of a2k and the initial segment aIk´1 of
a1k. In both cases described in Lemma 3.9 we exclude the overlapping of a third word of
the form a1k, a

2
k, thus we exclude the fact that v may belong to a third rectangle Jg with

uxg ­“ uxf and uxg ­“ uxh. Then

cardpKAq “
ÿ

vPJA

1pppvq“0q

ď

H
ÿ

h“1

ÿ

vPpuh`J1,`1kKˆJ1,dhKq

1pppvq“0q ď

H
ÿ

h“1

fAk´1`k´1dh

ď
fAk´1`k´1

`1k

H
ÿ

h“1

ÿ

vPJA

1vPpuh`J1,`1kKˆJ1,dhKq “
fAk´1

N 1k

ÿ

vPJA

H
ÿ

h“1

1pvPJhq

ď
2fAk´1

N 1k
cardpJAq.

This concludes our proof.
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4 Analysis of the zero-temperature limit

Proof of Lemma 2.22. Item 1. Let µ be a measure satisfying supppµq Ď Xk “ xLky
which is ergodic. Recall that Birkho�'s ergodic theorem extends to actions of countable
amenable groups as long as the average is taken over a tempered Følner sequence [37]. As
the sequence pΛnqnPN with Λn “ J´n, nKd is tempered in Zd, it follows that for µ-almost
every point x

µprF sq “ lim
nÑ`8

cardptu P Λn : σupxq P rF suq

cardpΛnq
.

We choose such a point x P xLky and s P J1, `kK2 such that y “ σspxq and all its translates
σt`kpyq, t P Z2, satisfy σt`kpy|J1,`kK2q P Lk. By taking a sub-sequence multiple of `k and

by taking a set rΛn tiled by translates of the square J1, `kK2,

rΛn :“ J´n`k, n`k ´ 1K2,

one obtains

µprF sq “ lim
nÑ`8

cardptu P rΛn ´ s : σupyq P rF suq

cardprΛnq
,

“ lim
nÑ`8

cardptu P rΛn : σupyq P rF suq

cardprΛnq
.

By de�nition of Lk, every pattern in Lk is globally admissible and thus locally admissible,

@ t P J´n, n´ 1K2, @ v P J0, `k ´DK2, σv`t`kpyq|J1,DK2 R rF s.

As cardpJ0, `k ´ 1K2zJ0, `k ´DK2q ď 2D`k, we have

cardptu P rΛn : σupyq P rF suq ď p2nq22D`k,

cardprΛnq “ p2nq
2`2k.

Therefore we get that µprF sq ď 2D{`k.
Item 2. Let rw P rBk be the word whose density of zeroes realizes the maximum value

fBk . By Lemma 2.18, rw is a subword of some rx P rX. Let r

rx be the vertically aligned

con�guration corresponding to rx. By the simulation theorem, rrx “ pΠppxq for some px P pX.
Let pw :“ px|J1,`kK2 . By duplicating the symbol 0 we obtain,

cardpBkq ě card
` 

w P A J1,`kK2 : Γpwq “ pw
(˘

“ 2`
2
kf

B
k p rwq,

htoppX
B
k q “

1

`2k
lnpcardpBkqq ě lnp2qfBk .
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where Γ has been de�ned in Equation 3.
Item 3. let µBk be an ergodic measure of maximal entropy of XB

k . Then

supppµBk q Ď XB
k and P pβkϕq ě hpµBk q ´ βkµ

B
k prF sq ě lnp2qfBk ´ 2D

βk
`k
.

This is what we wanted to prove.

Proof of Lemma 2.24. As the pressure of βkϕ is non-negative (the two con�gurations 18

and 28 belong to X and ϕ is identically zero on X), we have

hpµβkq ´

ż

βkϕdµβk “ P pβkϕq ě 0, µβkprF sq ď
hpµβkq

βk
ď

lnpcardpA qq

βk
,

Σ2pA qzrM 1
ks Ď

ď

uPJ0,R1k´DK2
σ´uprF sq, µβkpΣ

2pA qzrM 1
ksq ď

R1k
2

βk
lnpcardpA qq.

Proof of Lemma 2.26. By de�nition of relative entropy

H
´

PJ1,nK2 , µβk

¯

“ H
´

PJ1,nK2
ł

rG J1,nK2
ł

U
J0,n´R1kK2

k , µβk

¯

“ H
´

PJ1,nK2 | rG J1,nK2
ł

U
J0,n´R1kK2

k , µβk

¯

`H
´

rG J1,nK2 | U
J0,n´R1kK2

k , µβk

¯

`H
´

U
J0,n´R1kK2

k , µβk

¯

.

The �rst term of the right-hand side is the relative entropy at scale `1k that requires
a special treatment. The third term is computed using the estimate in lemma 2.24 (the
function that maps ε P p0, e´1q to Hpεq is increasing),

H
`

U
J0,n´R1kK2

k , µβk
˘

“
ÿ

PPU
J0,n´R1

k
K2

k

´µβkpP q lnpµβkpP qq

ď n2HpUk, µβkq ď n2Hpεkq.

We now compute the term in the middle. We choose ε1k ą εk and de�ne

Un :“
!

x P Σ2pA q : card
 

u P J0, n´R1kK
2 : σupxq P rM 1

ks
(

ě n2p1´ ε1kq
)

.

By the Zd-version of Birkho�'s ergodic theorem we have that

lim
nÑ`8

µβkpUnq “ 1.
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Let pµxqxPΣ be the family of conditional measures with respect to U
J0,n´R1kK
k . We have

H
´

rG J1,nK2 | U
J0,n´R1kK2

k , µβk

¯

“

ż

H
´

rG J1,nK2 , µx

¯

dµβkpxq

“

ż

Un

H
´

rG J1,nK2 , µx

¯

dµβkpxq`

`

ż

Σ2pA qzUn

H
´

rG J1,nK2 , µx

¯

dµβkpxq

ď

ż

Un

H
´

rG J1,nK2 , µx

¯

dµβkpxq`

` n2µβk
`

Σ2pA qzUn
˘

lnpcardp ĂA qq,

and therefore

lim sup
nÑ`8

1

n2
H
´

rG J1,nK2 | U
J0,n´R1kK2

k , µβk

¯

ď lim sup
nÑ`8

ż

Un

1

n2
H
´

rG J1,nK2 , µx

¯

dµβkpxq.

We now consider a �xed x P Un. We compute the number of elements of rG J1,nK2 that
are compatible with the constraint

cardtu P J0, n´R1kK
2 : σupxq P rM 1

ksu ě n2p1´ ε1kq.

Let I be the subset
I :“

 

u P J0, n´R1kK
2 : σupxq P rM 1

ks
(

.

Since x P Un, we have
cardpIq

n2
ě 1´ ε1k.

Let J Ď I be a maximal subset satisfying for every u, v P J ,

}u´ v}8 ě
1

2
R1k.

For every u P J , consider

Iu :“
!

v P I : }u´ v}8 ă
1

2
R1k

)

.

By maximality of J we have I “
Ť

uPJ Iu. We �rst observe that the sets
´

u`
q
1, rR1k{2s

y2
¯

uPJ
are pairwise disjoint. Then

cardpJq ď
4n2

R12k
.
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We also observe that for every v1, v2 P Iu, }v1 ´ v2}8 ă R1k and

´

v1 ` J1, R1kK
2
¯

č

´

v2 ` J1, R1kK
2
¯

‰ ∅.

For every u P I let
Ku :“

ď

vPIu

`

v ` J1, R1kK
2
˘

Ă J1, nK2.

For every v P Iu, we have
x|v`J1,R1kK2 P rM

1
ks.

In particular the pattern x|v`J1,R1kK2 is locally F -admissible and satis�es the constraint

that all the ĂA -symbols are vertically aligned in v` J1, R1kK
2. Using that Ku is connected

as a Cayley subgraph of Z2 with the canonical generators, one obtains that the ĂA -symbols
are also vertically aligned in Ku.

The width ofKu is less than 2R1k, so the cardinality of possible patterns p P
ĂA Ku satis-

fying the constraint that the ĂA -symbols are vertically aligned is bounded by cardp ĂA q2R
1
k .

The cardinality of set of patterns with support
ď

uPJ

Ku is thus bounded by

´

cardp ĂA q2R
1
k

¯4n2{R12k
“ exp

ˆ„

2R1k ¨
4n2

R12k



lnpcardp ĂA qq

˙

“ exp

ˆ

8n2

R1k
lnpcardp ĂA qq

˙

.

Since
ď

uPJ

Ku covers I, the cardinality of the set of patterns with support J1, nK2z
ď

uPJ

Ku

is bounded by cardp ĂA qn
2ε1k . We have proven that, for every x P Un,

H
´

rG J1,nK2 , µx

¯

ď

´8n2

R1k
` n2ε1k

¯

lnpcardp ĂA qq.

We conclude by letting nÑ `8 and ε1k Ñ εk.

The proof of Lemma 2.27 requires the following intermediate result.

Lemma 4.1. Let n, ` be integers which satisfy n ą 2` ą 2, ε P p0, 1q, and let S Ď

J0, n´ 2`K2 be a subset satisfying cardpSq ě n2p1´ εq. Let pE be the set

pE :“
 

w P xA J1,nK2 : @u P S, σupwq|J1,2` K2 P L p pX, 2`q
(

.

Then
1

n2
lnpcardp pEqq ď

1

`
lnpcardp ĂA qq `

1

`2
lnpC

pXp`qq ` ε lnpcardp xA qq.
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Proof. To simplify the notations we assume that n is a multiple of `. We decompose the
square J1, nK2 into a disjoint union of squares of size `,

J1, nK2 “
ď

vPJ0,n
`
´1K2

`

`v ` J1, `K2
˘

.

We de�ne the set of indexes v that intersect S, more precisely, we have

V :“

"

v P
r

0,
n

`
´ 2

z2
:
`

`v ` J0, `´ 1K2
˘

č

S ‰ ∅
*

.

Then for every w P pE, v P V , and u P
`

`v ` J0, `´ 1K2
˘
Ş

S, therefore

`

`v ` J1` `, 2`K2
˘

Ď
`

u` J1, 2`K2
˘

.

Since we are taking u P S we have that

σupwq|J1,2`K2 P L p pX, 2`q,

and then
σ`v`p`,`qpwq|J1,`K2 P L p pX, `q.

The restriction of w on every square
`

`v ` J1 ` `, 2`K2
˘

is globally admissible with

respect to xF . Note that these squares are pairwise disjoint and the cardinality of their
union is at least n2p1´ εq, since

card

˜

ď

vPV

`

`v ` J1` `, 2`K2
˘

¸

“ card

˜

ď

vPV

`

`v ` J0, `´ 1K2
˘

¸

ě cardpSq.

Hence we proved that pE is a subset of the set of patterns w made of independent and
disjoint words pwvqvPV , with wv P L p pX, `q, and of arbitrary symbols on J0, n´ 2`K2zS of

size at most εn2. Using the trivial bound cardpL p rX, `qq ď cardp ĂA q`, we have

cardp pEq ď
´

cardp ĂA q` ¨ C
pXp`q

¯pn{`q2

¨ cardp xA qεn
2

and therefore

1

n2
lnpcardp pEqq ď

1

`
lnpcardp ĂA qq `

1

`2
lnpC

pXp`qq ` ε lnpcardp xA qq.
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Proof of Lemma 2.27.

Proof of item 1. Using the Zd-version of Birkho�'s ergodic theorem and Lemma 2.24,
it follows that for almost every x P Σ2pA q,

lim
nÑ`8

1

n2
card

` 

u P J0, n´R1kK
2 : σupxq P rM 1

ks
(˘

“ µβkprM
1
ksq

and

lim
nÑ`8

1

n2
card

` 

u P J1, nK2 : πpxpuqq “ ra
(˘

“ µβkp
rG
raq, @ra P ĂA .

We choose n ą R1k. An element of the partition rG J1,nK2 ŽU J0,n´R1kJ2 is of the form
rGp X US where p P ĂA J1,nK2 is a pattern and S Ď J0, n´R1kK

2 is a subset, where

US :“
 

x P Σ2pA q : @u P S, σupxq P rM 1
ks, @u P J0, n´R1kK

2zS, σupxq R rM 1
ks
(

,

rGp :“ tx P Σ2pA q : Πpx|J1,nK2q “ pu.

Let η ă µβkp
rG0q. Lemma 2.24 implies µβk

`

Σ2pA qzrM 1
ks
˘

ď εk. Using again Birkho�'s
theorem we get

lim
nÑ`8

1

n2
card

`

tu P J0, n´R1kK : σupxq P rM 1
ksu

˘

ą 1´ εk, for µβk -a.e. x,

lim
nÑ`8

µβk

´

ď

SĎJ0,n´R1kK2

 

US : cardpSq ą n2p1´ εkq
(

¯

“ 1. (10)

For n large enough, we choose S Ď J0, n´R1kK
2 such that US ­“ ∅ and cardpSq ě n2p1´εkq.

By de�nition of M 1
k and T 1k (see page 16), if x P US , then for every u P S, σupxq|J1,R1kK2 is

a locally admissible pattern with respect to F and

σu`T
1
kpxq|J1,2`1kK2 P L pX, 2`1kq.

De�ne for every n ą R1k and every pattern p P ĂA J1,nK2 the set

Knppq :“ tu P J1, nK2 : ppuq “ 0u.

As µβkp
rG0q ą η, it follows by Birkho�'s ergodic theorem

lim
nÑ`8

µβk

´

ď

p

!

rGp : cardpKnppqq ą n2η
)¯

“ 1. (11)

From Equations 10 and 11, for large n, one can choose S and p such that US X rGp ­“ ∅,
cardpKpq ą n2η and cardpSq ě n2p1´ εkq. Using the notations in De�nition 3.11 and the
conclusions of Lemma 3.12, one obtains

T 1k ` S Ď Ipp, `1kq and τ 1k ` Ipp, `
1
kq Ď JApp, `1kq \ J

Bpp, `1kq “: JA \ JB,
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therefore by our choice of S we obtain

n2p1´ εkq ď cardpSq “ cardpτ 1k ` T
1
k ` Sq ď card

`

JA \ JB
˘

ď n2. (12)

Besides that, we have

n2η ď cardpKnppqq ď cardpKA \KBq ` n2εk

and by the Lemma 3.13 we have

cardpKnppqq ď
2

N 1k
cardpJAqfAk´1 `

`

1´N´1
k´1

˘´1
cardpJBqfBk´1 ` n

2εk.

We divide each term by n2 and take the limit with nÑ `8, εÑ εk, and η Ñ µβkpr0sq.

Proof of item 2. We now assume that k is even and choose η such that µβkp
rG1q ą η.

We choose p P ĂA J1,nK2 such that rGp X US ­“ ∅ and

card
` 

u P J1, nK2 : ppuq “ 1
(˘

ą ηn2. (13)

Let x P rGp X US and pµxqxPΣ be the family of conditional measures with respect to the

partition rG J1,nK2 ŽU J0,n´RkJ2 . We use the trivial upper bound of the entropy, so

HpG J1,nK2 , µxq ď lnpcardpEp,Sqq (14)

where

Ep,S :“
 

w P A J1,nK2 : Πpwq “ p and @u P S, σu`T
1
kpwq|J1,2`1kK2 P L pX, 2`1kq

(

.

Also consider
pEp,S :“ ΓpEp,Sq.

Note that every pattern in Ep,S is obtained from a pattern in pEp,S by duplicating the
symbol 0. Using Lemma 4.1 we conclude that

lnpcardpEp,Sqq ď lnpcardp pEp,Sqq ` cardpKnppqq lnp2q,

1

n2
lnpcardp pEp,Sqq ď

1

`1k
lnpcardp ĂA qq `

1

`1k
2

lnpC 1kq ` εk lnpcardp xA qq,

thus

1

n2
lnpcardpEp,Sqq ď

´ 2

N 1k
cardpJAqfAk´1 ` p1´N

´1
k´1q

´1cardpJBqfBk´1 ` n
2εk

¯ lnp2q

n2
`

`
1

`1k
lnpcardp ĂA qq `

1

`1k
2

lnpC 1kq ` εk lnpcardp xA qq.

(15)
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The symbol 1 does not appear in JB “ JBpp, `1kq, thus
 

u P J1, nK2 : ppuq “ 1
(

Ă JA \
`

J1, nK2zpJA \ JBq
˘

.

Since we are assuming (13), using (12) and the fact that JA X JB “ H, we obtain

card
`

J1, nK2zpJA \ JBq
˘

ď n2εk

cardpJAq ě n2
´

η ´ εk

¯

and cardpJBq ď n2
´

1´ η ` εk

¯

. (16)

By replacing the upper bound for cardpJBq given in (16) and cardpJAq ď n2 in (15)
we obtain that

1

n2
lnpcardpEp,Sqq ď

ˆ

2

N 1k
fAk´1 ` p1´N

´1
k´1q

´1 p1´ η ` εkq f
B
k´1 ` εk

˙

lnp2q`

`
1

`1k
lnpcardp ĂA qq `

1

`1k
2

lnpC 1kq ` εk lnpcardp xA qq.
(17)

By integrating with respect to µβk in both sides and taking the limit when n Ñ `8 we
obtain item (2) of Lemma 2.27. Item (3) is analogous.

5 Results on computability

In this last section we prove the two bounds on the relative complexity and reconstruction
functions. The subshift of �nite type pX “ Σ2p xA , xF q in the Aubrun-Sablik construction [1]
as described in Theorem 2.9 is composed of four layers, that is, it is a subshift of a product
of four subshifts of �nite type, which is itself described by a �nite set of forbidden patterns
which impose conditions on how the layers superpose. See Figure 14 of [1]. The layers
are:

1. Layer 1: The set of all con�gurations x P ĂA Z2
that are vertically aligned, that is,

xu “ xu`p0,1q for every u P Z2.

2. Layer 2: TGrid A subshift of �nite type extension of a so�c subshift which is gener-
ated by the substitution given in Figure 3 of [1]. The so�c subshift induces in�nite
vertical �strips� of computation which are of width 2n for every n P N and occur
with bounded gaps (horizontally) in any con�guration. It also encodes a �clock� on
every computation strip of width 2n, which counts and restarts periodically every
22n ` 2 vertical steps in its strip.

3. Layer 3: MForbid A subshift of �nite type given by Wang tiles which replicates,
on top of each clock determined by the previous layer, the space-time diagram of a
Turing machine which enumerates all forbidden patterns of the e�ective subshift rX.
It also communicates information from the space-time diagram to the fourth layer.
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4. Layer 4: MSearch A subshift of �nite type given by Wang tiles which simulates a
Turing machine which serves the purpose of checking whether the patterns enumer-
ated by the third layer appear in the �rst layer. Each machine searches for forbidden
patterns in a �responsibility zone� which is determined by the hierarchical structure
of Layer 2.

The rules between the four layers described in [1] force the Turing machine space-time
diagrams to occur in every strip, and to restart their computation after an exponential
number of steps. This ensures that every con�guration witnesses every step of computa-
tion in a relatively dense set, and that every forbidden pattern is written on the tape by
the Turing machine in every large enough strip. The fourth layer uses the information
from the third layer to search for occurrences of the forbidden patterns in the �rst layer
and thus discards any con�guration in the �rst layer where one of these patterns occurs.

In the proofs that follow, we shall use nomenclature of [1] and refer to explicit parts
and bounds associated to their construction, so the reader should bear in mind that this
section is not meant to be self-contained. However, we shall aim to explain our arguments
in such a way that at least they can be understood intuitively without the need to refer
to [1].

Proof of Proposition 2.14. Let us denote by CnpLayerkp
pXqq the complexity of the projec-

tion to the k-th layer. and by CnpLayerkp
pXq|Layerjp

pXqq the complexity of the projection
to the k-th layer given that there is a �xed pattern on the j-th layer. Clearly we have
that

C
pXpnq ď CnpLayer1p

pXqq ¨ CnpLayer2p
pXqq ¨ CnpLayer3p

pXq|Layer2p
pXqq¨

¨ CnpLayer4p
pXq|Layer2p

pXqq.

� Layer 1: As this layer is given by all x P ĂA Z2
so that xu “ xu`p0,1q for every u P Z2,

a trivial upper bound for the complexity is

CnpLayer1p
pXqq “ Op| ĂA |nq.

In fact, as in the end the only con�gurations which are allowed are those whose
horizontal projection lies in the e�ective subshift rX, a better bound is given by
CnpLayer1p

pXqq “ Opexppn htopp
pXqqq. For simplicity, we shall just keep the trivial

bound.

� Layer 2: The complexity of every substitutive subshift in Z2 is Opn2q. To see this,
suppose that the substitution sends symbols of some alphabet A2 to n1ˆ n2 arrays
of symbols. By de�nition, every pattern of size n occurs in a power of the substi-
tution. If k is such that mintn1, n2u

k´1 ď n ď mintn1, n2u
k, then necessarily any
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pattern of size n occurs in the concatenation of at most 4 k-powers of the substi-
tution. There are |A2|

4 choices for the k-powers and at most pmaxtn1, n2u
kq2 ď

pnmaxtn1, n2uq
2 choices for the position of the pattern. It follows that there are

at most p|A2|
4 maxtn1, n2u

2qn2 “ Opn2q patterns of size n. Furthermore, Mozes
construction [42] of an SFT extension for substitutives subshifts does not increase
the complexity by more than a constant. We obtain,

CnpLayer2p
pXqq “ Opn2q

The reader can �nd further information on dynamical systems generated by subti-
tutions in [42, 22].

� Layer 3: It can be checked directly from the Aubrun-Sablik construction that the
symbols on the third layer satisfy the following property: if the symbols on the
substitution layer are �xed, then for every u P Z2 the symbol at position u is
uniquely determined by the symbols at positions u´p0, 1q, u´p1, 1q and u´p´1, 1q.
In consequence, it follows that knowing the symbols at positions in the �U shaped
region�

U “ pt0u ˆ J1, n´ 1Kq Y pJ0, n´ 1Kˆ t0uq Y ptn´ 1u ˆ J1, n´ 1Kq

completely determines the pattern. Therefore, if this layer has an alphabet A3, we
have

CnpLayer3p
pXq|Layer2p

pXqq ď |A3|
3n´2 ď OpKn

1 q,

for some positive integer K1.

� Layer 4: The same argument for Layer 3 holds for Layer 4. Therefore, if the alphabet
of layer 4 is A4 we have that for some positive integer K2,

CnpLayer4p
pXq|Layer2p

pXqq ď |A4|
3n´2 ď OpKn

2 q.

Putting the previous bounds together, we conclude that there is some constant K ą 0
such that

C
pXpnq “ Opn2Knq.

This yields the desired bound on Proposition 2.14.

We proved in Lemma 3.5 that ĂF satis�es the assumptions of Proposition 2.11. We now

prove the upper bound of the reconstruction function R
pX : NÑ N of pX “ Σ2p xA , xF q. Of

course, a formal proof of these estimates would require a restatement of the construction
of Aubrun-Sablik with all its details, which is out of the scope of this paper. Instead,
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we shall argue that the bounds we give su�ce, making reference to the properties of the
Aubrun-Sablik construction.

A description of xF is given in [1] in an (almost) explicit manner for all layers except
the substitution layer. For the substitution layer, a description of the forbidden patterns
can be extracted in an explicit way from the article of Mozes [42].

The behavior of layers 2,3 and 4 in the Aubrun-Sablik construction is mostly indepen-
dent of layer 1, except for the detection of forbidden patterns which leads to the forbidden
halting state of the machine in the third layer. Because of that reason the analysis of the

reconstruction function R
pX can be split into two parts:

1. Structural: Assuming that the contents of the �rst layer are globally admissible
(the con�guration in the �rst layer is an extension of a con�guration from rX), we give
a bound that ensures that the contents of layers 2, 3 and 4 are globally admissible,
that is:

� The contents of layer 2 correspond to a globally admissible pattern in the
substitutive subshift and the clock.

� The contents of layer 3 and 4 correspond to valid space-time diagrams of Turing
machines that correctly align with the clocks.

2. Recursive: A bound that ensures that the contents of the �rst layer are globally

admissible. This bound will of course depend upon R
rX and T

rX .

Finally, we are able to prove the upper bound for the reconstruction function given by
Proposition 2.11.

Proof of Proposition 2.11. Let us begin with the structural part, as it is simpler and does
not depend upon rX. Let p be a pattern with support Bn and assume that the �rst layer
of p is globally admissible.

From Mozes's construction of SFT extensions for substitutions [42] it can be checked
that any locally admissible pattern of support Bn of Mozes's SFT extension of a primi-
tive substitution (The Aubrun-Sablik substitution is primitive) is automatically globally
admissible. Let k be the smallest positive integer such that the second layer of p occurs
within four level k macrotiles of the substitution (each has size 4k ˆ 2k) in any locally
admissible pattern of that support.

Next, a clock runs on every strip of the Aubrun-Sablik construction. By the previous
argument, the largest zone which intersects p in more than one position is of level at most
k. Therefore its largest computation strip has horizontal length 2k. In order to ensure
that the clock starts on a correct con�guration on every strip contained in p, we need to
witness this pattern inside a locally admissible pattern which stacks 22k ` 2 macrotiles of
level k vertically. This ensures that the clock tiles occurring in p are globally admissible.
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Finally, if every clock occurring in p starts somewhere, then the contents of the third
layer are automatically correct, as they are determined every time it restarts. To certify
that the fourth layer restricted to p is globally admissible, we just need extend the hor-
izontal length of our pattern twice, so that the responsibility zone of the largest strip is
contained in it.

By the previous arguments, it would su�ce to witness p inside a locally admissible
pattern which contains in its center a 4 ˆ p22k ` 2q array of macrotiles, each one of size
4k ˆ 2k. Clearly the vertical term is dominant, thus it su�ces, for large enough n, to �x
a square box of size length 2kp22k ` 2q.

As 2 ¨ 4k´1 ă n ď 2 ¨ 4k, there is a constant C0 ą 0 such that an estimate for this part
of the reconstruction function can be written as

R
pX

Structpnq “ Op
?
nC

?
n

0 q.

Let us now deal with the recursive part. We need to �nd a bound such that the word

of length n occurring in the �rst layer of p is globally admissible. By de�nition of R
rX , it

su�ces to have p inside a pattern with support B
RĂXpnq

and check that the �rst layer is

locally admissible with respect to ĂF . In other words, we need to have the Turing machine
rM check all forbidden words of length R

rXpnq in this pattern. Luckily, the number of
steps in order to do this is already computed in Aubrun and Sablik's article. After Fact
4.3 of [1] they show that, if p0, p1, . . . , pr are the �rst r ` 1 patterns enumerated by the
Turing machine rM, then the number of steps Spp0, . . . , prq needed in a computation zone
to completely check whether a pattern from tp0, . . . , pru occurs in its responsibility zone
of level m satis�es the bound,

Spp0, . . . , prq ď T pp0, . . . , prq ` pr ` 1qmaxp|p0|, . . . , |pr|qm
223m`1,

where T pp0, . . . , prq is the number of steps needed by M to enumerate the patterns
p0, p1, . . . , pr.

Recall that the assumptions of Proposition 2.11 are that R
rXpnq ď Cn for some con-

stant C1 ą 0 and that that the time enumeration function satis�es T pR
rXpnqq ď P pnq| ĂA |n

for some polynomial P . In our construction, we may rewrite the Aubrun-Sablik formula so

that the number SpR
rXpnqq of steps needed to check that all forbidden patterns of length

at most R
rXpnq in a responsibility zone of level m satis�es the bound

SpR
rXpnqq ď T pR

rXpnqq ` | ĂA |R
ĂXpnq`1R

rXpnqm223m`1

ď P pC1nq| ĂA |
n ` | ĂA |C1n`1C1nm

223m`1

Simplifying the above bound, it follows that there exist constants C2, C3 ą 0 such that

SpR
rXpnqq ď C2m

223m`C3n.
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As n is �xed, it follows that there is a smallest sm “ smpnq P N such that 2 sm ě C4n
(in such a way that the tape on the computation zone of level sm can hold words of size

R
rXpnq) and such that

C2 sm
223 sm`C3n ď 22Ďm ` 2,

so that the number 22Ďm`2 of computation steps in the zone of level sm is enough to check

all the words of size R
rXpnq. It follows that a bound for the recursive part of R

pX is given
by

R
pX

recursivepnq “ Op2 sm`2Ďmpnqq.

In order to turn this into an explicit asymptotic expression we need to �nd a suitable
bound for smpnq. Notice that if m ě 6 we simultaneously have that m2 ď 2m and
4m ď 2m´1. We may then write for m ě 6,

C2m
223m`C3n ď C224m`C3n ď C22C3n22m´1

` 2.

Therefore, it su�ces to �nd sm “ smpnq such that

C22C3n ď 22Ďm´1
.

From here, it follows that there is a constant C5 ą 0 such that any value of sm satisfying

sm ě C5 ` log2pnq,

satis�es the above bound. We get that

R
pX

recursivepnq “ Opn2C5nq.

Finally, putting together the structural and recursive asymptotic bounds, we obtain
that there is a constant K ą 0 such that

R
pXpnq “ Opmaxt

?
nC

?
n

0 , n2C5nuq “ OpnKnq.

Hence we get that

lim sup
nÑ`8

1

n
logpR

pXpnqq ă `8.

This is what we wanted to prove.
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