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Abstract

We construct a finite-range potential on a bidimensional full shift on a finite al-
phabet that exhibits a zero-temperature chaotic behavior as introduced by van Enter
and Ruszel. This is the phenomenon where there exists a sequence of temperatures
that converges to zero for which the whole set of equilibrium measures at these given
temperatures oscillates between two sets of ground states. Brémont’s work shows
that the phenomenon of non-convergence does not exist for finite-range potentials
in dimension one for finite alphabets; Leplaideur obtained a different proof for the
same fact. Chazottes and Hochman provided the first example of non-convergence in
higher dimensions d > 3; we extend their result for d = 2 and highlight the impor-
tance of two estimates of recursive nature that are crucial for this proof: the relative
complexity and the reconstruction function of an extension.

We note that a different proof of this result was found by Chazottes and Shinoda,
at around the same time that this article was initially submitted and that a strong
generalization has been found by Gayral, Sablik and Taati.

1 Introduction

The states of a system at equilibrium in statistical mechanics are usually described by a
family of probability measures indexed by an inverse temperature 5 called Gibbs states.
There are several ways in the literature to formalize the notion of Gibbs states; the most
common definition in probability and mathematical physics literature is considering DLR



equations, originally proposed by R. Dobrushin [13], and by O. Lanford and D. Ruelle [35],
this is the standard definition on textbooks of these areas, see [5, 24, 28|.

We adopt a more ergodic approach focusing on equilibrium measures, which for regular
enough potentials correspond to the translation invariant DLR measures, see Ruelle [45],
Muir [43] and Keller [32]. A discussion about when the several notions of Gibbsianness
are equivalent (or not) can be found in [7, 16, 32, 34, 40, 43|.

The existence of an equilibrium measure for a continuous potential on the full shift
comes from compactness. In the one-dimensional setting, the equilibrium measure is
unique, whereas uniqueness does not necessarily hold in the two-dimensional case. Our
main goal is to understand the behavior of the whole set of equilibrium measures as the
temperature goes to zero, showing the existence of potentials with a chaotic behavior
in dimension 2. Given a potential ¢, for each inverse temperature 3 consider pug an
equilibrium state associated with the potential S, the existence of weak*-accumulation
points for the family of invariant Borel probability measures (ug)g=0 as f — +00is a trivial
consequence of the Banach-Alaoglu theorem. The measures obtained as accumulation
points of such families are particular cases of minimizing measures (or ground states) that
we briefly recall. A minimizing measure f,;, is an invariant probability measure that
satisfies

Jg@ dltmin = @ where @ :=inf { Jgp dp : p translation invariant}.

The real number @ is called the ergodic minimizing value or ground-state energy of the
potential .

The union of the support of minimizing measures is a compact invariant set, called the
Mather set, that prescribes the behavior of the equilibrium measures at zero temperature.
Many of the ideas in ergodic optimization and the terminology as ergodic minimizing
value, minimizing measures and Mather set comes from the theory of Lagrangian dynam-
ics in the continuous setting, see Mather [39], Mané [38], Fathi [19, 20, 21|, and from
Aubry-Mather theory in the discrete setting, Forni, Mather [23], Garibaldi, Lopes [25],
Garibaldi, Thieullen [26], Su, de la Llave [48], Sorrentino [47]. A thorough review of
ergodic optimization is done in Jenkinson [30] in the one-dimensional setting.

For generic norm summable interactions on a finite alphabet, there exists a unique
minimizing measure fimi, of uniquely ergodic support (see Ruelle [44]). Some further
properties of ground states for generic interactions are discussed by van Enter and Miek-
isz, see [17]. Therefore in the case above, for any family of equilibrium measures (113)sx0
we have pg — fimin as B — 400 . On the other hand, if there are at least two minimiz-
ing measures, the sequence (13)s>0 might not converge. The notion of zero-temperature
chaotic behavior was introduced by van Enter and Ruszel in the seminal paper [18], see
also [2] for a more detailed proof. Nowadays, there are many examples potentials with
a non-trivial Mather set that are examples of zero-temperature chaotic behavior. In the



multidimensional construction of Chazottes and Hochman [9], while the Mather set is
highly complex, the potential is geometrically simple as it is obtained as the distance
function to the Mather set. In the work of Coronel and Rivera-Letelier [11], the space is
one-dimensional and the Mather set is quite simple (it may be equal to two ergodic mea-
sures with disjoint supports), but the potential is less explicit. In the construction of two
of us and E. Garibaldi [4], the Mather set is reduced to two fixed points {0} U {1*}, while
the potential does not have finite-range, but only summable variations; a zero-temperature
phase diagram is then obtained showing a relationship between zero-temperature chaotic
behavior and cancellation of the Peierls barrier. A complete understanding of the low-
temperature behavior and the ground state structure in two or more dimensions, even
for finite-range interactions, seems currently out of reach. The Lipschitz condition in one
dimension, though similar to a strong decay of interaction, is not enough to guarantee the
convergence of the equilibrium measures. As the present paper illustrates, a finite-range
condition exhibits a rich set of behaviors. Recent work [27] shows that recursion-theoretic
tools play an important role in the description of said structure.

In the discussion that follows, we shall restrict ourselves to the class of finite-range
potentials. In the one-dimensional setting, the Mather set of a finite-range potential
could have a rich structure of minimizing measures. It is a remarkable result that in this
setting, the zero-temperature limit of Gibbs measures always exists and selects a particular
minimizing measure that is not necessarily ergodic. This result was originally proven by
Brémont [6], and was later given other proofs by Chazottes, Gambaudo and Ugalde [8],
Leplaideur [36], and by Garibaldi and Thieullen [26], who also provide an algorithm that
identifies the limiting minimizing measure. In the one-dimensional setting, for finite-
range potentials, the Mather set is reduced to a finite disjoint union of subshifts of finite
type (including periodic orbits), and the limiting minimizing measure is some barycenter
of the measures of maximal topological entropy of these subshifts. The extension of
Brémont’s results to a countable alphabet has been undertaken by Jenkinson, Mauldin
and Urbanski [31], Morris [41], Kempton [33] for the BIP case, and recently the transitive
case in [3].

The status of the zero-temperature chaotic behavior for finite-range potentials in
higher dimensions, d > 2, is completely different. Chazottes and Hochman in [9] con-
structed for every d > 3 an example of a finite-range potential exhibiting a zero-temperature
chaotic behavior. The dimension in their result needs to be greater or equal to 3 because
the proof relies heavily on a theorem of Hochman [29] which realizes any one-dimensional
effective dynamical systems as the topological factor of the subaction of a Z3-subshift of
finite type. After this result, the only case missing was d = 2. Our main result is an
extension of their results for dimension 2.

Theorem 1.1. There exists a finite alphabet o and a finite-range potential ¢ on a bidi-
mensional full shift that exhibits the phenomenon of zero-temperature chaotic behavior.



Our construction is based on the simulation theorem of Aubrun and Sablik [1] which
states that every one-dimensional effectively closed subshift, extended vertically trivially
to a 2-dimensional subshift, is a topological factor of a subshift of finite type of zero
topological entropy. We remark that this result was simultaneously proven by Durand,
Romashchenko, and Shen [14, 15|, which is the main tool used by Chazottes and Shin-
oda [10] in their alternative proof.

While quite intricate, the extension constructed by Aubrun and Sablik has the advan-
tage of being quite explicit, whereas the proof by Durand, Romashchenko, and Shen is
based on Kleene’s fixed point theorem. We use the Aubrun-Sablik construction to produce
a few estimates which are not explicit in |9]. These estimates provide bounds that control
the relative complexity of the SF'T extension. More precisely, we give an explicit bound of
the reconstruction function of the extension, thus avoiding the need to use Kleene’s fixed
point theorem.

The outline of the proof is the following. In the second section, we give the main
definitions, outline the strategy’s main ideas, and give the proof of the Theorem 1.1
assuming a number of estimates that arise from a yet unspecified construction. In the
third section we explain the detailed construction of the one-dimensional subshift. In the
fourth section the prove the estimates pertaining the bounds for the topological entropy. In
the fifth section we prove the two estimates on the reconstruction function and complexity
function in the Aubrun-Sablik simulation theorem.

The present paper is part of the thesis of the third author Gregorio Dalle Vedove. A
preliminary version was submitted to arxiv [12] at about the same time when a paper of
Chazottes and Shinoda [10] was submitted proving the same result but with a different
proof.

We remark that recently, in a beautiful paper of Gayral, Sablik and Taati [27], the
authors obtain a recursion-theoretic classification of the set of ground states for computable
finite range interactions up to computable affine homeomorphisms. Their result not only
implies ours and that of Chazottes and Shinoda, but provides a strong argument that
recursion theory is not only a tool to obtain zero-temperature chaotic behavior, but that
in fact is a central piece of the puzzle needed to understand the possible sets of ground
states.

2 Definitions and outline of the proof

We summarize our setting in the following definitions.

Definition 2.1. Let & be a finite set called alphabet and d > 1 an integer. The space
of d-dimensional configurations ¥4(&7) = " is the d-dimensional full shift. The shift
action is the Z%-action given o = (0%),cz4, 0%: L4() — X(o7) defined by

o%(x) =y if y(v) = z(u +v) for every x,y € 24(«) and v € Z%.



We recall that an invariant probability measure p for the Z¢ action is a Borel measure
on X4(7) such that for every Borel set B we have u(c*(B)) = u(B) for every u e Z¢.

The set of invariant probability measures is denoted by .# = .# (%%(</), o).

In this article we choose a function ¢ : ¥2(.«7) — R that is supposed to describe the
energy contribution at the origin of the lattice Z%. A potentialis a function ¢: L%(a7) — R.

Definition 2.2. Let ¢ : ¥%(&/) — R be a Lipschitz function.

1. The pressure of the potential ¢ is the real number

P(p) := sup {h(u) - Jsodu}-

peH
where h(u) denotes the Kolmogorov-Sinai entropy of p (definition 2.20).

2. An equilibrium measure at inverse temperature (3, is an invariant probability measure
pp that maximizes the pressure

P(B) = hu) - f B dpis.

The set of equilibrium measures at inverse temperature (3 is denoted by Z.(Sp).
The general strategy follows the outlines presented in van Enter and Ruszel [18],
Coronel and Rivera-Letelier [11], and Chazottes and Hochman [9].

Definition 2.3. The phenomenon of zero-temperature chaotic behavior holds for a poten-
tial ¢ : ¥%(&7) — R when there exists a sequence of inverse temperatures (8 )r=0 going to
infinity and two disjoint compact sets G and Gs of (o7 such that, if for every k > 0,
g, is any choice of an ergodic equilibrium measure pg, € #.(Brp), the support of any
weak*-accumulation point of the odd subsequence (pg,, +1)k:>0, respectively of the even

subsequence (1, )k>0, is included in Gl, respectively in Gg
We shall restrict ourselves to the class of finite-range potentials.

Definition 2.4. Let &/ be a finite set and D > 1 be an integer. A function : ¥%(«7) — R
is finite-range (of range D) if

zlp,ppe = Ylpope = @(@) = @y) for every z,y e (),
where z[p; pj« denotes the restriction of a configuration z to the square [1, D]e.

We recall now several definitions.

Definition 2.5. Let &7 be a finite set.



1. If S is a finite subset of Z% a pattern with support S is a partial configuration
p € «/°. The set S = supp(p) is called the support of p. For d = 1 a pattern is
called a word. If x € X%(/), p = z|s denotes the pattern obtained by taking the
restriction of x to S. A pattern p of size n is a pattern of the form p € g7 Lml?,

2. The shift action extends to an action over the set of patterns, that is, for every
ue Z% and p € 7% we say that o%(p) = p’ if and only if p’ € &5~* and for every
v e S —u we have p/'(v) = p(u + v).

3. A pattern p € &7° appears in a configuration 2 € £¢(.e7) if there exists u € Z?¢ such
that o%(x)|s = p. We write p = x. More generally a pattern p € &° appears in a
pattern ¢ € &7 if there exists u € Z% such that S € T — u and 0%(q)|s = p

Definition 2.6. A subshift X is a closed subset of ¥¢(.e7) which is invariant by the shift
action o.

Subshifts can also be given a convenient combinatorial description by exhibiting a set
of forbidden patterns, that is, let 7 < | |-, /111" and consider the set of all z € Y ()
such that p £ x for every pattern p € .%, then it follows that this set is closed and invariant
under the shift action. This motivates the following definition.

Definition 2.7. Let &/ be a finite set and F# < | |-, /111" be a set of patterns called
the set of forbidden patterns. A subshift X € %9(.e7) is said to be generated by .F if for
every x € X and p € .#, p does not appear in z. More formally

X =S, F):={zeXN):Vpe F, pfz}.

A subshift X = 2%(e7,.%) is said to be a subshift of finite type (or SFT) if the set of
forbidden patterns .# is a finite set.

It is clear that every subshift is generated by some set of forbidden patterns, namely,
X is generated by the full set of forbidden patterns .#x where p € Zx if and only if p does
not appear in any z € X. However, we remark that a fixed subshift X can be generated by
different sets of forbidden patterns. The first step of our construction consists in choosing
a 1-dimensional subshift X < £!() in the following way. The alphabet < is made of

two alphabets o = &%T U ;2?2/ where
h ={0,1} and o = {0,2}.

The subshift X = M=o X, is obtained as the intersection of a decreasing sequence of

subshifts X}, of controlled complexity

Xiv1 € Xg.



Each X, contains a disjoint union of two subshifts
AL RE < %y
The subshift X fj consists of configurations over the symbols {0,1} and satisfies,

1%}« X, < X e ul(en), X4:=[) XL
k=0

The subshift X B consists of configurations over the symbols {0, 2} and satisfies,

2y XP e XP el (an), XP.=[)XP.
k>0

The two subshifts X ,‘3 and X ,f are chosen so that their relative complexity alternates

depending on whether k is odd or even. We use the symbol 0 € o to measure the
complexity or the frequency of 0 in each word of X ,? or X ,?. We finally make sure that

X is effectively closed as in the following definition. In what follows, we use the definition
of Turing machine as in Sipser [46, Definition 3.3].

Definition 2.8. A subshift X c Zl(szyj is said to be effectively closed if there exists a
set of forbidden words .Z < - /1) such that X = 21(427 N) and .# is enumerated
by a Turing machine M. The time enumeration Junction TX. N, — N, associated to M
is glven for n > 1 as the smallest positive integer X (n) such that M halts on every word
of F of size at most n in at most TX( ) steps.

In a second step of the construction we use the Aubrun-Sablik simulation theorem.
Their result states that for every effectively closed subshift, one can find a two-dimensional
subshift of finite type whose restriction to a one-dimensional subaction is a topological
extension of the original effectively closed subshift. More precisely

Theorem 2.9 (Aubrun-Sablik [1]). Let </ be a finite set and X = Zl(szf J) be an
effectively closed subshift. There exists a finite alphabet 2, a subshift of finite type of
zero topological entropy X = 22(52% ﬁ) where o = o x B, 7 < TPP for some

integer D > 2, such that if 7 : o — o is the first projection and II : EQ(M) — 22(@7) is
the 1-block factor map defined component wise by

I(2) = (R(u))ueze for every @ = (2u)ueze € £*(),
then II(X) simulates X in the sense I1(X) = X where

3\(/:: {f € 22(% YveZ, (%(u,v))uel = ('%(u70))uEZ € )2}

7



The subshift X will be called later the Aubrun-Sablik SFT simulating X. The subshift X
will be called later the vertically aligned subshift replicating X.

The remarkable fact is that, although the initial set of forbidden words % might
be countably infinite, by adding different “colors” 4 to the initial alphabet & and by
imposing a finite set .# of forbidden rules on these juxtaposed colors, the new set of
configurations X which respects these rules, after applying the projection II, describes
exactly the set of vertically aligned configurations of X.

Our proof requires two a priori estimates, see inequalities (1) and (2), that were not
stated explicitly in [9]. We recall first several definitions.

Definition 2.10. Let &/ be a finite alphabet, # < | |-, ILnl? be a set of forbidden
patterns, and X = %9(o7,.F).

1. A pattern w € 7% is said to be locally .7 -admissible if no pattern p of .# appears
in w.

2. A pattern w € «7° is said to be globally .7 -admissible if w appears in some config-
uration x € X4, F).

3. The reconstruction function of X is the function RX : N, — N, such that, if n > 1,
then R¥(n) is the smallest integer R > n such that, for every locally .%-admissible

H_RvRﬂd

pattern p € &7 , the subpattern p|[[_n7n]]d is globally .#-admissible.

By a standard compactness argument, it follows that every subshift admits a well
defined reconstruction function. Our proof relies on the fact that the reconstruction
function of the Aubrun-Sablik SFT increases at most exponentially for a particular choice
of the initial 1-dimensional set of forbidden words .%#.

The first a priori estimate is given in the Inequality (1) of the following proposition:
Proposition 2.11. Let </ be a finite set, T = |_|n>1§\;7 %L c /Il be a set of
forbidden words enumerated by a Turing machine 1\7JI, T be the time enumeration function
associated to M (Definition 2.8), and X be the Aubrun-Sablik SFT simulating X given
in 2.9. We assume that .% satisfies :

1. M enumerates all patterns of 7 in increasing order (words of % are enumerated
before those in %, 11).

2. RX(n) < Cn, for some constant C,

3. TX(n) < P(n)|ﬂ?\”, for some polynomial P(n).



Then

1 ~
limsup — log(RX (n)) < +o0. (1)
n—+0 N
The second a priori estimate, see Inequality (2) of the next proposition, improves the
computation of the complexity of the Aubrun-Sablik extension. It is well know that both
the vertically aligned subshift X and the Aubrun-Sablik SFT X have zero topological
entropy. We actually need a stronger notion of complexity.
We recall first several definitions.

Definition 2.12. Let X < X%(.&/) be a subshift.

1. The language of size n of X is the set of patterns of size n that appear in X

L(X,n) = {p e gz{[[l’”ﬂd cdre X, st.p= $|[[17nﬂd}.

2. The language of X is the disjoint union of languages of size n

Z(X):= | | 2(X,n).

n=1

Definition 2.13. Let X = X! (52%\:57) be an effectively closed subshift, and X = 22(;2/{\,?\)
be the Aubrun-Sablik SF'T given in theorem 2.9 that simulates X. The relative complerity
function of the simulation is the function CX: N, — N, defined by

CX(n) := sup_ card ({@ € Z(X,n) : 1(d) = w}).
deL(TI(X)m)

By construction the topological entropy of the simulating SFT is zero. This implies
that

lim — log(CX (n)) = 0.

n—+w n?

We prove a stronger result.

Proposition 2.14. Let X = El(&Z :/JY’) be an effectively closed subshift as described in
proposition 2.11, and X = EQ(JZZL?\) be the Aubrun-Sablik SFT given in theorem 2.9
that simulates X. Then A
lim supllog(C’X(n)) < +o0. (2)
n—+ow N
In the third and last step of the construction we enlarge the alphabet ' by duplicating
randomly the symbol 0. Let

—~

o ={0,0",1,2} and o = x B.



Let v: & — < be the map that collapses 0 and 0 to 0, I': Y2 (o) — 22(;2?) be the
corresponding 1-block factor map defined component-wise and extended to patterns, and

F = {pe gV . T(p)e F}, X =YX, F)={zes?(#):T(zx)eX}. (3)

The subshift X will be called thereafter the duplicating SFT. The composition maps Tory
and II o T" are denoted by

ri=roy:d —> o and I:=1ol:¥%(&)— S2(A). (4)

Notice that X is a SFT generated by the finite set of forbidden patterns .%.
The finite-range potential ¢ of Theorem 1.1 responsible for the zero-temperature
chaotic behavior phenomenon may now be defined.

Definition 2.15. Let X = ¥?(«7,.%) be the duplicating SFT. The finite-range potential
¢ : ¥2(o/) — R is the function

1 if F
() = 1 n.op € 7 for every x € ¥2(«7).
0 if Q?H[LDHQ ¢y

Notice that X = {x € ¥2(&) : poo%(z) = 0 for every u € Z%}. In particular, the
ergodic minimizing value ¢ of ¢ is zero and the Mather set is the support of the set of
invariant probability measures supported by X.

@ =0 and Mather(p) € X.

A consequence is that any weak® accumulation point of (1g,)—+0 must be a measure
supported in X.

The finite-range potential is the characteristic function of a cylinder set. We recall
several definitions.

Definition 2.16. Let ./ be a finite alphabet, a € &/ be a symbol, S < Z% be a subset,
p e o/ be a pattern of support S, and P < &7° be a subset of patterns.

1. The cylinder generated by a, denoted by [a]o, is the set of configurations

[a]o = {z € X%() : 2(0) = a}.

2. The cylinder generated by p, denoted by [p], is the set of configurations

[p] := {z e ¥4 : z|s = p}.

10



3. The cylinder generated by P, denoted by [P], is the set of configurations

[P]:= | ][p]-

peP

The finite-range potential is thus the characteristic function of the cylinder of forbidden
words % defined in (3)
¢ =1p7:5%«) >R

Our next task consists in describing the construction of the intermediate subshifts X ks
X,f, X,f. To this end, we shall introduce the following notations.

Definition 2.17. Let &7 be a finite alphabet, and d > 1 be an integer.

1. A dictionary of size £ in dimension d is a subset L of patterns of sl

2. The concatenated subshift of a dictionary L of size £ is the subshift of the form

<L> _ U ﬂ u—‘rvf

ue[1,€]4 vezd
- {x e S e): Jue [1,4% YoeZ? (6" ()| € L}.

We construct by induction two sequences of dictionaries in dimension 1, (/Tk) k>0 and
(Ek)k>0 using the alphabets 42/{7? and bczf/; respectively in the following way. We choose
a sequence of integers (Ng)g=0, with Ny > 4 and define by induction the size ¢ of the
dictionaries ﬁk and Ek by £y = 2 and

Uy, = Nili_q.

We assume that each word of Ay, (respectively ék) is the concatenation of N; words of
Aj—1 (respectively Bi_1). We define the corresponding concatenated subshifts

X = (A, XP=(By.

We note f}k = ﬁk | Ek and assume that the concatenation of two words of f}k is a subword
of the concatenation of two words of Li,1. We define the corresponding concatenated
subshift

X = (L)

Lemma 2.18. Let < be a finite alphabet. Let (IV;)r=0 be a sequence of integers, Ni > 4
(k)k=0 be a sequence defined inductively by ¢y = 2, ¢ = Nplk_1, and (Ek)k>0 be a
sequence of dictionaries of size (¢x)g>o in dimension 1 over the alphabet . We assume
that, for every k > 0, every word in Lk is the concatenation of Nj words of Lj_ 1, and

that the concatenation of two words of Lk is a subword of the concatenation of two words
of Lyy1. Let X :=(;50(Lx). Then

11



1. (Lpyr) < (L) for every k =0

2. X = 2(«, :%5\:) where .Z := =0 Fr, and Z, is the set of words of length n that
are not subwords of any concatenation of two words of Ek for some £, = n

3. for every n > 0 and £ > n, £(X,n) <Lk> n). (In other words, a subword of
length n of the concatenation of two words of Ly is globally .%# Z-admissible. )

The previous lemma tells us that X = ﬂk>0 Xk is generated by the set of forbidden
words .7 1= |_|n>0 % where % is the set of words of length n that are not subwords of

the concatenation of two words w and w’ taken in ﬁk L Ek A direct consequence of this
is that the reconstruction function of X satisfies

RX(n) <n for every n > 1.

Later on, we will choose a suitable Turing machine M which enumerates .Z in such a way
that the hypotheses 1 and 3 of proposition 2.11 are satisfied.

Let X ks X, ;;‘, X E be the corresponding vertically aligned subshifts

~

= {Fe22(A) Vv EZ, (Fu))uez) = (@u0))uez € (L},
Xt = {7 e Xp: (Fu0) g € A}, XPi={Fe X : (Fw0)) oy € (Bid}-

Then Lemma 2.18 implies that

ZL(X,n) = .i”(Xk, n) for every n = 1 and ¢, >

By the simulation theorem, as II(X) = X (IT is defined in Equation (4)), we obtain

(L (X,n)) = L(X,n) for every n > 1.

Definition 2.19. We denote for & > 0 by Lg, Ax and By the dictionaries of size ¢ given
by,

1. Ly := Z(X,0,) < /W61,
2. A = {pe Ly : 1(p) € ,,2”()/\(/,?,&)},

3. B:={pe Ly :1(p) € g(fg,ﬁk)}.

We also denote by X, X ,f, xf the corresponding concatenated subshifts

X = (L), X =4, XP:=(Bp.

12



Notice that we obtain a similar structure as in the one-dimensional setting

X =) Xp Xpp1SXp, XfoXPcX XX, XP,cXxP
k=0

Contrary to what happens in the case of X ,;4, X ,f, the notion of topological entropy will
be sufficient to estimate the complexity of the intermediate subshifts X ,;4 and X ,f . The
entropy will be evaluated using the frequency of the symbol 0 in the horizontal direction
and the duplication of that symbol in the vertical direction. We recall several definitions.
See for instance Walters [49] and Keller [32] for further references.

Definition 2.20. Let &/ be a finite set and X < %%(</) be a subshift.

1. The topological entropy of X is the non negative real number

hiop(X) := lim idlogcard(f(X,n)).

n—+w n

2. The canonical generating partition of ¥%(7) is the partition

G = {la]o:a€ o}
3. The common refinement of two partitions & and 2 of ¥¢(.7) is the partition

P\ 2:={PnQ:Pe?, Qe2}

4. The dynamical partition of support S < Z? of a partition & is the partition

P = \/ o (D).

uesS

5. The entropy of a finite partition & with respect to an invariant measure pu is the
quantity

H(Z.p) = Y, —u(P)In(u(P)).
Pe»

6. The relative entropy of a finite partition & given a partition 2 is the non negative
real number

H( | 2.1) = fH(@,u;?)dum,

where p2 is the conditional measure with respect to 2.

13



7. The Kolmogorov-Sinai entropy of an invariant measure p is the quantity

1
h(p) := sup{ lim —dH(W[[l’"]d,u) : & is a finite partition of Ed(ﬂ)}.

n—+w n

A measure p supported on X satisfying h(u) = hyp(X) is called a measure of
mazimal entropy.

The following proposition is standard (see the references above).
Proposition 2.21. Let < be a finite set and X < ¥%(&7) be a subshift.

1. There exists an ergodic invariant probability measure y supported in X such that
hiop(X) = h(p).
Such a measure is called measure of maximal entropy.

2. The Kolmogorov-Sinai entropy of an invariant probability measure u satisfies

Pp) = lim — H(IT ),

n—+0 n
where ¢ is the canonical generating partition of item (2) in definition 2.20.

Let (Bk)k=0 be a sequence of inverse temperatures going to infinity. The heart of
our proof is a double estimate of the pressure of S that prescribes the statistics of the
equilibrium measures. At low temperature an equilibrium measure tends to a minimizing
measure that maximizes the topological entropy of the Mather set. As Mather(y) € X and
X is obtained as a decreasing sequence of X}, each containing two distinguished subshifts
X ,;4 and X7, we obtain a zero-temperature chaotic behavior by choosing alternatively

Piop(XiY) < hiop(XP)  for k even, k — +o0,
hiop(XP) « hiop(X{t)  for k odd, k — +oo.
g

Where ay « by for k even, k — +00 means that klim — = 0, analogously for k£ odd.
—+00 02k

Because of the duplication process, the topological entropy can be estimated using the
frequency of the symbol 0. Let f,f (respectively f,f ) be the largest frequency of the symbol

0 in the words of Ay, (respectively By)

f = mas S, S) = peard(fi € [1L,6] ) = 0}).
peAL k
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Our construction of X! (and X7 ) will satisfy that

il < fP «1 for k even, k — +oo,
B« ft «1 forkodd, k — +o0.
We now explain the double estimate for the pressure that are at the heart of the proof:

item 3 of Lemma 2.22 and item 2 of Lemma 2.27.
The first estimate is standard

P(Bryp) = Sip{h(u) = Bep([F]) = h(ug) — Brik ([F]),

where ,uf is an ergodic maximal entropy measure of the subshift X ,? and k is even.
Using the fact that a configuration in the support of ukB is a tilling of square patterns
of size £ that are globally .%-admissible, we obtain easily the following estimates.

Lemma 2.22. Let k£ > 0.
1. For every ergodic probability measure p satisfying supp(u) <€ X ,f

2D

p(l7]) < -

2. The topological entropy of the shift X ,f is bounded from below by

heop (Xi7) = In(2) .

3. The pressure of Bip is bounded from below by

P(Bry) > In(2)£8 — 2Df:-

A similar estimate is also valid for X,f, ka, instead of X,f, f,f. The two parameters
B and £ will be chosen so that the following first constraint is valid

{f?}’: &« ka, for k even, k — 400, (Cl)

P« fh, for k odd, k — +o0.

The second estimate is a bound from above on the pressure at [pp. In order to
obtain it, we need to introduce a sequence of intermediate scales (£} )x>0, two intermediate

dictionaries ﬁ;c and E,;, and assume that A, and By are built over A}, and E,’C in the
following way.

15



Definition 2.23. For every k > 0 we define
;1; = N]i;gkflv

where N; > 2 is an integer and N is a multiple of N; with Np/N;, > 2. Let ﬁ%
(respectively Eg) be some intermediate dictionary over the alphabet < of size £

X, B < J061,

satisfying the property that every word of E;C (respectively é;) is obtained by concate-
nating N; words of A,_; (respectively N; words of Bj_1). We define

Ly == A | | By (5)
Assume also that each word of Ay, (respectively E’k) is a concatenation of Nj/Nj words
of A}, (respectively By).

We introduce the following notations.

1. R = QRX(%) + 1 be the reconstruction length at the scale ¢} (see Definition 2.10

for the definition of the reconstruction function R¥),

2. Mj < ILRLI? be the set of patterns of size R, that are locally .#-admissible
My = {w e o [LRD? Vpe.Z, Yue[0,R, — D]? ptt au(w)},
(the set M is called the reconstruction cylinder at scale 0}.),
3. 1) := ([RT;“J -0, [RT;“J — 0},) € Z? be a translation vector to the center of [1, R}]?,

4. Q) =T +[1,2¢,]? < Z* be the central block of indices for which for every w € M,
w|Q;c is globally .#-admissible.

The following lemma shows that an ergodic equilibrium measure ug, for frp at low
temperature (8 » 1) has the tendency to give a large mass to sets of configurations that

minimize ¢, that is, to sets of configurations that are locally .#-admissible. Using the
trivial estimate

0<HM@=Mw0iVWWm<m¢ﬁwm—mwﬂﬁh

one proves easily the following bound.

16



Lemma 2.24. For every k and every ergodic equilibrium measure pg, ,

/ \2
s (226 D) < CE  neara () s e

The parameter ey, is supposed to be small at low temperature. Also, €, must actually
be negligible compared to the frequency f,il. More precisely

e < ka_l, for k even, k — +00,
and using H (gg) := —eglog(er) — (1 —eg) log(1 — &), we also need

H(ep) < f2 | for k even, k — 4c0.

We simplify these two constraints by using —eg log(ex) < 1/2k, and thus, by imposing

()2 (€2)

Bk

/ \2
W™ (£8.)%, for k even, k — +oo,
« (f,f_l)Q, for k odd, k — +o0.
A typical configuration for 5, sees the reconstruction cylinder with probability 1 —¢.
Definition 2.25. Consider the space ¥2(.). We define

1. The canonical base partition is given by

G = {Go,C1,Ca}, Gy :={weXX(e):n(x(0) =a}, Vie o,

2. The reconstruction partition at scale £} is the partition %4 given by

Ui = {[My], 2% (o )\[M]}-

Notice that ¢ is a partition of 2(7) and not of Zl(gﬁ%\j. The symbols coming from
the simulation theorem are hidden. The only symbols that remain visible are those from
the one-dimensional subshift.

An upper bound on the pressure of Sry is given by the entropy of the equilibrium
measure

P(Brp) < h(ug,)-

We decompose the computation of the entropy of pg, into 3 terms using a standard
identity on relative entropies

h(ﬂﬁk) = hrel(:uﬁk) + lim sup i [H (ﬂlmﬂz | %k[[ovniRHQ’:uﬁk> + H<%kHO7n7R;€H27 /’Lﬁk)]'

n—too N2

17



The first term hy.¢;(ug,) is the relative entropy of ug, at scale £},

. 1 n n 0,n—R}]?
hrel(ﬂ'ﬁk) = lim 72[—[({4[[17 I’ ‘g?]IL F \/%k[[ el aﬂﬁk)‘

n—+w n
The term hy¢(pp,) is dominant; it computes the entropy of the canonical generating
partition ¢ in ¥?(.<7), see Definition 2.20, knowing the fact that the e;z?—symbols are fixed
and that large patterns in & [Lnl* are tiled by almost non overlapping locally admissible
patterns of size Rj.. The second term computes the entropy of the canonical base partition
knowing the fact that most the time a configuration is vertically aligned. That term is
negligible. The last term computes the entropy of a two set partition where one of the
sets, the reconstruction cylinder, has large measure g, ([M]]) > 1 — e;. That term is
again negligible.
We obtain easily the following estimates.

Lemma 2.26. For every k and every equilibrium measure pug, ,

1 _pry2
1. limsup —2H(g2/k[[0’n il 1) < Hep),

n—+ow 1

2. limsup %H (Sﬂl’"w | @/k[[o’n_R;“]]Z,ugk> < <8, + 5k> ln(card(,gz%).
n—+oo T Rk

The hardest part of the proof is to bound from above the relative entropy of pug,
at scale £} with respect to the complexity of 1-dimensional globally 7 -admissible words
of length ¢} (a square tile of size R gives in its center a square tile of size ¢} that is
globally admissible). Item (1) in the following lemma shows that the frequency of the
symbol 0(0" A 0") is dominated by the one of the symbol 2 if k is even. Item (2) is
the most difficult estimate to prove. The computation depends on a particular choice
of the language INL;g (see equation 5 ) with respect to Lj_1. If k is even, the frequency

of the symbol 0 in words in EI’C coincides with the frequency f,f_l, the frequency of 0
in /Tz is negligible (of the form f{* /N}). If ug, gives some positive mass to G4, then
the proportion of the space of configurations that can be covered by words in B}, (words
containing only the symbols 0 and 2) is thus less than ug, (£%(«7)\G1). In particular Item

(3) gives us the means to show that the support of the measure pg, is in G for k even
and in G4 for k odd.

Lemma 2.27. For every k and every equilibrium measure pg, ,

~ 2 _ _
L. :U’Bk(GO) < ﬁfl?—l + (1 - Nk_l1) 1flf—1 + €k,
k

18



2. if k is even, then

hrei(pg,,) < <]\2[l;f124_1 + (1= N (s, (B )\Gh) + €k)ka_1> In(2)

> L In(Cp) ~

1
+ @ In(card(«)) + % + ek In(2card (<)),

~

P(Bry) < hre(pg,) + <1§, + €k> In(card(«)) + H(eg).
k

3. if k is odd, then the previous estimate is valid with f,f_l and f,f_l permuted and
51 replaced by éz.

The term f2 | In(2) in item (2) is the entropy of duplicated and vertically aligned words
taken in an intermediate dictionary Bj of scale ¢;,. The term f,?_l In(2) is interpreted
similarly. The term {1 |/(f2 | N}) reflects the fact the ratio of the number of 0 between
words in A) and By is 1/N] for k even (a word in By contains much more 0 that a word
in A}). The term In(C})/¢}? converges to the entropy of the simulating SFT. Though
the entropy of the Aubrun-Sablik subshift has zero entropy, it is not enough to conclude.
This argument seems to be missing in the proof in [9]. The purpose of Proposition 2.14
is to give a stronger a priori bound of the growth of the relative complexity function of
the simulating SFT provided the set of forbidden patterns .%# are enumerated in a special
way. Then, we will use the estimate

1

7 < fB ., for k even, k — +o0.
k

In order for f2  In(2) to be the dominant term in item (3) of Lemma 2.22 and item (2)

of Lemma 2.27, we assume that ¢, and ¢} have been chosen according to the following

additional constraint: we assume

ik
ka,’: < fB |, for k even, k — +o0, (©3)

fi
kaz'cl « f,il, for k odd, k — +o0.

Notice that the two conditions (C1) and(C2) give us an interval of temperatures as
follows:

(R},)?
(fiZ)?
These two constraints imply an upper bound of N, with respect to Nj. Recalling that
6% = ngfkfl, R;C = 62 and Ek = Nk&cfl; we have

;N2 /N2 B \3 B \3
(N)? = <€€k > < (ER’“ ) <« by, (1}21) - k('};kl) & Ny, for k even, k — +o0,
k-1 k-1 A k-1

Ekf,f_l > B » for k even, k — +c0.
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which implies
Nj, « Ny, for k even, k — +o0.

On the other hand, condition (C3) implies a strong constraint on the lower bound of N},
with respect to N as follows

A
fita

B A
N <€ fio1 € fizq, for k even, k — 400,
k

which implies
1 « Nj, for k even, k — +o0.

As a conclusion, we are forced to choose IV, satisfying
1 « Nj « Ny, for k even, k — +o0.

The intermediate scale ¢} is fundamental for our proof, since it allows us to choose
the sequence (Bk)x used to prove the existence of the chaotic behavior. This part of the
argument is not given explicitly in the literature and proofs given by other authors.

We use Proposition 2.11 to obtain an a priori upper bound of the growth of the
reconstruction function. This bound is one of the main ingredients of the construction
and, it seems not be highlighted in the other papers about the question.The shape of
the reconstruction function has logarithmic growth. We don’t need the exact growth but
an explicit growth to obtain a recursive sequence; see next Definition 3.1. The upper
bound depends on two properties of the time enumeration function (Definition 2.8) of the
1-dimensional set of forbidden patterns. More precisely, the time enumeration function
must satisfy that the forbidden words are enumerated successively according to their
length (and thus the function is non-decreasing), and that the time to enumerate all
words of length n is at most polynomial in n. R

We construct by induction .%,, the full set of forbidden words of X of length n. We
define a primary sequence of scales (¢;)r>0 and a intermediate sequence of scales (¢})r=0
so that, by choosing first N, large enough and ¢, = N, ¢;_1, (C3) is satisfied, by choosing
secondly Ny large enough and ¢ = Nili_1, (C1) and (C2) are satisfied and S is chosen.
Essentially it all comes down to check that

fk(f;f_l)?’ > (R;C)Q, for k even, k — +o0,
B8 > (R for & odd, & — +o0.

As Ek is constructed by concatenating Nj words of f/k_l, it is clear that a Turing ma-
chine might be described such that its time enumeration function is at most exponential
independently of the choice of Nj. Proposition 2.11 shows that it is enough to choose Ny
so that Ek(flil):% is super-exponential in £)..
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Finally, let us assume that the following constraint holds
f,f = f,;l %f k ?s even, (C4)
fit = fity if kis odd.

Then the double estimates, given in Lemma 2.22 item 3 and Lemma 2.27 item 2, can be
reduced to the estimate (for k even)

m(2)£8 1+ o(f21) < P(Bry) < pa, (B*(@)\G1) m(2) f2 ) + o(f£ ),

using the analogous inequalities, which holds for k odd, A and ég, instead of B and C:’l,
we obtain

kEIEoo 1y (G1) = 0, kEToo HBag41 (G2) = 0.
We observe that the two a priori estimates in 2.14 and 2.11 could be simplified drastically.
The only property we need is to have an a priori explicit bound (exponential, super-
exponential, or more) of the growth of the reconstruction function, and an a priori sub-
exponential bound of the growth of the relative complexity function.
We conclude this section by giving the complete proof Theorem 1.1 assuming the
estimates in Lemmas 2.22, 2.24, 2.26, 2.27, and assuming the constraints (C1)-(C4).

Proof of Theorem 1.1. Let ug, be an equilibrium measure at inverse temperature Jj. As-
sume k is an even number. Let ,uf be the measure of maximal entropy of the concatenated
subshift X,f. On the one hand, from Lemma 2.22, we have that

Hm@>hm@—jmww5>mmﬁ*@Dﬁ.

From the constraints (C1) and (C4), we have that

% « fB, = fB, for k even, k — 400, and
k

P(Bre) =In(2) £ +o(fi1).
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On the other hand, by Lemma 2.27

hpg,) = lim — (54[1”“ s, )

n—+00 n

= hyet(ps,) +hmsup—[ (?ﬂl nl? \ ?/[[On Rk]] ) +H(%[[0n RkﬂQ,Hﬁk>],

n—-+aoo

P(Brp) < (Mf,f_l (1= N7 (s, (B2 NG) + 2 ) 1) (2)

1
+ @ ln(card(;z%)) 7 5

N (% + ey ) In(card () + H(e).

In(Cy) + ek In(2card (<))

Constraints (C2) and (C3) imply

fits

ok <« fity and Hizy) < fila, T

« fB,, for k even, k — +oo0.

The fact that N, — 400 and Ek,lf,f_l > 1 implies

11 B
ngél\N/

« fB,, for k even, k — +o0.
Proposition 2.14 implies
In(C;) 1 1

In(Cy)
li kl —
DT T T T Cp T N

« fB,, for k even, k — 4o0.

We finally obtain

In(2) f2 1 + o(f21) < P(Bry) < ng, (SH()\G1) In(2) f21 + o(f£.,), for k even, and

1 Ch) = 0.
Jim g, (G1) =0

Finally, using item 1 of Lemma 2.27, lim_, ;o ,ugk(éo) = 0, we obtain

lim HBay (GQ)

k—+0

An analogous argument based on item 3 of Lemma 2.27 yields
kEI-ir-loo HBag 41 (Gl)

This concludes the proof. ]
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3 The detailed construction

We complete section 2 by providing complete proofs of all the previous statements.

3.1 The one-dimensional effectively closed subshift

We start by defining an iteration process that will generate the language of X over the
alphabet o7 = {0, 1,2}. Recall that we use the symbol “tilde ~” in all the one-dimensional
elements. In a first stage, we will define the values ({x)r>o recursively and we define
the values of the sequence of inverse temperatures (8g)r=0. In order to work only with
integers, instead of the frequencies f,f, f,f , we shall define the maximum of the number
of symbols 0 counted over all words in /le and Ek respectively:

pi = e fit, pP =P

Definition 3.1 (The recursive sequence).
There exists a partial recursive function S : N — N*

by B, pis pP) = S(Uk—1, Br—1, P15 PE_1)-

satisfying £y = 2, 5y = 0, pf;‘ = p¥ =1 and defined such that the following holds. In the
case k is even:

2k pd
1. N} = [%1 0 = N,
Pr—1
£2 2k€§€
2. By = [7’9_1 ],
(05_1)2
k
3. Ny = N,;[%], 0p = Niply_1,
Ny

A A
4. Pk = 2p—1; pE = Nkp?—l?
In the case k is odd: (¢, Bk, p,?, pkB) are computed as before with A and B permuted.

The previous sequence (¢, S, pf, pkB)k>0 has been chosen so that, first the induction
step is explicit in terms of simple (computable) operations, and secondly, such that the
four constraints (C1)—(C4) are satisfied. We first observe the following inequalities.

Remark 3.2. For all £ > 1 we have the following properties:

1. 2k < N, < 2kly,_y,
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!
2. 2% < B < &,
3. Neo1 < N, < Ny,

4. if k is odd, p‘k‘} > pPif k is even, pP > pl‘:}

CkBri1
5. Bk < Tt b, < Brt1s

Y

N N, Bk+1
6. fA«1, fB«c1, =21 LIRS | > 1
fk; 7fk; ’ ng ’ Nk_l ’ /Bk ]

7. if k is odd, ka > f,?, if k is even, f,f & ka, when k — +00.
Lemma 3.3. The four constraints (C1)-(C4) are satisfied

Proof. We assume that k is even. The constraint (C4) is satisfied thanks to item 4 of 3.1.
The constraint (C3) is satisfied thanks to item 1 of 3.1 and

fA /
N
k—1 < 'k

f,f 1 < Sk « Ny, for k even, k — +o0.

The constraint (C2) is satisfied thanks to item 2 of 3.1 (especially the fact that we chose

a superexponential growth 2kl instead of 2%) and the assumption on the bound for the

reconstruction function (see Proposition 2.11),

In(R 2k R},)2
(k><+ooand5k> >>(k)

(202 ()
The constraint (C1) is satisfied thanks to item 3 of 3.1 and

Nkpf—l < gkka—l
k Sk

, for k even, k — +oo0.

lim sup —
k—+00 k

< fkf/?_l = fkf,f, for k even, k — +0o0.

Br <

We now construct the effectively closed 1-dimensional subshifts ﬁk and Ek

Definition 3.4. For each k > 0 the dictionaries Ay and By are made of two words of
length £,
A = {ap, 1) € G0 By = (b, 2%) < ZIV0,

defined by induction as follows:
1. fo = 2, ap = 01 and bo = 02,

Ay ={01,11} and B, = {02,22}.
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2. if k> 1is odd

ap = ap 11 ap_1, b = by 20" Db1p, (R1)

v~

Nj-times

3. if k> 2iseven

ap, = ap 1N Db1gy by = bbby (R2)
Nj-times

Notice that by definition, every word in Lk Ak |_|Bk is_the concatenation of Ny,
words of Lk 1, and that the concatenation of two words of Lk is a word of Lk+1 It
follows that the assumptions of Lemma 2.18 are satisfied. We now proceed to prove that
lemma. Recall that N

= (<,

k=0

and let .F 1= Len Z (n) be the set of all forbidden patterns which are obtained by taking
all words of length n that are not subwords of the concatenation of two words of Lj for
some k > 0 such that £ > n

Proof of Lemma 2.18.

Proof of item 1. By assumption every word in Ekﬂ is a concatenation of words in Ek
Then the concatenated subshifts obviously satisfy (Lgy1) < (Li).

Proof of item 2. Let x € X and n > 1. Then x € (L) for some n < ¢;. Therefore
x € Zl(g,%) and X < EI(JZZ%. Conversely let = € Zl(szz% and k > 0. Define the

interval 0 0
e [ |- 2]

For any j > k,as z € El(gffv,%j), x|7; is a subword of the concatenation of two words of
length £; of Lj. As (L;) < (L), x|z, is a subword of the concatenation of words of length
0y of Ly. Let yj € <Ek> such that y;|;, = x|;,. By compactness of <I~/k>, the sequence
(yj)j=>0 admits an accumulation point y = z € (L. Therefore z € X.

Proof of item 8. We have obviously

Vo <l L(X,n)< L(L,n).

Conversely consider two words uy,, v, € in We want to show that the concatenation
Wy, 1= UnpVy, 18 a subword of some z € X. We may assume that w, is a pattern of support

ni=[1—"4n,20, — £,]. We construct by induction a sequence of patterns (wy,)m=n of
support Ky, = [am,bm], bm — am = 2, — 1, such that
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e w,, is equal to the concatenation of two words of L,,,
o K S Kipy1 and w1 | K = win,
e if m is even then b, 1 > by, if m is odd then a1 < ap,.

Indeed, assume m is even and w,, has been constructed. Then, by hypothesis on the
language Zm, Wy, is the subword of the concatenation of two words of Emﬂ. Let
Wm+1 = Um+1Um+1 be the corresponding pattern of support IN(mH 2 K,, of length
2041 containing wy,. If byy1 > by, we choose K = f(mﬂ and w1 = Wy, If
b+l = by, as lyy1 = 20y (byy1 > £y, and f/m_i,_l is obtained by concatenating words
of INLm), then wy, is a subword of the rightmost word of W,,1, that is w, = Vpy1. We
choose any word v,,,+1 in Z}mﬂ, define the pattern w11 = Umi1Vm+1, and call K, 1 the
corresponding support. In the case m is odd we do the analogous construction but on the
left-hand side.

Let x be the configuration such that x|K,, = w,, for every m > n. Let y,, € (L,,) be
a configuration such that wy, = ym|Kpy. It follows that the sequence (Y, )m>n admits an
accumulation point y € X which satisfies z|Kp, = y|K,, for every m > n, and therefore
2 =y e X. This shows that w, € Z(X,20,). O

It is clear from the above arguments that El(g, Z) is an effectively closed subshift.
(1

)
The following lemma shows that .7 satisfies items (1)—(3) of Proposition 2.11.

Lemma 3.5. The following holds:
1. The reconstruction function satisfies RX (n) =n.

2. For every n = 0, there exist unique integers k = 1 and Nj > p > 2 satisfying
U1 <n </l and (p—1)lx_1 <n <ply_1.

If (N, — D)lp_1 < n < Nyly_1, define Z'(n) = Z(n). If n < (N — 1)f),_1, define
F' (n) as the set of words of length n that are not subwords of any word of the
form wiiz where w7 is a terminal segment of wy of length (p + 1)¢;_1, {3 is an
initial segment of wy of length (p+ 1)¢x_1, and w; or we are either one of the words
ak, bi, 1k, 2. Then N N

Vne[l,4], F'(n)=Z(n).

3. There exists a Turing machine M such that the patterns of Z are enumerated
in increasing order, and such that there is a polynomial P(n) such that the time

enumeration function satisfies T (n) < P(n)|£ﬂ" for every n > 0.
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Proof.  Proof of item (1). A word w of length n that is not in Z is a subword of the
concatenation of two words of length £}, of Lj. Lemma 2.18 shows that w € Z(X, n).

Proof of item (2). We may assume n < (Ng — 1)¢;_1 and p < Ni. We have obviously
ﬁ( ) < ﬁ’( ). If we assume that & is even, from Definition 3.4 we have that

ap = ak_l(lgk_l)Nk_Qak_l and b, = (bk_l)Nk.
We set
(1) = a(1) = ap—1, Dp(1) = br(1) = b,
To(1) = 1p_y := 1% and 97 (1) = 21 := 261,
Then we define by induction: if 2 < p < Nj then

Gr(p) = Gr(p — Dlg_1 = ap_1(1p_1)P~ "

and
_

at(p) = k@ (p— 1) = (Le—1)? ' ap—1,
else & (Ny) = ap(Nk) = ax. We also define
bi(p) = Do = Dbir = (Br1)”s

—

(p) = bp—1be(p— 1) = (bp—1)",
() = Tr(p— 1)1 = (Lg—1)?

=1 =

and

R = - Dls = (2 ).

If w has length less than pf;_1 and is a subword of some wyws, say wy; = ax and wy =
by, by dragging w from the left end point of wjws to the right end point of wyws, the word
w appears successively as a subword of &x(p+ 1), Tk)(p—i- 1),ar(p+1), an(p+ 1)&(1) +1),

k(p+1). A similar reasoning is also true for w; = by and we = a;. We have shown that
Z(n) = F'(n).

Proof of item (8). To compute the time to enumerate successively the words of Z (n)
when £, _1 < n < f, we can produce instead an algorithm which enumerates Z". The time
to read /write on the tapes, to update the words (& (p), az(p), ?T( ), bk( ), Tr (9), 20 (p))
by adding a word of length f_1, to concatenate two words wiios from that list, and
to check that a given word w of length n is a subword of Witz is polynomial in n.
Therefore, the time to enumerate every word up to length n in an alphabet & is bounded
by P(n)|sz/{7|” where P(n) is some fixed polynomial. O
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3.2 The intermediate dictionaries
We shall now study the complexity of the set of words Z(X, 0,) of length £} = N 4.
Definition 3.6. Let E;@ and E,/C be the sub-dictionaries of Ay and By, that are made of

subwords of length ¢; that are either initial or terminal words of a word in ﬁk and Ek
Formally,

1. if k is odd, A}, = {a}, 1%}, B} = {0}, b, 2%},

ajy = ag_1- - ag_1, b := bk_12(N'/fl)z’“*1, b = 2(N’/fl)f’“*1bk_1, (R'1)
—_—

Ny, times

2. if k is even, AV% = {a}, all, 1%}, E,’C — (b, 24},

aj, = ak_ll(Nl,f_l)Zk—l,aZ = 1WNe=Dlb-14, 1 and b i=br—1-bp_1. (R’2)
—_—

Ny, times

3. If = A || B

Notice that 212 and E,’{ have been chosen so that the words of Ay, (respectively Ek) are
obtained by concatenating Nj/N; words of A} (respectively Bj ). In particular we have

(Apy = (A and (By) < (By).

We will say that two words a,b € % overlap if there exists a non-trivial shift 0 < s < £
such that the terminal segment of length s of the word a coincides with the initial segment
of the word b of the same length, or vice-versa by permuting a and b. Note that we exclude
the overlapping where a and b coincide.

The next three results are technical lemmas about the possible types of overlapping of
words of A} or Bj.. The first lemma asserts that there is no possible overlapping between

words of g; and words of E,’c The next two lemmas characterize the possible overlaps
between any two words at each stage k of the iteration process.

Lemma 3.7. In our construction described above, a word from 212, and a word from E,’C
do not overlap. Similarly, a word from Aj and a word from By do not overlap.

Proof. Every word in ﬁ% ends with the symbol 1 which does not appear in any word in
B Conzersely, every word in Bj ends with the symbol 2~that dges not appear in any
word in Aj. The same argument is valid for the words in Ay, and By,. O
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The next lemma is formulated for the case k even, but a similar lemma holds for the
case k odd. First we need to fix some notations. Consider the rules described in (R2)
and (R’2). The initial segment of a, and a}, the terminal segment of aj and a}, and the
marker are the following subwords, for k even

Ny —2)65,_ / (N,—2)
ap = ap—y 101 g b= by by kT by,
~—— ~—— ~—— ~——
al al bl b7
k—1 k—1 k-1 k-1

’_ /_
aﬁg = ap_1 1NVe= Dl a% = 1Nl ap_1 -
al | marker marker ol

Note that ai_l = af_l = ap_1 and b£_1 = bg_l = bp_1.
Lemma 3.8. Let k = 1 be even, a; € ﬁk and by € Ek as described in (R2). Then

1. two words of the same type aj can only overlap on their initial and terminal segment,
that is, the segment aé_l of one of the two words overlaps the segment af_l of the
other word ay;

2. on the other hand, two words of the same type b overlaps itself exactly on a power
of by_1 or they have an overlap of length f;_o between b£_1 and b{_l.

Proof. Proof of item (1). Consider a non-trivial shift 0 < s < ¢ and a word w € o Ths+i]
made of two overlapping ag:

ap = w|[[17gk[[, Oy = w‘SJr[[l’ng, Vie[l,0], ap(s +1i) = ar(i).

We assume first that 0 < s < £;,_1. On the one hand af_l of ay, starts with the symbol
0 at the index i = (N, —1)f;_1 + 1. On the other hand the symbol 1 appears in ay, at the
indexes in the range [[Z, ;]] = [s+Llp—1+ 1,5+ (N — 1)€;_1]. Since i € [[7, 3]} we obtain a
contradiction.

We assume next that £5_1; < s < (Ny—1)¢k_1. On the one hand the symbol 1 appears
in aj at the indexes in the range [[Z, 3]} = [lx—1 + 1, (Nk — 1)¢x_1]. On the other hand @y
starts with the symbol 0 at the index ¢ = s + 1. We obtain again a contradiction.

We conclude that s should satisfy s > (Ny — 1)¢;—1: two words of the form aj can
only overlap on their initial and terminal segments.

Proof of item (2). We notice that k — 1 is odd and by_; has the same structure as ag
in the first item. Two words of the form bg_1 only overlap on their initial and terminal
segments. Then by_; cannot be a subword of the concatenation ¢ = bg_1bp_1 of two
words bi_1 unless bi_1 coincides with the first or the last b,_; in c¢. If by and EC overlap,
either by has been shifted by a multiple of 51, s € {{x_1,20,_1,..., (N} —1)l,_1}. Note
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that k£ — 1 is an odd number, and so b,_; has the same behavior of a; described in the
previous item. Therefore, it is only possible to have an overlap of a word bi_o of length
{}._9 between b£—1 and b£—1- O

Lemma 3.9. Let k£ > 1 be an even integer and aj, and aj as described in (R’2). Then
the following holds:

1. two words of the same form aj, never overlap; the same is true for two words of the
same form af;

2. two words aj, and aj, overlap if and only if they overlap either partially on their
marker or partially on their initial and terminal segments, respectively.

Proof. Proof of item (1). We consider a non-trivial shift 0 < s < ¢}, and two overlapping
words of the form aj shifted by s. Let w € ZT5+4] such that

afﬂ =w][[17%]], 6; = w‘s_,_[[l’gu], Vie [[1,5;{}], ZZ’;C(S—I-Z) =a§€(2‘).

We assume first that ¢,_; < s < £;. On the one hand, @ starts with the symbol
0, w(s +1) = 0; on the other hand, w|[[£k_1+1,4;€]] contains only the symbol 1. Since
s+ 1€ [ly_1 + 1,4 ] we obtain a contradiction.

We assume next that 0 < s < £;_1. We observe that £ — 1 is odd and the two initial
segments aé_l of aj, and @}, are of the same form as by, in the second item. They overlap on
a multiple of words of the form a;_o or at their initial and terminal segments. Necessarily
s = lg—2 = 2. On the one hand, the initial segment of @, ends with the symbols 01,
w(s + fg—1 — 1) = 0, on the other hand, w‘[[gk_l+17g;€ﬂ contains only the symbol 1. Since
s+Llp_1—1¢€ [ly_1+1,£,.] we obtain a contradiction. A similar proof works for aj, instead
of aj.

Proof of item (2). We divide our discussion in two cases. Consider first,

dh =l @ = wlapey Vi [LGL @s+i) = alli).
Suppose that 0 < s < f_1. On the one hand the terminal segment of &Z is a word like aj_q
and then it starts with the symbol 0 which appears in w at the index s + (N} — 1){5_1 €
[k-1,¢,]. On the other hand wlf, , ¢y contains only the symbol 1. Thus we obtain a
contradiction. We conclude that necessarily £, < s and the two words aj, and aj, overlap
(partially or completely) on their markers.
We consider next the case,

ap =wlpey, G = wlape Vi€ [LEG] @Gls +14) = ap(i).

Suppose that 0 < s < (N, —1)f;_1. On the one hand the initial segment of @) starts with
the symbol 0 which is located at the index s + 1 € [1, (N, — 1)¢;_1] in w. On the other
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hand ’LU|[[1’(NI/€_1)&€_1}] is the marker of aj and contains only the symbol 1. We obtain a
contradiction. We conclude that it is only possible to have s = (N} —1)¢;_1, which means
that the terminal segment of a} overlaps with the initial segment of aj. Both segments
are copies of ai_1 and as we are in the case where k > 2 is even, we have that & — 1 is
odd and thus ax_; has the same behavior described in Lemma 3.8 item (2). Therefore the
possible overlap can occur (partially or completely) on their initial and terminal segments
by the rules described as in Lemma 3.8 item (2). O

3.3 The vertically aligned subshift

We estimate the entropy of the Gibbs measure pg, from above in Lemma 2.27 by measuring
the frequency of the duplicated symbol 0/,0”. If k is even most of the symbols 0 are in
the words by € Ek As by, does not use the symbol 1, a positive frequency of the symbol
1 for a generic g, -configuration tends to decrease the occurrence of the words b,. The
purpose of this section is to quantitatively justify this intuition.

Definition 3.10. Let Zi c 1417 be the bidimensional dictionary of length ¢} of
vertically aligned patterns that project onto Z;C, formally defined as

A= {pe J  3pe A} st ¥, (i,5) € [1, 412, pli.g) = (i)}

The dictionary E; c /TG is defined analogously. Let X be the set of vertically aligned
configurations that project onto X

~
~

X:={ze P X, z(i, ) = Z(i) for every (i, j) € z?}.

We use the notation 7: X — X or 7 X% - Eﬁc to represent the projection of a
vertically aligned configuration or pattern.

Let p € FTnl? he g large pattern (not necessarily vertically aligned) and consider
the set of translates u of small squares of size 2¢ inside this pattern p that are vertically
aligned and project onto a pattern of Aj or B;. We introduce the following notations.

Definition 3.11. Let k > 2, n > 2/, and pe T We define

L I(p,€;,) := {U € [0,n —26,]% : o (p)| 20 € Z(X, 252)},

2. IY(p, €}) := {U € [0,n = G]%: o ) ey € XZ;},
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3. JAp. )= ] (u+[LG]%).

uel4(p,0,)

We define IP(p, ¢}) and JB(p,¢,) similarly with replacing :41 for By in (2) and (3),
respectively.

Lemma 3.12. Let k > 2, n > 2(,, p € T and I(p,%),JA(p,%),JB(p,%) as in
Definition 3.11. Let 7{ =: (¢, ¢,) € N2. Then J4(p, £}) n JB(p,£}) = @ and

T+ 1(p,6) < T4 (p, 4) u TP (p, 4).
Proof. The fact that J4(p, ¢}) and JB(p,¢,) do not intersect is a consequence of Lemma
3.7. Let u € I(p,€}) and wy = 0"(p)|[1,2¢,72- There exisﬁs w e Z((L),20)) such that
wy(i,7) = w(i) for all (¢,7) € [1, 26’]} By definition of {Lj), w = wjws is a subword of
the concatenation of two words of Ly. By Definition 3.6 we have that (I;) < <L ), and
also L (L, 20) < $(<L >, 26/)
On the other hand, a word in L, is either a word of A or a word of By,. As <Ak> <A >

and (By,) © <Bk>, wy and w9 are obtained as a concatenation of words of A% or B,’C. There
exists 0 < s < ¢}, such that

o* (w)lpe € Ay || Bi.
Then
u+t(s,8) e I(p, )| | TP (p, 04),

and therefore
u+the Jp, 4)| | TP, 4).

This concludes the proof. See Figure 1 for an illustration of this result. O

Lemma 3.13. Let & > 2 be an even integer, n > 2¢;, and p € AT Tt I4(p, 0.,
JA(p, ), IB(p, £},), JB(p,¢,) as in Definition 3.11. Define

K4(p.6) = {ve J4p.4) : pv) =0}, KB(p, ;) = {ve J%(p.4) : pv) =0}
Then

1. card(KB(p,fﬁc)) < (1 - N];_ll)_lcard(JB(Z%g;c))ka—lv

2
2. card(KA(p,ﬁl)) Vcard(JA(p,%))f;il.
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20,

n

Figure 1: The biggest square is the square pattern p € A0 et u e I(p,?,). The

dashed square of size 2/} is a pattern in & (3{’ 2(,.). The pattern located in the innermost
square of size ¢} belongs to A} | | B).. The innermost dot represents u + 7.

Proof. Let k = 2 even, n > 2{; and afixedp e FTnl? | To simplify the notations, we write

4 = IA(p, 0), JA = J4(p,£;) and so on. As the symbol 0 does not appear in the markers

1NVibr-1 ¢ A’ and 2Vilk-1 ¢ B’ we only need to consider translates u € [[0 n —0,]% of I

(resp. IP) such that wy = o%(p )12 satisfying 71'(’[1)*) € {a},,a}} (resp. 71'(’[1)*) =b)).
Item 1. We first enumerate I” = {uy,ua,...,un}. Let u, = (uf,ul) € Z2. Let

U Jn where Jy =y + [L G2 F(0" (0))l e e = b
=1

that is, we are only considering the .J; squares of .JZ(p, ¢}.) that contains vertically aligned
word b. For each box Jj, we divide it into N}, vertical strips of length ¢;_;. Formally we

have
N/

Jh_Uth where  Jp; i=up + [1+ (i — 1)1, ilx_1] x [1, 4]
=1

We construct a partition of JZ inductively by,

H
= |7 JE=d, Yh=2, T = B\ (Lo 0 Ja).
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Let .
K= {ve Ji:pv) =0}, KP:= | | K.
h=1

It will be enough to show that for every h € [1, H]
card(K;) < (1 - M)~ card(J3) £ (6)
By definition of uy,, Wy, = %(p|(uh+[[17gmz)): b, € Qﬁi\zﬁe,
Vi, j e [1, )% @n(ul +i) = bj.(i).

Since b}, can be decomposed into N; subwords of the form bj_;, we denote by @y, ; € T
the successive subwords for every 1 < i < Nj. Formally,

uf +(i—1)p_1 (

Wh,i = Whl(u +[14(i-1)t1,il_,]) a0d O Wh,i) = b1

Consider now a fixed position h. We will show that J; is equal to a disjoint union of

N}, vertical strips (J,;"Z)f\i“l of the following forms:
e the initial strip J7;,
up, + ([1+ Lr—2, lx1] % [en1,dnal) € Ji1 S (un + [1,€—1]) % [cn1, dnals
e the intermediate strips, Jjj;, 1 <i < NVp,

i =un 4+ ([(0 = Dby + 1,ilp 1] X [eni, dnl) s

e the terminal strip J} \,,
Vg

up + ([[1 + (]\7,/C — )l_1, 0, — gk,QH X [[ChuNzlg’ dhﬂNzlc]]) c

< iy = o+ (1 + (V) = D, 6] % [en g da 1) -

Here for each i € [1,N/], the values 1 < cp4,dp; < £ are integers that represent the
vertical length of each strip. Note that it possible that c;; > dp;, which denotes an
empty strip J;' ..

Indeed, for a fixed 1 < i < Ny, we first consider the previous Jy, 1 < g < h, that
intersects the strip Jj, ; so that the word w, overlaps wj, on a power of by_; (see item (2)
of Lemma 3.8). Then ¢ ; is the largest upper level of those J; N Jp, ;, more precisely,

Ch,i = max {uzg” + 0, + 1 uf <uj, (up + (1 — 1)l + [1,£,1]) < (ug +[L4D}, ()
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Figure 2: We represent the intermediate strip J7; in Jj, that is obtained after discarding
Jgy and Jy constructed before.

and similarly dj, ; is the smallest lower level of those J, n J, ;, formally we have

dn,i = mgin{ug + 1w =), (uf + (i — Dy + [1,01]) = (uf + [1,6]) ). (8)
We have just constructed the intermediate strips J; , for 1 <7 < N, se Figure 2.

We now construct the initial strip (the terminal strip is constructed similarly). We
intersect the remaining J, with Jj, 1. The terminal segment bg_l of W, overlaps the initial
segment bifl of Wy,. By item (1) of Lemma 3.8, as k—1 is odd, bx_1 has the same structure
as ay, and hence the overlapping can only happen at their end segments of the form by_o.
We have just proved that J;:,1 contains a small strip (uh +[1 +£k_2,€k_1]]) x [en1,dpq] of
base bé_l\bk_g and is included in a larger strip (uh + [[1,Ek_1]]) X [en1,dp1] of base by_.
For the initial and terminal strip the vertical extension ([ca,1,dn1] and [ep ny, dp n]) of
the elements J;; and J:,N,’C are defined as in (7) and (8).
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Let Kj, = {ve Jj,: p, = 0}. We show that

card(Kj ;) < (1— Nk__ll)71caurd(J,ib“’i)f/é3 for every 1 < i < Np. (9)

For the intermediate strips J}' ,, where 1 < i < N}, we use the fact that J;, is a square

strip of base by_1, and the fact that the frequency flf_l of the symbol 0 in the word by
is identical to the frequency f,f of the symbol 0 in bg. We have,

card(K} ;) = ly—1(dn; — cni + 1) fF = card(Jf ) fP.

For the initial strip J;,, we use the fact J;', resembles largely a square strip of base
br_1. We have,

card( K}, ;) < p—1(dpy — cn1 + 1P

.
< (O — Ga)(dng — cng + D) fE
b1 — Lo

< (1= N eard(Jf ) fE.

We have proven (9) and by summing over ¢ € [1, N} ] we have proven (6).

Item 2. As before we will consider 14, but only consider the translates u € [0,n — ¢}]?
such that 7(o"(p)|p1e2) € {a}.ap}. If Jg 0 Jp # @, the two projected words Wy =
%(g“i(p)yﬂlfﬂg) arid Wy, :N%(a“h (p)][[Lm]Q) may coincide inNthree ways: either uy = uy
and w, = Wy, or W, and Wy, intersect on their markers, or wy, and wy, intersect on their
initial and terminal segments, as in Lemma 3.9.

We redefine again I by clustering into a unique rectangle formed by adjacent squares
where the overlap occurs in the whole word, that is, we group the squares J, and Jj
that pairwise satisfy J; 0 Jy + @, uj = uf, Wy, = Wy and |ug — up| < £}.. Then, after
re-indexing I, one obtains,

H
JA= U Ins In=wn+ (L, 6] x [1,dn]) ,
h=1

where dj, is the final height of each rectangle obtained after the clustering. Thus w; =
olh (p)][[lvgﬂx[[l’dh]] is a vertically aligned pattern whose projection @y, = 7(w}) is a word
of the form aj, or af, and such that whenever J, N J;, + &, W, and Wy, intersect at their
initial and terminal segments, see Figure 3.

We now show that an index v = (v*,0Y) € J4 may belong to at most two rectangles
Jy and Jp. Indeed, by construction, as ug # uy, if v* belongs to two overlapping words of
the form a},, af, then v belongs to either the intersection of the two markers 1(Ne =101
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Figure 3: We represent a clustering of two squares of the kind Jj, that intersects on the
right J, along their markers and on the left J; along their initial and terminal segments.

or the intersection of the terminal segment afq of @} and the initial segment aiq of
aj.. In both cases described in Lemma 3.9 we exclude the overlapping of a third word of
the form aj,a}, thus we exclude the fact that v may belong to a third rectangle J, with
uy F uji and ug = uy. Then

card(KA) = Z ]l(p(v)=0)

veJA
H H
<2 2 Lp(y=0) < D Jit1le-1dn
h=1ve(up+[1,6,]x[1,dn]) h=1
it & ey &
S T Z Z ﬂve(uh+[[1,€;€}]><[[l7dh]]) = N/ Z Z ﬂ(veJh)
koo h=loega k pegA h=1
2fity 4
< card(J).
N,
This concludes our proof. ]
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4 Analysis of the zero-temperature limit

Proof of Lemma 2.22. Item 1. Let u be a measure satisfying supp(p) € X = (Lg)
which is ergodic. Recall that Birkhoff’s ergodic theorem extends to actions of countable
amenable groups as long as the average is taken over a tempered Folner sequence [37]. As
the sequence (A,)nen with A, = [-n,n]? is tempered in Z?, it follows that for pu-almost
every point x

We choose such a point = € (L) and s € [1,4;]? such that y = 0*(x) and all its translates
ot (y), t € 72, satisfy o'+ (Yl[1,6,)2) € Li. By taking a sub-sequence multiple of ¢, and

by taking a set A, tiled by translates of the square I, 4:]2,
A, = [—nty, nly, —1]2,
one obtains

card({u € A, — s : c¥(y) € [Z]})

p(7]) = lim, “card(A,) ’
oy, card(fue Ry ot(y) € [F]))
e card(A,,) |

By definition of Ly, every pattern in Ly is globally admissible and thus locally admissible,
Vte[-n,n—1]% Vve[0,4 — DI?, o % (y)|p.ppe ¢ [Z].
As card([0, £ — 1]2\[0, &x — D]?) < 2D¥y,, we have
card({u € A, : 0%(y) € [Z]}) < (2n)?2D¢,
card(A,,) = (2n)243.

Therefore we get that u([F]) < 2D/¢y.
Item 2. Let @ € By be the word whose density of zeroes realizes the maximum value
ka. By Lemma 2.18, w is a subword of some Z € X. Let Z be the vertically aligned

configuration corresponding to Z. By the simulation theorem, 7= ﬁ(’x\) for some 7 € X.
Let @ := Z[fy 4,12- By duplicating the symbol 0 we obtain,

card(By) = card ({w € AR I(w) =0}) = 20 (@)
1
hmmﬁzﬁmmmwm>mmﬁ.
k
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where I' has been defined in Equation 3.
Item 3. let ,ukB be an ergodic measure of maximal entropy of X ,f . Then

supp(py,) € X7 and P(Bre) = h(ug) — Buur, ([F]) = In(2) £ — 2Df:.

This is what we wanted to prove. O

Proof of Lemma 2.24. As the pressure of S is non-negative (the two configurations 1%
and 2% belong to X and ¢ is identically zero on X), we have

Mpg,) _ In(card (/)

S

h(pg,) — Jﬁw dug, = P(Bryp) 20, g ([F]) <

Br Br ’
/2
SP@NMle | o (FD, s SHA\ML]) < ]Z-,’; In(card(&)).

uel0, R} —D]?

Proof of Lemma 2.26. By definition of relative entropy

H((@[h,nﬂﬂ /wk) _ H(gﬂl,nHQ \/gm,nlﬁ \/ %[{Ovn—RW’ Mﬁk)
_ H(@u1,nﬂ2 | gLl \/ %k[[ovn*RUP’ Mﬁk)
n ]r{(g?}p,n]]2 | gz/kﬂo’n*R%ﬂQ’Mﬁk) n H<%kﬂ07n*32]]2’uﬂk>.
The first term of the right-hand side is the relative entropy at scale ¢} that requires

a special treatment. The third term is computed using the estimate in lemma 2.24 (the
function that maps € € (0,e~!) to H(e) is increasing),

H@P" ) =Y~ (P In(ug, (P))

Pe?/k[[o’n_R;“]]2
< n*H (%, pg,) < n”H(ep).

We now compute the term in the middle. We choose €, > ¢j, and define
Uy = {:c e ¥*() : card {u e [0,n — RL]*: 0¥(x) € [M}]} = n*(1 — fs;ﬂ)}.

By the Z%version of Birkhoff’s ergodic theorem we have that

lim pg, (U,) = 1.

n—+00
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Let (ptg)zex be the family of conditional measures with respect to ?/k[[o’n_R;“]]. We have
n]2 0,n—R;]? E
H (@17 : | %k[[ & Huﬁk) = JH<{4?[1’ ! aﬂw>dﬂ5k($)
= f H(Sﬂl’"ﬁ ux) dpg, (x)+
n 2
oL H(T ) dus ()
S2 (o \Un

< f H(Eﬂl’"ﬁ ux) dpg, (x)+
+n2ug, (2 )\Uy) In(card(7)),
and therefore

| e B . 1
limsup — H (G171 | 700 ) ghms“pr 2 (T ) duss (o).

n—+oo T n—+00 n n

We now consider a fixed x € U,,. We compute the number of elements of Gln]? that
are compatible with the constraint

card{u € [0,n — R}]* : 0“(z) € [M]]} = n?*(1 — &},).
Let I be the subset
I:={uel0,n— P ot(x) e [M]}.
Since x € U,,, we have

card([])
2

- >1—¢).
Let J < I be a maximal subset satisfying for every u,v € J,

1
Ju= vl > 5By

For every u € J, consider

1
I, := {v el:|lu—v|en < iRﬁf}

By maximality of J we have I = | J,,. ; I.. We first observe that the sets (u+ [1,[R;/21] 2)

are pairwise disjoint. Then

ueJ

4n?

card(J) < —5.
Rp?
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We also observe that for every vi,vs € I, |v1 — v2|eo < R}, and

(vl + [[1,R§€]]2> N (1;2 + [[1,R§€}]2> # D

For every u e I let
K, = U (v + [1, Ri]?) < [1,n]%
vely,
For every v € I, we have
lyip,ry 12 € [Myl.
In particular the pattern x|v+[[1,R;€]]2 is locally .#-admissible and satisfies the constraint

that all the /-symbols are vertically aligned in v + [1, R}]?. Using that K, is connected
as a Cayley subgraph of Z? with the canonical generators, one obtains that the sz?—symbols
are also vertically aligned in K.

The width of K, is less than 2R}, so the cardinality of possible patterns p € 7K satis-
fying the constraint that the LQZsymbols are vertically aligned is bounded by card(,;sz\PR;c.
The cardinality of set of patterns with support U K, is thus bounded by

ueJ

2

~o o\ 4n2/R2 4 ~ 2 ~
(card(&f)QRk> " = exp ([QR;C : Rn@} ln(card(%))> = exp <i;’ ln(card(d))> :
k k

Since U K, covers I, the cardinality of the set of patterns with support [1,n]?\ U K,
ued ueJ

is bounded by card(;z%”zggc. We have proven that, for every x € U,,

2

H(S!?]Il’”F,ux) < (% + n2€§i) In(card ().
k

We conclude by letting n — 400 and €}, — €. O
The proof of Lemma 2.27 requires the following intermediate result.

Lemma 4.1. Let n,£ be integers which satisfy n > 2/ >2 €€ (0,1), and let S <
[0,n — 2¢]? be a subset satisfying card(S) = n?(1 — ¢). Let E be the set

E = {we D yye s, o"(w)|p 2012 € .,?()2,26)}.

Then

In(card(7Y) + — In(CX(€)) + ¢ In(card (7)),

L (card(B)) < -

n2

~|
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Proof. To simplify the notations we assume that n is a multiple of /. We decompose the
square [1,n]? into a disjoint union of squares of size £,

[Lol? =  (o+[L7).

ve0, 2 —1]2

We define the set of indexes v that intersect S, more precisely, we have

Ve {ve [[o,’lf—ﬂr:(ev+[[o,e—1}]2)ﬂ5¢@}.

Then for every we E, ve V, and u € (fv + [0,¢—1]*) (S, therefore
(v + [1+6,200%) < (u+[1,2€]?).
Since we are taking v € S we have that
o (w)|[i202 € Z(X,20),

and then ~
ot (60 ()| € L(X,0).

The restriction of w on every square (Ev + [1+¢, 26]]2) is globally admissible with

respect to 7. Note that these squares are pairwise disjoint and the cardinality of their
union is at least n%(1 — ¢), since

card (U (fv + [1+¢, 2£ﬂ2)> = card (U (v + 0,0 — 1]]2)> > card(9).

veV veV

Hence we proved that Eisa subset of the set of patterns w made of independent and
disjoint words (w,)vev, With w, € Z(X,£), and of arbitrary symbols on [0,n — 2/]*\S of
size at most en?. Using the trivial bound card(.Z (X, ¢)) < card()’, we have

~ ~ 5 (n/0)* —
card(E) < (card(ﬂ/)e . C’X(E)> -card(;zxf)m2

and therefore

L (@ () + ¢ In(card(7)).

ln(card(.ﬁ?)) +

1 A~
2 In(card(E)) <

~|
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Proof of Lemma 2.27.
Proof of item 1. Using the Z%version of Birkhoff’s ergodic theorem and Lemma 2.24,
it follows that for almost every z € ¥2(.«7),

Jim —card({ue [0,n — Ry 0" (@) € [M{T}) = s, ([M)

and
lim %card({u e [1,n]*: 7(2(u) =3a}) = Mﬁk(é’a), Vied.

n—+w0 N

We choose n > Rj. An element of the partition @ltn]? \/JZ/[[()’”_F"‘§c[[2 is of the form
C~¥p N Us where p € T s 5 pattern and S < [0,n — R}]? is a subset, where

Ug := {x € 22(42%) :YuelS, o%(x)e [M;/g]a Vue[0,n— ;g]]Q\S, o'(x) ¢ [M,’c]},
Gy = {z € Z() : I(z|y ) = p}-
Let n < Mﬁk(éo)- Lemma 2.24 implies pg, ($2(#/)\[M}]) < e;. Using again Birkhoff’s

theorem we get

1
lim —card ({ue [0,n — R,] : 0"(2) € [Mg]}) > 1 — &g, for pg,-a.e. z,

n—+w n

n— -+

lim MB’“(USQ[[O,n—R;C]]Q {Us : card(S) > n*(1 — ak)}> = 1. (10)

For n large enough, we choose S < [0,n—R}]? such that Us + & and card(S) > n?(1—¢y,).
By definition of M} and T}, (see page 16), if x € Ug, then for every u € S, 0“($)|[[17R”2 is
a locally admissible pattern with respect to .# and

otk (33)|[[1,2£;€}]2 € Z(X,20,).
Define for every n > R, and every pattern p € AT the set

K,(p):={ue [[1,n]]2 :p(u) = 0}.

As ,ugk(éo) > n, it follows by Birkhoff’s ergodic theorem

lim pg, (Up {C:’p : card(Ky(p)) > n2n}> =1 (11)

n—-+0o0

From Equations 10 and 11, for large n, one can choose S and p such that Ug n CNJp + o,
card(K,) > n?n and card(S) = n%(1 —e;). Using the notations in Definition 3.11 and the
conclusions of Lemma 3.12, one obtains

T+ S SI(p.ty) and 1 +1(p.6y) € JAp,0) u TP (p, b)) =2 JA L TP,
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therefore by our choice of S we obtain
n?(1 — ex) < card(S) = card(7], + T} + S) < card(J L JB) < n?. (12)
Besides that, we have
n’n < card(K,(p)) < card(K4 U KP) + n?¢,

and by the Lemma 3.13 we have

2 N
card(K,(p)) < Wcard( I+ (1- Nkfl) 1card(JB)f,§,1 + ney.

We divide each term by n? and take the limit with n — 400, ¢ — &5, and n — pug, ([0]).
Proof of item 2. We now assume that k is even and choose 1 such that ug, (G1) > 7.
We choose p € AT such that CNJP NUg + @ and

card ({u e [1,n]?: p(u) = 1}) > nn?. (13)

Let z € ép N Us and (pz)zexn be the family of conditional measures with respect to the
partition GlLn]? \V4 w 0n—Ril® We use the trivial upper bound of the entropy, so

H(M 1) < In(card(E, 5)) (14)
where
E,s:={we AR (w) =p and Vue S, o7k (W)l[120,72 € L(X, 201,)}.

Also consider R
Ep7S = F(Ep7s)'

Note that every pattern in E), g is obtained from a pattern in Ep,S by duplicating the
symbol 0. Using Lemma 4.1 we conclude that

In(card(E, 5)) < ln(card(EZL )) + card(K,(p)) In(2),

1 n(eard(By ) < Ei,ln(card(;z%)) L n(CY) + 24 In(card (7)),

n? ’ A 02
thus
1 2 1 In(2)
- In(card(Ep 5)) < (ﬁcard( INF + (= N T eard(TP) B 40 sk>T—|—
1 ~ 1
6’ In(card(&)) + 6/2 In(Cy) + &g ln(card(&%))

(15)
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The symbol 1 does not appear in JZ = JB(p, ¢,), thus
{ue[L,n]?:p(u) = 1} < J4 L ([1,n]A\(J* 0 JP)).
Since we are assuming (13), using (12) and the fact that J4 n JB = ¥, we obtain
card ([[1,n]]2\(JA L JP)) < ney
card(J4) = n? (n - 5k> and card(JP) < n? (1 —n+ €k>. (16)

By replacing the upper bound for card(J?) given in (16) and card(J4) < n? in (15)
we obtain that
2

1 —1\—
3 In(card(Ep5)) < (N’kal +A-NI))TP A —nren) R+ €k> In(2)+
k

1 ~ 1 —~
—l—a In(card(«)) + %—2 In(C}.) + ex In(card (&)).

(17)

By integrating with respect to ug, in both sides and taking the limit when n — +o00 we
obtain item (2) of Lemma 2.27. Item (3) is analogous. O

5 Results on computability

In this last section we prove the two bounds on the relative complexity and reconstruction
functions. The subshift of finite type X = ZQ(JZZ é‘\’) in the Aubrun-Sablik construction [1]
as described in Theorem 2.9 is composed of four layers, that is, it is a subshift of a product
of four subshifts of finite type, which is itself described by a finite set of forbidden patterns
which impose conditions on how the layers superpose. See Figure 14 of [1]. The layers
are:

1. Layer 1: The set of all configurations x € /% that are vertically aligned, that is,
Ty = Tyy(0,1) fOr every u € 72

2. Layer 2: Tgriqa A subshift of finite type extension of a sofic subshift which is gener-
ated by the substitution given in Figure 3 of [1]. The sofic subshift induces infinite
vertical “strips” of computation which are of width 2" for every n € N and occur
with bounded gaps (horizontally) in any configuration. It also encodes a “clock” on
every computation strip of width 2", which counts and restarts periodically every
22" + 2 vertical steps in its strip.

3. Layer 3: Mrorbia A subshift of finite type given by Wang tiles which replicates,
on top of each clock determined by the previous layer, the space-time diagram of a
Turing machine which enumerates all forbidden patterns of the effective subshift X.
It also communicates information from the space-time diagram to the fourth layer.
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4. Layer 4: Msearcn A subshift of finite type given by Wang tiles which simulates a
Turing machine which serves the purpose of checking whether the patterns enumer-
ated by the third layer appear in the first layer. Each machine searches for forbidden
patterns in a “responsibility zone” which is determined by the hierarchical structure
of Layer 2.

The rules between the four layers described in [1] force the Turing machine space-time
diagrams to occur in every strip, and to restart their computation after an exponential
number of steps. This ensures that every configuration witnesses every step of computa-
tion in a relatively dense set, and that every forbidden pattern is written on the tape by
the Turing machine in every large enough strip. The fourth layer uses the information
from the third layer to search for occurrences of the forbidden patterns in the first layer
and thus discards any configuration in the first layer where one of these patterns occurs.

In the proofs that follow, we shall use nomenclature of [1] and refer to explicit parts
and bounds associated to their construction, so the reader should bear in mind that this
section is not meant to be self-contained. However, we shall aim to explain our arguments
in such a way that at least they can be understood intuitively without the need to refer
to [1].

~

Proof of Proposition 2.14. Let us denote by C,,(Layer; (X)) the complexity of the projec-
tion to the k-th layer. and by Cy,(Layer, (X)[Layer;(X)) the complexity of the projection
to the k-th layer given that there is a fixed pattern on the j-th layer. Clearly we have
that

CX(n) < Cp(Layer,(X)) - Cn(Layer,y (X)) - Cp(Layery(X)|Layery(X))-
- Cp(Layer,(X)[Layery(X)).

e Layer 1: As this layer is given by all z € % 50 that Ty = Tyy(0,1) for every u € 72,
a trivial upper bound for the complexity is

Cn(Layer (X)) = O(|/T").

In fact, as in the end the only configurations which are allowed are those whose
horizontal projection lies in the effective subshift X, a better bound is given by
Ch(Layer; (X)) = O(exp(n hiop(X))). For simplicity, we shall just keep the trivial
bound.

e Layer 2: The complexity of every substitutive subshift in Z2? is &'(n?). To see this,
suppose that the substitution sends symbols of some alphabet o to nj x ne arrays
of symbols. By definition, every pattern of size n occurs in a power of the substi-
tution. If k is such that min{ny,no}*~! < n < min{ny,no}*, then necessarily any
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pattern of size n occurs in the concatenation of at most 4 k-powers of the substi-
tution. There are |%|* choices for the k-powers and at most (max{ni,ns}*)? <
(nmax{ny,na})? choices for the position of the pattern. It follows that there are
at most (|.@|* max{ni,ns}?)n? = O(n?) patterns of size n. Furthermore, Mozes
construction [42] of an SFT extension for substitutives subshifts does not increase
the complexity by more than a constant. We obtain,

Cn(Layery(X)) = O(n?)

The reader can find further information on dynamical systems generated by subti-
tutions in [42, 22]|.

Layer 3: It can be checked directly from the Aubrun-Sablik construction that the
symbols on the third layer satisfy the following property: if the symbols on the
substitution layer are fixed, then for every u € Z? the symbol at position u is
uniquely determined by the symbols at positions u—(0,1),u—(1,1) and u— (-1, 1).
In consequence, it follows that knowing the symbols at positions in the “U shaped
region”

U= ({0} x[1,n—1]) u ([0,n — 1] x {0}) U ({n — 1} x [1,n —1])

completely determines the pattern. Therefore, if this layer has an alphabet 73, we
have R R
Cn(Layer;(X)|Layery (X)) < |#5™ 72 < O(K7),

for some positive integer K.

Layer 4: The same argument for Layer 3 holds for Layer 4. Therefore, if the alphabet
of layer 4 is o7; we have that for some positive integer K,

Cy(Layer, (X)|Layer,(X)) < |42 < 6(K}).

Putting the previous bounds together, we conclude that there is some constant K > 0

such that

X (n) = O(n2K™).

This yields the desired bound on Proposition 2.14. O

~

We proved in Lemma, 3.5 that % satisfies the assumptions of Proposition 2.11. We now

prove the upper bound of the reconstruction function RX : N — N of X = 22(522\,@. Of
course, a formal proof of these estimates would require a restatement of the construction
of Aubrun-Sablik with all its details, which is out of the scope of this paper. Instead,
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we shall argue that the bounds we give suffice, making reference to the properties of the
Aubrun-Sablik construction.

A description of .# is given in [1] in an (almost) explicit manner for all layers except
the substitution layer. For the substitution layer, a description of the forbidden patterns
can be extracted in an explicit way from the article of Mozes [42].

The behavior of layers 2,3 and 4 in the Aubrun-Sablik construction is mostly indepen-
dent of layer 1, except for the detection of forbidden patterns which leads to the forbidden
halting state of the machine in the third layer. Because of that reason the analysis of the

reconstruction function RX can be split into two parts:

1. Structural: Assuming that the contents of the first layer are globally admissible
(the configuration in the first layer is an extension of a configuration from X), we give
a bound that ensures that the contents of layers 2,3 and 4 are globally admissible,
that is:

e The contents of layer 2 correspond to a globally admissible pattern in the
substitutive subshift and the clock.

e The contents of layer 3 and 4 correspond to valid space-time diagrams of Turing
machines that correctly align with the clocks.

2. Recursive: A bound that ensures that the contents of the first layer are globally
admissible. This bound will of course depend upon R and 7.

Finally, we are able to prove the upper bound for the reconstruction function given by
Proposition 2.11.

Proof of Proposition 2.11. Let us begin with the structural part, as it is simpler and does
not depend upon X. Let p be a pattern with support B, and assume that the first layer
of p is globally admissible.

From Mozes’s construction of SF'T extensions for substitutions [42] it can be checked
that any locally admissible pattern of support B, of Mozes’s SF'T extension of a primi-
tive substitution (The Aubrun-Sablik substitution is primitive) is automatically globally
admissible. Let k£ be the smallest positive integer such that the second layer of p occurs
within four level k macrotiles of the substitution (each has size 4* x 2¥) in any locally
admissible pattern of that support.

Next, a clock runs on every strip of the Aubrun-Sablik construction. By the previous
argument, the largest zone which intersects p in more than one position is of level at most
k. Therefore its largest computation strip has horizontal length 2*. In order to ensure
that the clock starts on a correct configuration on every strip contained in p, we need to
witness this pattern inside a locally admissible pattern which stacks 22" 1 2 macrotiles of
level k vertically. This ensures that the clock tiles occurring in p are globally admissible.
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Finally, if every clock occurring in p starts somewhere, then the contents of the third
layer are automatically correct, as they are determined every time it restarts. To certify
that the fourth layer restricted to p is globally admissible, we just need extend the hor-
izontal length of our pattern twice, so that the responsibility zone of the largest strip is
contained in it.

By the previous arguments, it would suffice to witness p inside a locally admissible
pattern which contains in its center a 4 x (22k + 2) array of macrotiles, each one of size
4% x 2k Clearly the vertical term is dominant, thus it suffices, for large enough n, to fix
a square box of size length 2k(22k + 2).

As 2-4F1 < n < 2-4% there is a constant Cy > 0 such that an estimate for this part
of the reconstruction function can be written as

R 1wt (n) = €(v/nCY™).

Let us now deal with the recursive part. We need to find a bound such that the word

of length n occurring in the first layer of p is globally admissible. By definition of RrX , 1t
suffices to have p inside a pattern with support B RX (n) and check that the first layer is

~

locally admissible with respect to .. In other words, we need to have the Turing machine
M check all forbidden words of length R*(n) in this pattern. Luckily, the number of
steps in order to do this is already computed in Aubrun and Sablik’s article. After Fact
4.3 of |1] they show that, if pg,p1,...,p, are the first 7 + 1 patterns enumerated by the
Turing machine I\\7JI, then the number of steps S(po, ..., pr) needed in a computation zone
to completely check whether a pattern from {po,...,p,} occurs in its responsibility zone
of level m satisfies the bound,

S(po,...,pr) <T(po,...,pr) + (r + 1) max(|po), ..., |pr|)m?23™ ",
where T'(po,...,pr) is the number of steps needed by .# to enumerate the patterns

Pbo,P1,---,Dr-
Recall that the assumptions of Proposition 2.11 are that RX(n) < Cn for some con-

stant C7 > 0 and that that the time enumeration function satisfies T(R)N((n)) < P(n)|£/N\"
for some polynomial P. In our construction, we may rewrite the Aubrun-Sablik formula so

that the number S (R)N( (n)) of steps needed to check that all forbidden patterns of length
at most RX(n) in a responsibility zone of level m satisfies the bound

S(RX (n)) < T(R)Z' (n)) + |MR§(H)+1R)Z' (n)m223m+1
< P(Cln)‘ézf{;[n + ’MCanrlClanngJrl

Simplifying the above bound, it follows that there exist constants Cy, C's > 0 such that

S(RX (n)) < 02m223m+03n'
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As n is fixed, it follows that there is a smallest m = m(n) € N such that 2™ > Cyn
(in such a way that the tape on the computation zone of level m can hold words of size
R)?(n)) and such that B

Coin223m+Can < 92™ | o
so that the number 22m~+ 2 of computation steps in the zone of level m is enough to check
all the words of size RX(n). Tt follows that a bound for the recursive part of R is given
by R
RX o(n) = 022",

recursive

In order to turn this into an explicit asymptotic expression we need to find a suitable
bound for m(n). Notice that if m > 6 we simultaneously have that m? < 2™ and
4m < 2™~ 1. We may then write for m > 6,

Cym?23m+Csn < Cy24m+Csn < 0,9Csm2™ " | 9
Therefore, it suffices to find m = m(n) such that
05205 < 22777
From here, it follows that there is a constant C5 > 0 such that any value of m satisfying
m = Cs + logy(n),
satisfies the above bound. We get that

R pusive(n) = 6(n2957).

recursive

Finally, putting together the structural and recursive asymptotic bounds, we obtain
that there is a constant K > 0 such that

R¥(n) = 0(max{y/nCY" ,n2%"}) = 6(nK™).

Hence we get that
1 ~
lim sup — log(RX (n)) < +o0.
n—+oo N

This is what we wanted to prove. O
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