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Abstract

We generalize the classical definition of effectively closed subshift to
finitely generated groups. We study classical stability properties of this
class and then extend this notion by allowing the usage of an oracle to
the word problem of a group. This new class of subshifts forms a conju-
gacy class that contains all sofic subshifts. Motivated by the question of
whether there exists a group where the class of sofic subshifts coincides
with that of effective subshifts, we show that the inclusion is strict for sev-
eral groups, including recursively presented groups with undecidable word
problem, amenable groups and groups with more than two ends. We also
provide an extended model of Turing machine which uses the group itself
as a tape and characterizes our extended notion of effectiveness. As ap-
plications of these machines we prove that the origin constrained domino
problem is undecidable for any group of the form G×Z subject to a tech-
nical condition on G and we present a simulation theorem which is valid
in any finitely generated group.

Introduction

Symbolic dynamics were originally defined on Z in the highly influential ar-
ticle of Morse and Hedlund [16] in order to study discretization of dynamical
systems. The main object in this theory is the subshift, that is, a set of colorings
of a group by a finite alphabet which is defined by a set of forbidden patterns.
In the case of the group Zd with d ≥ 2, it turns out that subshifts enjoy in-
teresting computational properties, among which is the undecidability of the
domino problem [6, 28]. Said otherwise, there is no general algorithm deciding
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if there exists a coloring which avoids a finite set of patterns. This problem
can be naturally generalized to any finitely generated group, nevertheless no
characterization of the groups where the domino problem is undecidable is yet
known, even if some partial results have arisen [27, 3, 5].

More recently, the use of computability theory has become essential in the
study of subshifts of finite type (SFT), those defined by a finite set of forbidden
patterns. For example, in Zd for d ≥ 2 the possible entropies of SFTs are charac-
terized as right recursively enumerable numbers [18]. This type of results comes
from the possibility to encode Turing machines inside Zd-SFTs. The study of
such results led to introduce the class of effectively closed Zd-subshifts, defined
by a recursively enumerable set of forbidden patterns. This class was intro-
duced by Hochman [17] who showed that they admit an almost trivial isometric
extension which is a subaction of a Zd+2-SFT. The construction was improved
with two different techniques [4, 12] to get a realization in sofic Zd+1-subshifts
as projective subdynamics. Thus with an increase of one of the dimension, ef-
fectively closed Zd-subshifts are very close to sofic subshifts. Hochman’s result
suggests that if we play with the structure on which subshifts are defined, some
strong links between sofic and effectively closed subshifts may emerge.

In this direction we investigate subshifts defined on infinite finitely generated
groups and define a generalized notion of effectiveness. The difficulty for this
task relies on the possibility, even for a finitely presented group, to have an
undecidable word problem [22, 7] – no algorithm can decide whether a word on
the generators and their inverses represents the identity element. We study the
restrictions of this class with respect to this problem and define an extended
definition of effectiveness by allowing the usage of oracles to the word problem
of the group.

The paper is organized as follows. Section 1 presents notations and basic
notions from group theory and symbolic dynamics on finitely generated groups.
In Section 2 we introduce a general model for effectively closed subshifts based
on pattern codings and study its properties. We show that this class can be
defined either by recursively enumerable or decidable sets of pattern codings,
that it contains all subshifts of finite type and that it is stable under finite inter-
sections. We also show that under the assumption that the underlying group is
recursively presented this class can be defined using a maximal sets of pattern
codings, it is stable under factors, finite unions and projective subdynamics.
Therefore showing that this class contains all sofic subshifts and that the prop-
erty of being effectively closed is a conjugacy invariant. In order to express
the limitations of this class even when the group is recursively presented we
introduce in Subsection 2.2 the one-or-less-subshift X≤1 which has the prop-
erty of being effectively closed in recursively presented groups if and only if the
word problem is decidable. This example, besides illustrating the limitations
of the notion of effectively closed subshifts, answers an open question posed
by Dahmani and Yaman [11, 10, 31]. In Subsection 2.3 we briefly introduce
G-effectively closed subshifts –subshifts which are defined by Turing machines
with access to an oracle of the word problem of the group– and list its proper-
ties. We also show that while this is a good theoretical frame in many aspects,
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it does not behave well with respect to projective subactions. We end Section 2
by studying the following question: Is there a group G where the class of effec-
tively closed subshifts coincides with the class of sofic subshifts? This question
is motivated by the novel work in [1] where they show that this property is held
for structures resembling subshifts defined in shears of the Baumslag-Solitar
group BS(1, 2) under the assumption of a technical property. While their result
is certainly quite specific, it raises the previous question in a natural way. We
give a negative answer to that question for three classes of groups, namely:

• recursively presented groups with undecidable word problem – Theorem 2.14,

• infinite amenable groups – Theorem 2.16,

• groups which have two or more ends – Theorem 2.17.

In Section 3 we introduce an abstract model of Turing machine which instead
of a bi-infinite tape uses a group. These machines are quite similar to Turing
machines except that they move using a finite set of generators of G and work
over patterns instead of words. This object allows us to define recursively enu-
merable and decidable sets of patterns and gives a way to construct explicitly
Turing machines with oracles. In Theorems 3.3 and 3.4 we make this relation-
ship explicit with the aims of concluding in Corollary 3.5 that these machines
give an alternative definition of G-effectively closed subshifts by G-machines.
We end Section 3 by giving two applications of these objects: In Theorem 3.7
we show that if a group G satisfies that X≤1 is sofic then the origin constrained
domino problem of G × Z is undecidable. We also show that this implies that
the domino problem for (G × Z) ∗ H is undecidable for any non-trivial finite
group H. In Theorem 3.8 we show that for every infinite and finitely generated
group G there exists a universal subshift U defined over G × Z such that the
product of U with a G × Z-full shift can be restricted by a finite amount of
forbidden patterns and a factor code to obtain any G-effectively closed subshift
as a projective subdynamics.

1 Preliminaries and notation

We assume from the reader basic knowledge about group theory and group
presentations, a good reference is [8]. For a group G we denote by 1G its identity
element. In this article we consider only finitely generated groups, and we denote
by S ⊂ G an arbitrary finite set of generators which is closed by inverses and
contains the identity. If two words w1, w2 in S∗ represent the same element in
G we write w1 =G w2. The undirected right Cayley graph of G given by S,
denoted by Γ(G,S), is a vertex transitive graph whose vertices are elements of
G and {g, h} ∈

(
G
2

)
form an edge if there is s ∈ S such that gs = h. For g ∈ G

we denote |g| the length of the shortest path from 1G to g in Γ(G,S). We also
denote the ball of size n ≥ 0 in Γ(G,S) as Bn = {g ∈ G | |g| ≤ n}. Naturally,
the definitions above depend on the choice of generating set S, nevertheless all
the metrics generated by the distances in such a Cayley graph are equivalent.
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The word problem of G is defined as the formal language:

WP(G) = {w ∈ S∗ | w =G 1G} .

It can be shown that the decidability of the word problem is independent of the
choice of generating set S, thus the notation WP(G) is appropriate. A funda-
mental result of Novikov [22] and Boone [7] exhibits finitely presented groups
with undecidable word problem.

Let A be a finite alphabet. We say that the set AG = {x : G → A}
equipped with the left group action σ : G × AG → AG such that (σg(x))h =
xg−1h is a full shift. The elements a ∈ A and x ∈ AG are called symbols
and configurations respectively. With the discrete topology on A, the product
topology in AG is compact. This topology is generated by a clopen subbasis
given by the cylinders [a]g = {x ∈ AG|xg = a ∈ A}. Since G is countable, AG

is metrizable and an ultrametric which generates the product topology is given
by d(x, y) = 2− inf{|g| | g∈G: xg 6=yg}. A support is a finite subset F ⊂ G. A pattern
with support F is an element p of AF . We denote the set of finite patterns by
A∗G :=

⋃
F⊂G,|F |<∞AF . For p ∈ AF and g ∈ G the cylinder generated by p on

g is [p]g :=
⋂

h∈F [ph]gh.

Definition A subset X of AG is a subshift if it is σ-invariant – σ(X) ⊂ X –
and closed for the cylinder topology. Equivalently, X is a subshift if there exists
F ⊂ A∗G such that:

X = XF =:
⋂

p∈F,g∈G
AG \ [p]g.

Let X,Y be two subshifts over alphabets AX ,AY . We call a continuous
G-equivariant – i.e. σ-commuting – function φ : X → Y a morphism. A
famous theorem by Curtis, Lyndon and Hedlund – see for example [8] – gives
a combinatorial characterization of morphisms as block codes: namely, φ is
a morphism if and only if there exists a finite F ⊂ G and a local function
Φ : AF

X → AY such that φ(x)g := Φ(σg−1(x)|F ). We say φ is a factor if φ is
surjective, and a conjugacy if it is bijective. Whenever there is a factor code
φ : X → Y we write X � Y and say that Y is a factor of X and that X is an
extension of Y . Furthermore, if φ is a conjugacy we will write X ' Y and say
they are conjugated. The conjugacy is an equivalence relation which preserves
most of the topological dynamics of a system.

We say that a subshift X ⊂ AG is of finite type – SFT for short – if it can
be defined by a finite set of forbidden patterns, that is, |F| <∞ and X = XF .
We say that X is sofic if there exists an SFT Y and a factor code φ : Y � X.
The class of sofic subshifts is the smallest class closed under factor codes that
contains every SFT. Both classes are conjugacy invariants, that is, the property
of belonging to them is preserved under conjugacy.
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2 Effectiveness on finitely generated groups

When G = Z, patterns can be identified as words over a finite alphabet. We say
a subshift X ⊂ AZ is effectively closed if there is a recursively enumerable set
of forbidden words that defines it. We intend to generalize this definition to the
class of finitely generated groups. On Zd, a finite pattern is no longer a word,
but it can be easily coded as a word – via any recursive bijection between Zd

and Z. Then effective Zd-subshifts correspond to subshifts which can be defined
by a set of forbidden patterns that admits a recognizable set of codings. In
groups with undecidable word problem this recursive bijection does not exist.

In this section we first take the previous ideas of codings to the context of
finitely generated groups by introducing the formalism of pattern codings and
explore the limitations of this concept when the word problem of the group is
not decidable or recursively enumerable. At this point we introduce the subshift
X≤1 which consists in all configurations containing at most one appearance of
a non-zero symbol, and use it to exemplify these previous constraints. Next we
extend the notion of effectiveness by adding the power of an oracle to WP(G).
We remark the stability properties for this extended class and compare them
with sofic subshifts and SFTs. Finally we exhibit three big classes of groups
where this class does not coincide with the one of sofic subshifts.

2.1 Classical effectiveness

Let G be a finitely generated group and A an alphabet. A pattern coding c is
a finite set of tuples c = (wi, ai)i∈I where wi ∈ S∗ and ai ∈ A. We say that a
pattern coding is consistent if for every pair of tuples such that wi =G wj then
ai = aj . For a consistent pattern coding c we define the pattern p(c) ∈ AF

where F =
⋃

i∈I wi and p(c)wi
= ai.

Example Let BS(1, 2) ∼= 〈a, b | ab = ba2〉 be a Baumslag-Solitar group and
A = {0, 1}. Then the pattern coding

(ε, 0) (b, 1) (a, 1)
(ab, 0) (ba2, 0) (ba, 1)

is consistent, since all the words above on S = {a, b, a−1, b−1} represent different
elements in G except for ab and ba2 that are assigned the same symbol. The
pattern p it defines is:

1

0

1 0

1
1G a

b ba ab=ba2

But the pattern coding

(ε, 0) (a2, 1) (bab−1a, 1)
(a, 1) (ba, 1) (abab−1, 0)
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is inconsistent since words abab−1 and bab−1a represent the same element in G
but are assigned different symbols.

A set of pattern codings C is said to be recursively enumerable if there is a
Turing machine which takes as input a pattern coding c and accepts it if and
only if c ∈ C.

Definition A subshift X ⊂ AG is effectively closed if there is a recursively
enumerable set of pattern codings C such that:

X = XC :=
⋂

g∈G,c∈C

AG \
⋂

(w,a)∈c

[a]gw

 .

The specific choice of the set of generators S is irrelevant as one can easily
translate one in terms of the other. Notice that if a pattern coding is inconsistent
then

⋂
(w,a)∈c[a]w = ∅ and that if it is consistent then

⋂
(w,a)∈c[a]w = [p(c)]1G

.
Therefore, the subshift defined by a set of pattern codings C only depends on
the set of consistent ones, in the sense that if p(C) is the set of patterns defined
by the consistent pattern codings of C then XC = Xp(C).

We could also define this class by the existence of a decidable family rather
than a recursively enumerable one. This justifies the usage of the word “effec-
tively”. The following proposition is commonly known to hold true in G = Zd.
Here we present a general version which works in every finitely generated group.

Proposition 2.1. Let X ⊂ AG be an effectively closed subshift. Then there
exists a decidable set of pattern codings C such that X = XC.

Proof. Let C′ a recursively enumerable set of pattern codings such that X =
XC′ . If C′ is finite the result is trivial. Otherwise there exists a recursive
enumeration C′ = {c0, c1, . . . }. For a pattern coding c we define its length as
|c| = max(w,a)∈c |w|. For n ∈ N let Ln = maxk≤n |ck| and define Cn as the finite
set of all pattern codings c which satisfy the following properties:

• Every w ∈ S∗ with |w| ≤ Ln appears in exactly one pair in c.

• (w, a) ∈ c implies that |w| ≤ Ln.

• If (w, a) ∈ cn then (w, a) ∈ c.

That is, Cn is the set of all pattern codings which are completions of cn up to
every word of length at most Ln in every possible way. Consider C =

⋃
n∈N Cn.

Clearly it satisfies that X = XC . We claim it is decidable.
Consider the algorithm which does the following on input c: It initializes n

to 0. Then it enters into the following loop: First it produces the pattern coding
cn. If Ln > |c| it rejects the input. Otherwise it calculates the set Cn. If c ∈ Cn
then it accepts, otherwise it increases the value of n by 1.

As Ln is increasing and cannot stay in the same value indefinitely this algo-
rithm eventually ends for every input.
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In what follows we will show which are the liberties one can take when
choosing a defining set of pattern codings and the structural properties of this
class. Some of these are related to the following notion in group theory. A group
is said to be recursively presented if there is a presentation G ∼= 〈S,R〉 where S
is a recursive set and R ⊂ S∗ a recursively enumerable language. As we only
consider finitely generated groups S is always finite and thus recursive, so we
take the second requirement as the definition.

Proposition 2.2. Let G be a finitely generated group and A be an alphabet with
at least two symbols. The following are equivalent:

1. G is recursively presented.

2. WP(G) is recursively enumerable.

3. The set of inconsistent pattern codings is recursively enumerable.

Proof. The equivalence between the two first statements is trivial. Let G have
recursively enumerable word problem. As u =G v ⇔ uv−1 =G 1G the set
of inconsistent pattern codings is recursively enumerable. Indeed, for n ∈ N,
a Turing machine on entry c can simulate iteratively for n steps the machine
recognizing WP(G) applied to uv−1 for every pair (u, a), (v, b) ∈ c with a 6= b ∈ A
and accept if this procedure accepts for some n. Conversely, given w ∈ S∗, it
suffices to give as input to the machine recognizing the inconsistency of the
pattern codings c = {(ε, a), (w, b)} with a 6= b ∈ A in order to recognize if
w =G 1G.

Lemma 2.3. Let X ⊂ A be an effectively closed subshift. If G is recursively
presented then it is possible to choose C to be a recursively enumerable and
maximal – for inclusion – set of pattern codings such that X = XC.

This lemma is fundamental is the rest of the article. Indeed, every time
the statement of a result requires as hypothesis that a group G is recursively
presented, this is because its proof uses the existence of a recursively enumerable
and maximal set of pattern codings for some G-subshift.

Proof. A pattern coding c belongs to the maximal set C defining X if and only
if X ∩

⋂
(w,a)∈c[a]w = ∅. Let c ∈ C and C′ a recursively enumerable set such that

X = XC′ . Then: ⋂
(w,a)∈c

[a]w ⊂
⋃

c′∈C′,g∈G

⋂
(w′,a′)∈c′

[a′]gw′ .

By compactness we may extract a finite open cover indexed by c′i, gi such that:⋂
(w,a)∈c

[a]w ⊂
⋃
i≤n

⋂
(w′,a′)∈c′i

[a′]giw′ (?)

Note that each of these gi can be seen as a finite word in S∗. Now let T be
the Turing machine which does iteratively for n ∈ N the following:
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• Runs n steps the machine T1 recognizing WP(G) for every word in S∗ of
length smaller than n.

• Runs n steps the machine T2 recognizing C′ for every pattern coding de-
fined on a subset of words of S∗ of length smaller than n.

• Let ∼n be the equivalence relation for words in S∗ of length smaller than
n such that u ∼n v if uv−1 has been already accepted by T1. Let Cn be
the pattern codings already accepted by T2. If every word in c has length
smaller than n check if the following relation is true under ∼n:⋂

(w,a)∈c

[a]w ⊂
⋃

c′∈Cn,|u|≤n

⋂
(w′,a′)∈c′

[a′]uw′

If it is true, accept, otherwise increase n by 1 and continue.

Let m be the max of all |w| such that (w, a) ∈ c, and |w′| such that (w′, a′) ∈ c′i
and all |gi|. By definition, there exists an N ∈ N such that every c′i for i ≤ n is
accepted and every word representing 1G of length smaller than 2m is accepted.
This means that at stage N relation ? is satisfied and T accepts c. If c is not in
the maximal set, the machine never accepts.

Lemma 2.3 is no longer true if G is not recursively presented. Indeed, the
maximal set of pattern codings defining the full shift is given by the set of all
inconsistent pattern codings, which is recursively enumerable if and only if G is
recursively presented by Proposition 2.2.

Proposition 2.4. The class of SFTs is contained in the class of effectively
closed subshifts.

Proof. Let X be an SFT. Then X = XF for a finite set F . For each p ∈ F
consider a pattern coding cp such that p(cp) = p and let C = {cp | p ∈ F}.
Clearly X = XC and as C is finite it is recursively enumerable.

Proposition 2.5. The class of effectively closed subshifts is closed by finite
intersections.

Proof. Let X = XCX and Y = YCY be effectively closed subshifts. Without loss
of generality suppose X,Y ⊂ AG (same alphabet) and note that:

X ∩ Y =

AG \
⋃

g∈G,c∈CX

⋂
(w,a)∈c

[a]gw

 ∩
AG \

⋃
g∈G,c∈CY

⋂
(w,a)∈c

[a]gw


= AG \

⋃
g∈G,c∈CX∪CY

⋂
(w,a)∈c

[a]gw

= XCX∪CY

Therefore, it suffices on entry c to launch the Turing machines recognizing CX
and CY in parallel and accept if either of them accepts.

8



The result obviously does not extend to countable intersections. If it were so,
since every possible subshift is obtainable as an intersection of SFTs (enumerate
the forbidden patterns, define Xn = Xp1,...,pn

, then X =
⋂

n∈NXn), we would
conclude that all subshifts are effectively closed. But there is an uncountable
number of subshifts on a fixed alphabet, and effectively closed subshifts clearly
constitute a countable set, so there must be one that is not effectively closed.

Proposition 2.6. For a recursively presented group the class of effectively
closed subshifts is closed by finite unions.

Proof. Let X = XCX and Y = YCY be effectively closed subshifts. As G is
recursively presented we can suppose CX and CY are maximal as in Lemma 2.3
As in the previous proof we can show:

X ∪ Y = AG \

 ⋃
g∈G,c∈CX

⋂
(w,a)∈c

[a]gw

 ∩
 ⋃

g∈G,c∈CY

⋂
(w,a)∈c

[a]gw


Thus, as these sets are maximal we have X ∪ Y = XCX∩CY . It suffices

therefore to launch both Turing machines and accept if both accept.

Proposition 2.7. For recursively presented groups the class of effectively closed
subshifts is closed under factors.

Proof. Let X ⊂ AG
X be an effectively closed subshift. As G is recursively pre-

sented, the recursively enumerable set of pattern codings CX can be chosen to
be maximal by Lemma 2.3. Consider a factor code φ : X � Y defined by
a local function Φ : AF

X → AY . Let f1, . . . , f|F | be words in S∗ such that
F = {f1, . . . , f|F |}.

As φ is surjective, for each a ∈ AY then |Φ−1(a)| > 0. Therefore we can
associate to a pair (w, a) a non-empty finite set of pattern codings

Cw,a = {(wfi, pfi)i=1,...,|F | | p ∈ Φ−1(a)}.

That is, Cw,a is a finite set of pattern codings over AX representing every
possible preimage of a. For a pattern coding c = (wi, ai)i≤n where ai ∈ AY we
define:

Cc = {
⋃

(w,a)∈c

c̃w,a | c̃w,a ∈ Cw,a}.

That is, Cc is the finite set of pattern codings formed by choosing one possible
preimage for each letter. This set has the property that if Φ is applied pointwise
then Φ(p(Cc)) = {p(c)}. Let T be the Turing machine which on entry c runs the
machine recognizing CX on every pattern coding in Cc. If it accepts for every
input, then T accepts c. Let CY be the set of pattern codings accepted by T .
We claim Y = YCY .

Let y ∈ YCY and n ∈ N. For each pattern coding c such that p(c) = y|Bn
,

there is a pattern coding cn ∈ Cc which does not belong to CX . As CX is maximal
we have that [p(cn)]∩X 6= ∅. Extracting a configuration xn from [p(cn)]∩X we
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obtain a sequence (xn)n∈N. By compactness there is a converging subsequence
with limit x̃ ∈ X. By continuity of φ we have that y = φ(x̃) ∈ Y . Conversely if
y ∈ Y there exists x ∈ X such that φ(x) = y. Therefore for every finite F ′ ⊂ G
and pattern coding c with p(c) = y|F ′ there exists a pattern coding c̃ ∈ Cc such
that p(c̃) = x|F ′F . Therefore, c /∈ Cy and thus y ∈ YCY .

Corollary 2.8. For a recursively presented group the following are true:

• The class of effectively closed subshifts is invariant under conjugacy.

• The class of effectively closed subshifts contains all sofic subshifts.

We do not know if the previous results extend to the general case where G is
not recursively presented. The main obstruction is that without that hypothesis
there is no control on the representations of the finite set F which defines the
local rule of the factor. As an example, suppose F = {1G}, that is Φ : AX →
AY . In order to detect forbidden patterns by using the recursively enumerable
set defining X we would need to touch all possible representations of F , which
is exactly the set WP(G).

Let H ≤ G be a subgroup of G. Given a subshift X ⊂ AG the H-projective
subdynamics of X is the subshift πH(X) ⊂ AH defined as:

πH(X) = {x ∈ AH | ∃y ∈ X,∀h ∈ H,xh = yh}

Proposition 2.9. Let G be a recursively presented group and H ≤ G a finitely
generated subgroup of G. If X ⊂ AG is effectively closed, then its H-projective
subdynamics πH(X) is effectively closed.

Proof. As H is finitely generated, there exists a finite set S′ ⊂ H such that
〈S′〉 = H. As G is finitely generated by S there exists a function γ : S′ → S∗

such that s′ =G γ(s′) (that is, every element of S′ can be written as a word in
S∗). Extend the function γ to act by concatenation over words in S′∗.

As G is recursively presented, by Lemma 2.3 the set of pattern codings
CG defining X can be chosen to be maximal. Let c = (wi, ai)i∈I a pattern
coding where wi ∈ S′∗ and consider γ(c) = (γ(wi), ai)i∈I . Let T be the Turing
machine which on entry c runs the algorithm recognizing CG on entry γ(c) and
accepts if and only if this machine accepts. Clearly CH = {c | T accepts c} is
recursively enumerable. Also, as CG is a maximal set of pattern codings then
c ∈ CH ⇐⇒ [p(γ(c))] ∩X = ∅. Therefore πH(X) = XCH .

Besides all of these obstructions, even for recursively presented groups there
are very simple subshifts which do not fall in this class. In order to illustrate
this limitation we introduce the One-or-less subshift.

2.2 The One-or-less subshift

Consider the subshift X≤1 ⊂ {0, 1}G whose configurations contain at most one
appearance of the letter 1.
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X≤1 = {x ∈ {0, 1}G | 1 ∈ {xg, xh} =⇒ g = h}

As we shall see later, this subshift is related to the word problem of a group.
In the literature, it is sometimes called the “sunny side up” subshift. We begin
by showing some properties of X≤1.

Proposition 2.10. If G is infinite, then X≤1 is not an SFT.

Proof. Suppose X≤1 = XF for a finite F and let

F =
⋃

p∈F,p has support F ′

F ′.

As G is infinite, there exists g ∈ G such that F ∩ gF = ∅. As all forbidden
patterns have their support contained in F then:

([1]g ∩ [1]1G
) ∩XF 6= ∅

But ([1]g ∩ [1]1G
) ∩X≤1 = ∅. Therefore XF 6⊂ X≤1.

This subshift has already been studied in [11]. In that article the authors
showed that the action of a relatively hyperbolic group on its boundary is related
to X≤1 being sofic. They said a group G has the special symbol property if
X≤1 ⊂ {0, 1}G is a sofic subshift. They furthermore proved some stability
properties among which are:

1. if G has the special symbol property then G is finitely generated.

2. If G splits in a short exact sequence 1 → N → G → H → 1 and both N
and H satisfy the special symbol property, then G also does.

3. If [G : H] < ∞ then G has the special symbol property if and only if H
does.

4. The special symbol property is true for:

• Finitely generated free groups.

• Finitely generated abelian groups.

• Hyperbolic groups.

• Poly-hyperbolic groups.

Besides the restriction of G being finitely generated the authors did not
present any example of group without the special symbol property. In this
section we introduce a computability obstruction for this property which at the
same time shows one of the limitations of the classical approach to effectiveness.

Proposition 2.11. Let G be a recursively presented group. Then X≤1 if effec-
tively closed if and only if WP(G) is decidable.
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Proof. If WP(G) is decidable then X≤1 is effectively closed. Indeed, an algorithm
recognizing a maximal set of pattern codings C such that X≤1 = XC is the
following: On input c it considers every pair (w1, 1), (w2, 1) in c and accept if
and only if w1w

−1
2 6=G 1G for a pair. Conversely, as G is recursively presented,

the word problem is already recursively enumerable. It suffices to show it is
co-recursively enumerable.

By Lemma 2.3 there exists a maximal set of forbidden pattern codings C with
X≤1 = XC . Given w ∈ S∗, consider the pattern coding cw = {(ε, 1), (w, 1)}.
Note that w 6=G 1G ⇐⇒ cw ∈ C. Therefore the the algorithm which on
entry w ∈ S∗ runs the algorithm recognizing C on entry cw and accepts if and
only if this one accepts, recognizes S∗ \ WP(G). Hence WP(G) is co-recursively
enumerable.

Using Proposition 2.7 we obtain the following corollary which answers a
question of Dahmani and Yaman [10, 31].

Corollary 2.12. If G is recursively presented and WP(G) is undecidable, then
X≤1 is not sofic.

2.3 G-Effectiveness

In order to escape the limitations of Lemma 2.3 and Proposition 2.7 and include
subshifts such as X≤1, we introduce the class of G-effectively closed subshifts.
The aim of this subsection is to briefly introduce these objects and remark their
properties. They are studied in detail in Section 3.

A set of pattern codings C is said to be recursively enumerable with oracle O
if there exists a Turing machine with oracle O which accepts on input c if and
only if c ∈ C. The oracle O is a language to which these special machines have
the right to ask if w ∈ O and receive the correct answer in one step.

Definition A subshift X ⊂ AG is G-effectively closed if there is a set of pattern
codings C such that X = XC , and C is recursively enumerable with oracle WP(G).

We remark the following properties that either fall directly from the defi-
nition or are obtained from adding the word problem WP(G) as oracle to the
previous results. Let G be a finitely generated group, then:

1. If X a G-effectively closed subshift then a maximal set of pattern codings
C such that X = XC is recursively enumerable with oracle WP(G).

2. The class of G-effectively closed subshift is closed under finite intersections
and unions.

3. The class of G-effectively closed subshifts is closed under factors.

4. Being G-effectively closed is a conjugacy invariant.

5. The class of G-effectively closed subshifts contains all sofic subshifts.

12



6. The class of G-effectively closed subshifts contains all effectively closed
subshifts.

7. If WP(G) is decidable, then every G-effectively closed subshift is effectively
closed.

8. X≤1 is a G-effectively closed subshift.

The only property which does not extend nicely is the stability under taking
projective subdynamics. Clearly if X ⊂ AG is G-effectively closed then for any
finitely generated H ≤ G we would have that the H-projective subdynamics
πH(X) can be defined by a set of pattern codings which is recursively enumerable
with oracle WP(G). Nevertheless, it may not be possible to define such set with
Turing machines using oracle WP(H).

Proposition 2.13. Let G be a group which is not recursively presented. There
exists a G × Z-effectively closed subshift X ⊂ AG×Z such that its Z-projective
subdynamics is not Z-effectively closed.

Proof. Let A = S ∪ {?}. For w ∈ S∗, let pw defined over the support {1G} ×
{0, . . . |w|+ 1} such that (pw)(1G,0) = (pw)(1G,|w|+1) = ? and for j ∈ {1, . . . , |w|}
then (pw)(1G,j) = wj . Let X := XF ⊂ AG×Z be defined by the set of forbidden
patterns F = {pw | w ∈ WP(G)}. Clearly X is G-effectively closed. Every Z-
coset of a configuration x ∈ X contains a bi-infinite sequence y ∈ AZ such that
either y contains at most one symbol ? or every word appearing between two
appearances of ? represents 1G in G.

We claim that πZ(X) is not effectively closed. If it were, there would exist a
maximal set of forbidden pattern codings which is recursively enumerable and
defines πZ(X). Therefore given w ∈ S∗ a machine could run the algorithm for
the word ?w? and it would be accepted if and only if w =G 1G. This would
imply that G is recursively presented.

In Section 3 a characterization of these subshifts by Turing machines which
instead of a tape have Cayley graphs of groups is given. This allows an al-
ternative definition of G-effectiveness which at the same time gives a concrete
construction of Turing machines with oracle.

2.4 Groups with G-effective subshifts which are not sofic.

In the work of two of the authors [1], it is shown that for subshifts in the
hyperbolic plane that satisfy a technical condition, the property of being sofic
is equal to the property of being effectively closed. By hyperbolic plane it is
meant the monoid M = 〈a, a−1, b | ab = ba2, aa−1 = 1M 〉 which looks like
a shear of the Baumslag-Solitar group BS(1, 2) (here all the definitions given
above for groups naturally extend to monoids). The reason behind this fact is
that the doubling structure of this monoid allows to transmit the information
on a row bn〈a〉 to all rows bm〈a〉 where m ≥ n, and thus a Turing machine
calculation can be implemented as an extra SFT extension. This shows that
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any subshift defined by a recursively enumerated set of pattern codings is in
fact a sofic subshift.

This result raises the following questions:

• If we consider the group BS(1, 2), is it true that every effectively closed
subshift is sofic?

• Is there any group G such that every G-effectively closed subshift is sofic?

• Is there any group such that the class of effectively closed subshifts and
sofic subshifts coincide?

In this section we give a negative answer to the first question, and give
partial negative answers to the second and third questions. More precisely, we
show that the equality between the class of G-effectively closed subshifts and
sofic subshifts cannot happen in three cases: recursively presented groups with
undecidable word problem, amenable groups and groups with two or more ends.

Theorem 2.14. For every recursively presented group G with undecidable word
problem there exists a G-effectively closed subshift which is not sofic

Proof. The subshift X≤1 is G-effectively closed but not sofic for recursively
presented G as stated in Corollary 2.12.

Clearly, this does not say anything about the existence of effectively closed
subshifts which are not sofic in this case. In fact, it is not known whether X≤1

is sofic for all groups with decidable word problem or not.
For the case of amenable groups, we take inspiration in a classical construc-

tion for Z2 called the mirror shift. It consists of all configurations over the
alphabet A = { , , } such that these forbidden patterns do not appear.

F :=
{

, , ,
}
∪
⋃

w∈A∗
{ w , w w̃ , w w̃ } ,

where w̃ denotes the reverse of the word w.
This subshift is easily seen to be effectively closed, while it can be proven

that it is not sofic. Indeed, if S is the canonical set of generators of Z2, then
|Bn+1 \ Bn|/|Bn| tends to 0 as n goes to infinity. From this it is possible
to deduce that in a suitable SFT extension of the mirror shift, there are two
different patterns sharing the same boundary which yield different patterns in
the mirror subshift. As shown in Figure 1, switching a pattern for the other
produces a point outside the subshift yielding a contradiction. In what follows
we generalize this technique to amenable groups.
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y1 ∈ Xmirror

P1P̃1

y2 ∈ Xmirror

P2P̃2

ỹ /∈ Xmirror

P2P̃1

x1 ∈ X

Q1

x2 ∈ X

Q2

x̃ ∈ X

Q2

↓ φ ↓ φ ↓ φ

Figure 1: Configuration in the mirror shift and technique showing non-soficity.

For a finitely generated group we say a sequence of elements (gn)n∈N is
recursive if there is a Turing machine which on input n produces a word w ∈ S∗
such that w =G gn. If the Turing machine uses oracle O then the sequence is
said to be recursive with oracle O.

Lemma 2.15. For every infinite group G there exist a pair of recursive se-
quences (gn)n∈N, (hn)n∈N with oracle WP(G) such that the family of sets

S = {{1G}} ∪ {gnBn}n∈N ∪ {hnBn}n∈N

is pairwise disjoint.

Proof. Fix a total order on S and extend it to a lexicographic order in S∗. Let
Tg, Th be the Turing machines with oracle WP(G) that do the following on entry
n ∈ N.

• Let N = 1 + 2
∑n

k=1(2k + 1) = 1 + 2n(n + 2). Solve the word problem
for every w ∈ S∗ such that |w| ≤ 2N . This allows to construct BN of the
Cayley graph Γ(G,S).

• Assign the value 0 to every g ∈ BN \ {1G}, and 1 to 1G. Assign initially
the value g0, . . . , gn, h0, . . . , hn to ε. And initiate a variable k with its
value set initially to 0.

• While k ≤ n do the following: Iterate over all w ∈ S∗ lexicographically. If
for w all of the values of wBk have the value 0 then:

– Turn all of the values in wBk to 1.

– if gk = ε set gk = w.

– otherwise, set hk = w and assign k ← k + 1.

• For the machine Tg return gn, for Th return hn.

AsG is infinite and finitely generated there exist elements of arbitrary length.
Therefore the bound N suffices to construct all these disjoint balls: Indeed, it is
the sum of the diameters of the considered sets. Moreover, as the lexicographic
order is fixed beforehand this algorithm will always produce the same values,
therefore it gives a recursive enumeration of the desired sets.
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Theorem 2.16. Let G be an infinite amenable group. Then there exists a
G-effectively closed subshift which is not sofic.

Proof. Let (gn)n∈N, (hn)n∈N be recursive sequences with oracle WP(G) as in
Lemma 2.15, and consider the subshift Y ⊂ {0, 1, 2}G defined as Y = Y1 ∩ Y2

where:
Y1 = {y ∈ {0, 1, 2}G | 2 ∈ {yg, yh} =⇒ g = h}

Y2 = {y ∈ {0, 1, 2}G | yg = 2 =⇒ ∀n ∈ N, σg−1
n g−1(y)|Bn

= σh−1
n g−1(y)|Bn

}

It is clear these two sets are closed and shift-invariant, thus Y is a subshift.
Moreover, they are both G-effectively closed subshifts: Y1 is defined by all
pattern codings which contain a pair (w1, 2), (w2, 2) such that w1 6=G w2 and
Y2 by all pattern codings which contain a triple (w1, 2), (w2, a), (w3, b) with
a 6= b for which there exists n ∈ N and h ∈ Bn such that w2 =G w1gnh and
w3 =G w1hnh. As the sequences are recursive with WP(G) as oracle this is an
effectively enumerable set with oracle WP(G). As the class of G-effectively closed
subshifts is closed under intersections we obtain that Y is G-effectively closed.

We are going to show that Y is not sofic. As G is amenable (see [8]), for
each ε > 0 and finite K ⊂ G there exists a non-empty finite set F ⊂ G such
that:

∀k ∈ K,
|F \ Fk|
|F |

< ε

Suppose Y is sofic, then there exists an SFT X ⊂ BG and a factor code
φ : X � Y . Without loss of generality one can suppose that φ is a 1-block
code, that is, it is defined by a local rule Φ : B → A. Indeed, if this was not
the case, and Φ : BF → A for F 6= {1G} we can find a conjugated version of X

over the alphabet B̃ := BF which is given by the conjugacy φ̃ : X → X̃ such
that φ̃(x)g = σg−1(x)|F . As being SFT is a conjugacy invariant we can choose

without loss of generality X̃ as the extension.
Let K be the union of the supports of p ∈ F where X = XF and |F| <∞,

ε = log(2)
|K|log(|B|) and for simplicity denote ∂KF = F \

⋂
k∈K Fk. We obtain that

there is F such that:

|∂KF |
|F |

≤
∑
k∈K

|F \ Fk|
|F |

< |K| log(2)

|K|log(|B|)
=

log(2)

log(|B|)

Note that the previous property is invariant by translation, that is, if F
satisfies this property, then gF also does for each g ∈ G. By choosing a large
enough n ∈ N such that F ⊂ Bn, then gnF ⊂ gnBn.

Putting everything together, we can find a set F such that |B||∂F | < 2|F |

and there exists n ∈ N such that 1G /∈ gnF , gnF ⊂ gnBn and gnF ∩ hnBn = ∅.
Consider the set of patterns:

P = {p : {1G} ∪ gnF → {0, 1, 2} | p1G
= 2,∀h ∈ gnF : ph ∈ {0, 1}}
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Clearly |P| = 2|F |. As gnF ⊂ gnBn then for each p ∈ P, [p]1G
∩ Y 6= ∅. Let

yp ∈ [p]1G
∩Y and xp ∈ X such that φ(xp) = yp. As |B||∂F | < 2|F | by pigeonhole

principle there are xp1 6= xp2 such that xp1 |gn∂F = xp2 |gn∂F .
By definition of K we obtain that x̃ ∈ X where x̃ is the configuration

defined as x̃|F = xp1 |F and x̃|G\F = xp2 |G\F . As φ is a 1-block code we
get that φ(x̃)|F = yp1 |F and φ(x̃)|G\F = yp2 |G\F . Consider ḡ ∈ Bn such that
(yp1)gnḡ 6= (yp2)gnḡ. Then:

φ(x̃)hnḡ = (yp2)hnḡ = (yp2)gnḡ

φ(x̃)gnḡ = (yp1)gnḡ

Therefore φ(x̃)hnḡ 6= φ(x̃)gnḡ but φ(x̃)1G
= 2 which means that φ(x̃) /∈ Y .

In particular, this theorem gives a negative answer in the case of BS(1, 2)
which is solvable and thus amenable.

Definition The number of ends e(G) of the group G is the limit as n tends to
infinity of the number of infinite connected components of Γ(G,S) \Bn.

The number of ends is a quasi-isomorphism invariant and thus it does not
depend on the choice of S. It is also known that for a finitely generated group G
then e(G) ∈ {0, 1, 2,∞}. Stallings theorem about ends of groups [29] gives a
constructive characterization of the groups satisfying e(G) ≥ 2. In particular
we have e(G) = 2 if and only if G is infinite and virtually cyclic.

Theorem 2.17. Let G be a finitely generated group where e(G) ≥ 2. Then
there are G-effectively closed subshifts which are not sofic.

Proof. Let N ∈ N such that Γ(G,S)\BN contains at least two different infinite
connected components C1 and C2.

Let (gi)i∈N ⊂ C1 and (hi)i∈N ⊂ C2 be sequences with no repeated elements.
Let Y ⊂ {0, 1, 2}G defined as Y = Y1 ∩ Y2 where:

Y1 = {y ∈ {0, 1, 2}G | 2 ∈ {yg, yh} =⇒ g = h}

Y2 = {y ∈ {0, 1, 2}G | yg = 2 =⇒ ∀n ∈ N, yggn = yghn
}

Analogously to the proof of Theorem 2.16, if the sequences are recursive
with oracle WP(G) then Y is effectively closed. We claim such sequences exist.

Fix a total order on S and extend it to a lexicographic order in S∗. Let N as
above and let w0 ∈ S∗ such that w =G g0 ∈ C1. Consider the Turing machines
Tg with oracle WP(G) that on entry n ∈ N:

• If n = 0 returns w0.

• Let M = N + n + |w0|. Solve the word problem for every w ∈ S∗ such
that |w| ≤ 2M . This allows to construct BM of Γ(G,S).

• Let Hg0 be the connected component of BM \BN which contains g0.
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• Assign the value 0 to every Hg0 \ {w0}. and 1 to w0. Assign g1, . . . , gn to
ε. And initiate a variable k with its value set initially to 1.

• While k ≤ n do the following: Iterate over all w ∈ S∗ lexicographically. If
w0w has the value 0 and belongs to Hg0 then:

– Turn the value w0w to 1.

– Assign gk = w0w and increase k by 1.

• Return gn.

As the component C1 is infinite, the value M suffices to find n different
elements. It is clear this machine yields a sequence of distinct elements in com-
ponent C1. The machine Th for the sequence in the component C2 is analogous.

Suppose Y is sofic. As in Theorem 2.16 we can consider an SFT extension
X ⊂ BG given by a 1-block code φ : X � Y . Let also M ∈ N be a bound such
that the union of all the supports of one finite set of forbidden patterns defining
X is contained in BM . Let L = N +M .

As G is finitely generated |BL| <∞. Consider thus the finite set P = {p ∈
BBL | φ([p]1G

) ∩ [2]1G
6= ∅}. Clearly |P| ≤ |B||BL| < ∞. Consider w ∈ {0, 1}N

and fix yw ∈
⋂

n∈N[wn]gn∩ [2]1G
. Clearly yw ∈ Y . As there is an infinite number

of such yw there exist w1 6= w2 and xw1 , xw2 ∈ X such that φ(xw1) = yw1 and
φ(xw2) = yw2 and xw1 |BL

= xw2 |BL
.

By definition of L we have that x̃ ∈ X where:

x̃g =

{
(xw1)g, if g ∈ C1

(xw2)g, if g ∈ G \ C1

Thus ỹ = φ(x̃) satisfies that ỹ1g
= 2, ỹ|C1

= (yw1)|C1
and ỹ|C2

= (yw2)|C2
.

Let n ∈ N such that (w1)n 6= (w2)n Then: ỹgn = (yw1)gn and ỹhn = (yw2)hn =
(yw2)gn . Therefore ỹ /∈ Y2 which implies that ỹ /∈ Y .

3 G-machines

Classical Turing machines keep their information in a bi-infinite tape, and are
only able to work on inputs which are codified in the form of words. While
in Z this a natural model to study subshifts, it becomes cumbersome in general
groups as we are forced to introduce pattern codings. Moreover, as we saw in
Section 2, there is a number of constraints to what can be done with Turing
machines when WP(G) is undecidable, and a general setting forces the use of
oracles.

In this section we introduce an alternative model of computation which we
call a G-machine. In this model, the tape is replaced by a finitely generated
group G. These machines receive patterns p ∈ A∗G as input instead of words and
move by using the set S of generators. Similar machines using Cayley graphs
as a tape have already been mentioned in [13] and studied in more detail in [9],
but these machines take their input as a word in an auxiliary tape and only use
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the graph as a working tape. Another work considering subshifts defined by one
or more Turing machine heads walking on the group has also been done in [26].

We begin this section by defining G-machines and the classes of languages
they define. Then we present some robustness results similar to the ones satisfied
by classical Turing machines. As the main result of this section, we characterize
the class of G-effectively closed subshifts as those whose set of forbidden patterns
is G-recursively enumerable, hence giving a characterization of this class without
the use of oracles. We end this section with two applications of these machines:
one to the domino problem of general groups (Theorem 3.7) and another in the
form of a simulation theorem (Theorem 3.8).

Definition A G-machine is a 6-tuple (Q,Σ,t, q0, QF , δ) where Q is a finite set
of states, Σ is a finite alphabet, t ∈ Σ is the blank symbol, q0 ∈ Q is the initial
state, QF ⊂ Q is the set of accepting states and δ : Σ×Q→ Σ×Q× S is the
transition function.

As in the case of Turing machines, we can define the action of a Turing
machine in two different ways. We call these the fixed head and moving head
models.

In the fixed head model, a G-machine T acts on the set ΣG ×Q as follows:
let (x, q) ∈ ΣG×Q and δ(x1G

, q) = (a, q′, s). Then T (x, q) = (σs−1(x̃), q′) where
x̃|1G

= a and x̃|G\{1G} = x|G\{1G}. Figure 2 illustrates this action when G is a
free group. Here the head of the Turing machine is assumed to stay at a fixed
position and the tape moves instead.
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t t
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q1

a

b

t

t

t
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t

t

t t

t

tt
q2

δ(q1, ) = (q2, , a)

Figure 2: A fixed head transition of an F2-machine.

In the moving tape model, a G-machine T acts on the set ΣG × G × Q as
follows: let (x, g, q) ∈ ΣG ×G ×Q and δ(x1G

, q) = (a, q′, s). Then T (x, g, q) =
(x̃, gs, q′) where x̃|1G

= a and x̃|G\{1G} = x|G\{1G}. Figure 3 illustrates this
action when G is Z2. Here the tape remains fixed and the second coordinate
keeps track of the position of the head.

19



t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

q1

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

q2
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Figure 3: A moving head transition of a Z2-machine.

Let F ⊂ G be a finite set and p ∈ ΣF . Let xp ∈ ΣG be the configuration
such that (xp)|F = p and (xp)|G\F ≡ t. We say that T accepts p if there is
n ∈ N such that Tn(xp, q0) ∈ ΣG ×QF in the fixed head model or equivalently
Tn(xp, 1G, q0) ∈ ΣG × G × QF in the moving head model. L ⊂ Σ∗G is G-
recursively enumerable if there exists a G-machine T which accepts p ∈ Σ∗G if
and only if p ∈ L. If both L and Σ∗G \L are G-recursively enumerable we say L
is G-decidable.

So far we have defined these machines using a fixed set of generators S. In
the next proposition we show that the languages defined by such machines do
not depend of this arbitrary choice.

Proposition 3.1. Let S, S′ be finite subsets of G such that 〈S〉 = 〈S′〉 = G.
Let L ⊂ A∗G be recursively enumerable using S′ as the movement set. Then L
is recursively enumerable using S.

Proof. Let TS′ be a G-machine using S′ as the movement set recognizing L. As
〈S〉 = G each s′ ∈ S′ can be written as s′ = s1 . . . sn(s′) where every si ∈ S.
Consider TS a copy of TS′ where for each state q ∈ Q we add a copy qs′,si for
s′ ∈ S and i ∈ {1, . . . , n(s′)}, and every instruction δ(a, q) = (b, r, s′) in TS′ is
replaced with the instructions:

• δ(a, q) = (b, rs′,s1 , s1)

• ∀a ∈ Σ and 1 ≤ i < n(s), δ(a, rs′,si) = (a, rs′,si+1 , si+1)

• ∀a ∈ Σ, δ(a, rs′,sn(s′)) = (a, r, 1G).

The modified machine TS moves with the set of generators S and acceps the
same patterns as TS′ .

The class of G-machines shares also the robustness of Turing machines with
respect to slight changes in its definition. For example, we can allow multiple
tapes with multiple independent writing heads. We shall briefly and informally
define this model as it will be used as a tool in a proof later on.
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A multiple head G-machine is the same as a G-machine, except that the
machine uses Gn as a tape and the transition function is δ : Σn ×Qn → Σn ×
Qn × Sn, where n is the number of heads of the machine. The action of this
machines is defined analogously as before in either the moving head or moving
tape model. It accepts a pattern p ∈ A∗G if starting from the initial configuration
((xp,tG, . . . ,tG), (q0, . . . , q0)) the machine reaches in a finite number of steps
a configuration with an accepting state in QF in one of the coordinates.

In these machines each head works on its own tape, but can “read” the con-
tent of other tapes. By codifying independent movements of a tape accordingly,
it is able to read not only what each head is looking at a certain step but what
is written in an arbitrary finite portion of the other tapes.

Proposition 3.2. Let L ⊂ Σ∗G. There exists a multiple head G-machine which
accepts exactly patterns p ∈ L if and only if L is G-recursively enumerable.

This extended model is useful to prove the second of the following two results
which link oracle machines to G-machines. The first result is relatively straight-
forward, as G-machines can be simulated by a machine with oracle WP(G) by
creating arbitrarily big balls of the Cayley graph. The second result is more
interesting as it says that oracle machines can be simulated by G-machines.

Theorem 3.3. Let L ⊂ Σ∗G be G-recursively enumerable. Then there exists
a recursively enumerable with oracle WP(G) set of pattern codings C such that
L = p(C).

Proof. Suppose TG is the G-machine recognizing L. With an oracle of WP(G), a
machine can construct balls Bn of Γ(G,S) for arbitrary n. A codification of Bn

allows a classical Turing machine to simulate at least n applications of TG in
the moving head model as the head starts in the origin and moves at most one
generator per iteration. Let T be the Turing machine with oracle WP(G) which
does the following on entry c.

• Let N = 2 max(w,a)∈c |w|. Solve the word problem for all w ∈ S∗ of length
at most N . If c is inconsistent accept.

• Let k = N and iterate the following procedure: Solve the word problem
for w ∈ S∗ of length at most k and simulate TG over p(c) for k steps. If
this procedure accepts then accept, otherwise increase k by 1.

Clearly, T accepts c if and only if either c is inconsistent or p(c) ∈ L.

Definition A language L ⊂ Σ∗G is said to be closed by extensions if for each
p1 ∈ ΣF1 , p2 ∈ ΣF2 such that F1 ⊂ F2 and p2|F1

= p1 then p1 ∈ L =⇒ p2 ∈ L.

Theorem 3.4. Let G be an infinite group and C a recursively enumerable with
oracle WP(G) set of pattern codings. If p(C) is closed by extensions, then p(C) is
G-recursively enumerable.
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Proof. Without loss of generality we can suppose C is a maximal set of pattern
codings which gives p(C). Moreover we can also assume that T is a one-sided
Turing machine with a reading tape and a working tape.

The construction is a multiple head G-machine M which consists of the
following six layers (see Figure 4):

1. A storage layer MSTORE where the input p ∈ Σ∗G is stored.

2. A machine MPATH which constructs an arbitrarily long one-sided non-
intersecting path starting from 1G.

3. A machineMVISIT which is able to visit iteratively all the elements of Bn

for n ∈ N starting with n initially assigned to 1.

4. A Machine MORACLE which solves WP(G).

5. An auxiliary layer MAUX which serves as a nexus between the first layer
and the sixth.

6. A simulation layerMSIM which simulates T in the one-sided path created
by MPATH.

We will first describe MPATH and MVISIT which are the most complicated
components. Then we will describe the general working of the machine.

We begin by describing MPATH in detail. Let the set of generators S =
{g1, g2, . . . , gk} and consider the G-machineMPATH := (Q,Σ,t, q0, QF δ) where
Q := {I,B} ∪ (S × {←,→}), Σ = ({t,B} ∪ S) × {t,⊗} × ({t} ∪ S), q0 = I,
QF = ∅ (we force the machine to loop), and δ is given by the following rules
where ∗i stands for an arbitrary fixed symbol.

δ((t,t,t), I) = ((B,⊗, g1), g←1 , g1).

δ((t,t,t), g←i ) = ((gi,⊗,t), g→1 , 1G).

δ((∗1,⊗, ∗2), g→i ) = ((∗1,⊗, gi), g←i , gi).

δ((∗1,⊗, ∗2), g←i ) = ((∗1,⊗, ∗2), B, g−1
i ).

δ((gj ,⊗, gi), B) =

{
((gj ,⊗, gi), g→i+1, 1G), if i < k

((t,t,t), B, g−1
j ), if i = k.

δ((B,⊗, gi), B) = ((B,⊗, gi), g→i+1, 1G), if i < k

The rules from δ codify a backtracking in G which marks a one-sided non-
intersecting infinite path in G. The states I and B stand for initialization and
backtracking respectively. The elements from Σ are triples (a1, a2, a3) which
indicate the following information: my left and right neighbors are a1 and a3

respectively and I belong to the path if a2 = ⊗. The first rule initializes the
infinite path by using the symbol B to indicate that there is no element to the
left, marks the identity of the group as part of the path by using ⊗ and sets
the next element in the direction g1. The second and third rules mark the left
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Layer 3.3 M′PATH

Figure 4: Construction of the machine M as a multiple head G-machine.

and right neighbors respectively and move to the next position. Rule 4 deals
with the case of reaching a position already marked and going back. Rule 5 and
6 search the next available direction which potentially admits an infinite path
and backtrack if every position has already been searched. Rule 6 lacks a case
where i = 2k on purpose because such a state is never reached as the group is
infinite.

Next we describe MVISIT that visits all elements of every ball Bn in G
iteratively. It suffices to construct it as a multiple head G-machine with three
layers as follows. The first layer runs a copy ofMPATH. The second layer makes
use of the path defined byMPATH to simulate a counter which has value n ∈ N
– any one-sided Turing machine can be simulated in the path by identifying the
instructions L,R with the first and third coordinates of Σ. The third layer runs
another copy of MPATH, which is allowed only to run over words of length n.
This is achieved by using the counter in second layer to measure the length of
the path visited by the third layer and restrict it to be less than n. Each time
the whole ball Bn is visited (that is, ((B,⊗, gk), B) is reached in the third layer)
then the counter in the second layer increments n by 1 and the third layer starts
anew.

If at a given time the first layer, which constructs the one-sided path, back-
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tracks until reaching a cell used by the counter in the second layer, then the
second and third layers are erased and restart. As the group is infinite, then
by choosing an adequate number of computation steps, the path generated by
MPATH in the first layer is arbitrarily long. Thus the head of the third tape is
able to visit every element of Bn for arbitrarily big n.

Finally, we describe the overall functioning of M:

• The input p ∈ Σ∗G is stored inMSTORE whose head mimics that ofMVISIT

without changing anything.

• The machines MPATH and MVISIT run independently.

• MSIM uses the path given by MPATH to simulate two one-sided Turing
machine tapes: an input tape where input will be stored, and a working
tape which simulates T over that input.

• WheneverMVISIT arrives at a position where the first layer is not marked
by t, the head at MAUX follows the path w marked from 1G by the first
layer ofMVISIT and writes (w, a) in the input tape ofMSIM. ThenMAUX

marks position w as already visited and returns to 1G.

• If at a given timeMAUX extends the pattern coding written in the reading
tape of the fifth layer, then the working tape of MSIM erases everything
and begins anew.

• If at any moment the working tape of MSIM makes a call to the ora-
cle WP(G), then MORACLE is made to mark the origin, follow the path
w ∈ S∗ and accept the call if the last symbol is marked. Then it erases
everything and goes back to the origin.

• If at any moment the end of the simulated path created byMPATH back-
tracks into a cell used by the written portion of MSIM, then the content
of all tapes except MPATH and MSTORE is erased and they start anew.

• M accepts if and only if the working tape of MSIM does.

AsMPATH is able to construct arbitrarily long one-sided and non-intersecting
paths, there is a finite number of computation steps such thatMVISIT will visit
all of the support of p. Thus the fourth layer will write a consistent pattern
coding c such that p = p(c) which is accepted by the working tape of MSIM if
and only if p ∈ p(C) (as C is maximal). By considering a path which has length
at least two times the running time of all the other algorithms, this eventually
happens. Conversely, if p /∈ p(C), as p(C) is closed by extensions, the acceptance
of any partial coding c′ would mean that p ∈ p(C), therefore, the machine never
accepts.

Corollary 3.5. A subshift X ⊂ AG is G-effectively closed if and only if there
exists a G-recursively enumerable set F ⊂ A∗G such that X = XF .
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Proof. As X is G-effectively closed, the set of forbidden pattern codings C can
be chosen to be maximal. This in turn gives a maximal set of forbidden patterns
p(C) which is closed by extensions. Theorems 3.3 and 3.4 imply the result.

Let HALTG = {〈T 〉 | T is a G-machine which accepts the empty input}.

Corollary 3.6. Let G be an infinite group. HALTG is WP(G)′-hard, that is, it is
at least as hard as the halting problem for Turing machines with oracle WP(G)

Proof. Let T be a Turing machine with oracle WP(G). Consider the construction
from Theorem 3.4 without the Visit and Auxiliary tapes. Thus, there is only
the tape which searches the infinite path, the oracle layer, and the layer which
simulates T (now only on empty input). It is clear that this machine accepts
the empty input (and all inputs) if and only if T accepts the empty input.

Corollary 3.5 implies that G-effectively closed subshifts can be defined either
by oracle machines or by G-machines. This nice characterization allows us to
simulate Turing machines in groups which may not even have torsion-free ele-
ments. In what remains of this section we present applications of these machines
both to the domino problem and to construct a simulation theorem.

3.1 Application: A class of groups with undecidable domino
problem

The domino problem of a finitely generated group G is defined as the language
given by the finite sets of pattern codings which give an empty subshift. Infor-
mally:

DP(G) = {〈F〉 | |F| <∞, XF = ∅}

,
where 〈F〉 is a codification of the finite set of forbidden patterns F . Another

related notion is the origin constrained domino problem, where a symbol in the
alphabet is fixed to appear at the origin.

OCDP(G) = {(a, 〈F〉) | |F| <∞, XF ∩ [a]1G
= ∅}

It is known that both problems are decidable in Z [19] but undecidable in Zd

with d > 1 [6, 28]. Clearly, the decidability of OCDP(G) implies the decidability
of DP(G) as it would suffice to run the algorithm for every symbol of the finite
alphabet. So far, we do not know any group where the decidability of these two
languages differ. In this section we use G-machines to exhibit a class of groups
where these problems are undecidable.

Theorem 3.7. Let G be an infinite group with the special symbol property.
Then:

• The origin constrained domino problem OCDP(G× Z) is WP(G)′-hard.
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• For any non-trivial finite group H, the domino problem for (G × Z) ∗H
is WP(G)′-hard.

Proof. Let G = 〈S〉 and T a G-machine with tape alphabet Σ = {t, 0, 1} and
transition function δ : Σ×Q→ Σ×Q×S. Denote the states by Q = {1, . . . , k}
where the initial and final states are 1 and k respectively. Finally, let A =
Σ× {0, . . . , k} and Z = ΣG ×X≤k ⊂ AG where:

X≤k = {x ∈ {0, . . . , k}G | 0 /∈ {xg, xh} =⇒ g = h}.

The subshift Z consists on configurations where there is at most one appear-
ance of a state in Q. As G satisfies the special symbol property, this is a sofic
subshift.

We are going to define an extended sofic subshift Y ⊂ AG×Z which simulates
the dynamical behavior of T . We do this by defining its set of forbidden patterns
as F = A1 ∪A2 ∪A3 ∪A4 where these four sets are defined as follows:

• Let F ⊂ G. For p ∈ AF we define its immersion γ(p) : AF → AF×{0}

where γ(p)(g,0) = pg for every g ∈ F . We define A1 as the immersion of
the forbidden patterns defining Z.

• Consider the support F = {(1G, 0), (1G, 1)}. We define A2 as the set of
p ∈ AF such that p(1G,0) = (a, 0) and p(1G,1) = (b, ·) with b 6= a.

• Let δ(a, q) = (b, r, s). We define A3 = B1 ∪ B2 where these sets are the
following:

– Let F = {(1G, 0), (1G, 1)}, we define B1 as the set of p ∈ AF such
that p(1G,0) = (a, q) and p(1G,1) = (c, ·) with c 6= b.

– Let Fs = {(1G, 0), (s, 1)}, we define B2 as the set of p ∈ AFs such
that p(1G,0) = (a, q) and p(s,1) = (·, t) with t 6= r.

• We define A4 to be the patterns with support {(1G, 0)} containing the
symbol (a, k) for some a ∈ Σ.

This subshift is clearly sofic, as its forbidden patterns are the immersion of
the forbidden patterns of a sofic subshift plus a finite amount of new forbidden
patterns. The set A1 just forces every coset (G, z) to contain a configuration
of Z. Said otherwise, at most one head. A2 forces that whenever a state 0
appears then the symbol must remain unchanged. A3 is composed of two rules
related to the head: the first, B1 forces the symbol in the head position to
correspond to the one from the rule δ. B2 forces the movement of the head to
correspond to the rule δ. Finally, A4 forbids the appearance of the final state k.

Consider the coding ρ : ΣG ×G×Q→ Z given by ρ(x, h, q) = (x, z), where
zh = q and z|G\{h} ≡ 0. This coding takes a configuration in the moving tape
model and represents it as an element of the subshift Z. The rules defining Y
force that if y ∈ Y and y(g,n) = ρ(x, h, q)g for all g ∈ G, then for all m ≥ 0 one
has y(g,n+m) = ρ(Tm(x, h, q))g.
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Using this previous relation and the fact that appearances of the final state
are forbidden, we obtain that there exists y ∈ Y such that ∀g ∈ G then y(g,0) =
ρ(tG, h, 1) for some h ∈ G if and only if T does not accept the empty input.

Let Xaux ⊂ {0, ?}G×Z be the SFT defined by the following forbidden pat-
terns: for every s ∈ S the pattern p ∈ {0, ∗}{1H ,s} such that p1H

= ? but ps 6= ?
is forbidden. This basically means that if a ? appears in a position, then the
whole G-coset contains a ?.

Now we have all the elements for the final construction: let Xfinal ⊂ AG×Z×
Xaux defined by the following forbidden patterns:

• The immersion of all forbidden patterns in Y .

• A ? in Xaux must always be accompanied by (t, j) for some j ∈ {0, . . . , k}.

This subshift is again sofic, since its forbidden patterns are the immersion
of those of Y and a finite number of forbidden symbols in the alphabet. The
role of Xaux is to force a G-coset to represent the machine T starting on empty
input. We claim that Xfinal ∩ [((t, 1), ?)]1G

= ∅ if and only if T accepts the
empty input.

Indeed, let x ∈ Xfinal ∩ [((t, 1), ?)]1G
. By using the definition of Xaux,

the local rule of Xfinal and the characterization of Y , we deduce that for all
g ∈ G \ {1G} then x(g,0) = ((t, 0), ?). Therefore the projection π1 to the
first coordinate of x would satisfy π1(x)|(g,0) = ρ(tG, h, 1)g. This implies that
π1(x)|h(g,k) = ρ(Tm(tG, h, 1))g for all m ≥ 0. As the final state k can not
appear, we conclude that T does not accept the empty input. Conversely, if T
does not accept the empty input we can construct a valid point as follows: let
y ∈ Y such that ∀n ≥ 0 y(g,n) = ρ(Tn(tG, 1G, 1)) and ∀m ≤ −1 y(g,m) = (t, 0).
This is a valid point of Y as T does not accept the empty input. We can
therefore define x ∈ Xfinal as follows:

x(g,k) =

{
(y(g,0), ?), if k = 0
(y(g,k), 0), if k 6= 0

which satisfies x ∈ Xfinal ∩ [((t, 1), ?)]1G
.

Note that the previous argument implies that if ((t, 1), ?) appears in a con-
figuration, it can only do so in at most one position. Therefore, we can consider
a 1-block SFT extension of Xfinal with at most one preimage a of ((t, 1), ?).
This is a G × Z SFT such that X ∩ [a] = ∅ if and only if T accepts the empty
input. Therefore OCDP(G × Z) is at least as hard as the halting problem for
G-machines which in turn is WP(G)′-hard by Corollary 3.6.

Let H be a finite group and consider the subshift Yaux ⊂ {0, ∗}(G×Z)∗H

defined by the following forbidden patterns: p ∈ {0, ∗}H such that |{h ∈ H |
ph = ∗}| 6= 1. This means that every coset of H must contain exactly one
appearance of ∗. In the following, we choose a configuration y ∈ Yaux every
(G× Z)-coset contains at most one occurrence of ∗. Let h̄ ∈ H \ {1H} and w a
reduced word representation of an element in (G× Z) ∗H. Define
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yw =

{
1, if w ends by h̄
0, otherwise.

By using Yaux as an extra SFT layer, we can force the appearance of ((t, 1), ?)
every time an ∗ appears, and immerse the patterns of Xfinal into (G × Z) ∗H.
By definition, each configuration in Yaux has at least one coordinate marked by
an ∗, and y has also the property that each (G×Z)-coset contains at most one
occurrence of ∗. We can thus repeat the previous argument to conclude that
DP((G× Z) ∗H) is WP(G)′-hard.

The role of the free product with H is to ensure that the machine starts
the calculation over an empty tape at some place in every configuration. In the
classical construction of Robinson [28] in the plane, this property is obtained
using a hierarchical construction. We do not know if a generalization of this
construction can be done in general groups.

Notice also that this result does not give new groups with undecidable
domino problem when G has at least one non-torsion element. Indeed, if Z
embeds into G then Z2 also embeds into G× Z. The advantage of this method
using G-machines is that it allows to give a result over torsion groups such as
the Grigorchuk group [14],

3.2 Application: A simulation theorem with oracles

In [4, 12] it is shown that every effectively closed subshift on Z can be ob-
tained as the projective subdynamics of a sofic subshift on Z2. As Propositions
2.9 and 2.13 show, an analogue can not hold for arbitrary G-effectively closed
subshifts when G is recursively presented, as the projective subaction would
necessarily be effectively closed. Nevertheless, using G-machines, we can obtain
a similar result if we allow the addition of a particular subshift as an universal
oracle to our construction. Formally we show:

Theorem 3.8. For every finitely generated group G, there exists a G × Z-
effectively closed subshift U ⊂ B̃G×Z such that for every G-effectively closed
subshift X ⊂ AG which contains a uniform configuration (∃ā ∈ A such that
āG ∈ X), there exist an alphabet B, a finite set of forbidden patterns F on

alphabet B̃ × B and a 1-block code φ such that:

πG

φ
(U × BG×Z) \ ⋃

p∈F,h∈G×Z
[p]h

 = X.

In order to define U we need to introduce some technical constructions.
Let (X, d) be a metric space and D ⊂ X. The packing radius of D is rD =
1
2 inf {d(x, y) | x, y ∈ D,x 6= y} and the covering radius of D is given by cD =
sup {d(x,D) | x ∈ X}. Notice that for each pair of different x, y ∈ D, we have
B(x, rD) ∩B(y, rD) = ∅ and

⋃
x∈D B(x, cD) = X. A set with non-zero packing
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radius and finite covering radius is said to be Delone. Notice that by definition
a Delone subset of a non-empty set must be non-empty.

We define Yn ⊂ {0, 1, 2}G as the subshift defined by the following set of
forbidden patterns Fn:

• All p ∈ {0, 2}B(1G,4n).

• p ∈ {0, 1, 2}B(1G,n) such that p1G
= 1 and there exists g ∈ B(1G, n)\{1G}

with pg 6= 2.

• p ∈ {1, 2}F where F is a connected component of Γ(G,S) and there exist
g1, g2 ∈ F, g1 6= g2 such that pg1 = pg2 = 1.

That is, Yn is the set of configurations y where, if we denote the set of
positions marked in y by a 1 by Dy, then Dy forms a Delone set with rDy

≥ n
and cDy

≤ 4n. Also, each 1 is surrounded by a ball of size at least n marked by
2’s and there is no path of 2’s connecting two adjacent 1s. See Figure 5 for an
example in Z2.

Figure 5: Example of a configuration of Y2 for the group Z2 with the canonical
generators. The symbols 0, 1 and 2 are represented by the colors , and
respectively.

Claim. ∀n ≥ 1, Yn is a non-empty, G-effectively closed subshift.

Proof. The set Fn can easily be recognized by a Turing machine with oracle
WP(G), so Yn is G-effectively closed. For the non-empty part, we claim a Delone
set D satisfying rD ≥ 2n and cD ≤ 4n always exists. Indeed, Consider the
restriction to B(1G, k) for some k ∈ N and choose a maximal set Dk ⊂ B(1G, k)
with rDk

≥ 2. If cDk
> 4n then the set K := {g ∈ B(1G, k) | d(Dk, g) > 2n}

is not empty and Dk can be extended by an element of K, contradicting its
maximality. Thus cDk

≤ 4n. Now, consider the sequence of indicator functions
of (Dk)k∈N and choose an accumulation point. This limit is the indicator func-
tion of a Delone set D which satisfies the aforementioned property. Now, define
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y ∈ {0, 1, 2}G as:

yg =


1 if g ∈ D
2 if 0 < d(g,D) ≤ n
0 else

As cD ≥ 2n and n ≥ 1 it follows that there is no path consisting of 2’s between
a pair of 1’s. It follows that y ∈ Yn.

Consider a G-machine T with alphabet Σ and set of states Q whose head
never leaves a bounded support F . Using a pigeonhole argument, it can be
shown that if it accepts, it must do so before |Q| · |F | · |Σ||F | steps. Consider the
function time : N→ N given by time(n) = nn

n+n+1. It is clearly a computable
function which satisfies the following property: for any G-machine T , there
exists N ∈ N such that for every n ≥ N , if T accepts a pattern p without leaving
the support B(1G, n) then it does so before time(n) steps. Indeed, we can always
bound B(1G, n) ≤ |S|n and thus an upper bound for the maximum number of
steps without leaving the support B(1G, n) is given by |Q|·|S|n·|Σ||S|n . Choosing
N ≥ max{|Q|, |S|, |Σ|} we get that ∀n ≥ N the number of steps is bounded by
nn

n+n+1.
We are going to construct a Z-subshift Xtime which encodes the function

time and instructions for a Turing machine in a convenient way. Consider the
alphabet AX = {•, ?,⊕,B} ∪ S. Let x̃ ∈ AN

X be the infinite concatenation of
{wn}n∈N, where w0 = ? and for n ≥ 1 the word wn is defined as follows. Let
u1, . . . , uk(n) be the lexicographic enumeration of all words in S∗ of length at
most 4n. Then,

vj,n = uj B •time(n)u−1
j , and wn = ⊕v0,nv1,n, . . . , vk(n),n

Example Let S = {a, a−1} and suppose just for this example that the words
are enumerated up to length n instead of 4n, and that time(1) = 2 and
time(2) = 3. Then the first symbols of x̃ would be:

x̃ = ?⊕ B • • a B • • a−1a−1 B • • a⊕ B • • •a B • • •a−1a−1 B • • •a
aa B • • •a−1a−1aa−1 B • • •aa−1a−1a B • • •a−1aa−1a−1 B • • •aa · · ·

With the infinite word x̃ in hand, we define Xtime ⊂ AZ
X as the subshift such

that if x ∈ X and xn = ?, then for all m ≥ 0 we have xn+m = x̃m. Clearly the
forbidden patterns of Xtime can be recognized by a Turing machine with oracle
WP(G).

Let X̃time ⊂ AG×Z
X be the periodic extension of Xtime. That is, for all

t̃ ∈ X̃time and g ∈ G we have t̃(g,k) = t̃(1G,k) and the configuration x ∈ AZ
X

defined by xk = t̃(1G,k) belongs to Xtime.

Finally, we define U ⊂ X̃time × {0, 1, 2}G×Z by a set of forbidden patterns.
In order to describe this set, we denote by π1 and π2 the projections to the first
and second coordinate respectively.
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• Let (kn)n≥1 be the sequence of positions in x̃ such that x̃kn = ⊕. Recall
that Fn denotes the set of forbidden patterns defining Yn. We forbid all
patterns p with support F 3 (1G, 0) such that π1(p)(1G,0) = ? and for
which there is n ∈ N such that the restriction of π2(p) to Fn = {(g, kn) |
(g, kn) ∈ F} contains a pattern in Fn.

• We forbid all patterns p with support F = {(1G, 0), (1G, 1)} such that
π1(p)(1G,1) ∈ {B, •} and π2(p)(1G,1) 6= π2(p)(1G,0).

• For s ∈ S, we forbid all patterns with support Fs = {(1G, 0), (s, 1)} such
that π1(p)(s,1) = s and π2(p)(s,1) 6= π2(p)(1G,0).

In other words, these patterns use the information on the first coordinate
to force a structure on the second one as follows: The n-th coordinate marked
with ⊕ after a ? must carry a configuration y ∈ Yn in the second coordinate.
The symbols B and • in the layer (G,m) just copy the configuration in the layer
(G,m − 1). The symbols from S shift the whole configuration by s ∈ S. See
Figure 6.

Claim. U is a non-empty, G× Z-effectively closed subshift.

Proof. The first set of forbidden patterns is recursively enumerable with oracle
WP(G) as (kn) is computable and Yn is G-effectively closed (the Turing machine
accepting patterns of Yn can be constructed universally for all (Yn)n∈N such that
it receives n ∈ N, p ∈ {0, 1, 2}G as an input and accepts if [p] ∩ Yn = ∅). The
rest of the forbidden patterns is a finite set, therefore U is a G × Z-effectively
closed subshift. It is non-empty as each Yn is non-empty.

Now that the description of U is done, we are ready to show Theorem 3.8.

Proof. Let A be the alphabet of X and T be the G-machine which on entry
p ∈ A∗G accepts if and only if [p] ∩X = ∅. Using Mvisit from Theorem 3.4 we

can construct from T a machine T̃ working on an infinite configuration whose
description is as follows.

The machine T̃ contains two tapes: a reading tape which is never modified
and initially filled with symbols from A, and a working tape. The machine T̃
iterates infinitely for n = 1, 2, . . . as follows: for n ∈ N, the machine iterates in
order k = 1, 2, . . . , n the following procedure:

• Copy the pattern appearing in the reading tape in the support B(1G, k)
around the head to the working tape.

• Run T over this pattern n steps. If T accepts at some point, then T̃
accepts.

• Erase everything in the working tape and go back to the starting position.
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⊕ yn ∈ Yn

B yn

s σs(yn)

• σs(yn)

s1 yn

⊕ yn+1 ∈ Yn+1

...

?

Figure 6: A typical configuration in U ⊆ ({•, ?,⊕,B} ∪ S)×{0, 1, 2}G×Z. Sym-
bols on the left side of the picture correspond to the first coordinate of the
configuration, and the part in {0, 1, 2}G×Z is on the right. On the example, the
bottom ⊕ is the n-th appearence after ?.

Let Σ 3 t be the alphabet of the working tape of T̃ and let its set of states
be Q = {1, . . . , k}, where 1 is the initial state and k the only accepting state.
We proceed similarly to Theorem 3.7 by modeling this machine as a subshift on
G×Z. We define the alphabet B = A×Σ×{0, . . . , k}. Here A is the alphabet
of X, Σ is the alphabet of the working tape and {0, . . . , k} codes the state of
the head of a G-machine, 0 coding the absence of a head. In order to describe
the finite set of forbidden patterns we introduce some notation. Recall that U is
defined over the alphabet {•, ?,⊕,B}× {0, 1, 2}. Therefore the set of forbidden
patterns F is defined over the alphabet AFinal where:

AFinal = {•, ?,⊕,B} × {0, 1, 2} × A× Σ× {0, . . . , k}.

We denote the projection to each of these five coordinates by π1, . . . , π5 re-
spectively. The forbidden patterns in F belong to four categories: configuration
patterns, starting patterns, ending patterns and transitions patterns.
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The configuration patterns force that every Z-coset sees the same symbol in
the third coordinate. Said otherwise, the third coordinate is invariant under the
action of Z. To obtain this we forbid all p with support {(1G, 0), (1G, 1)} such
that π3(p(1G,0)) 6= π3(p(1G,1)).

The starting patterns are defined by forbidding symbols in AFinal in a way
such that every time the symbol B appears in a G-coset, then the working
tape symbols are empty (that is, marked by t) and all positions marked by 1
carry a head with the initial state. Formally, we force that all a ∈ AFinal such
that π1(a) = B must also satisfy π4(a) = t. Furthermore, if π2(a) = 1 then
π5(a) = 1 and if π2(a) ∈ {0, 2} then π5(a) = 0.

The ending patterns are described by forbidding the appearance of any
symbol containing the accepting state k. Formally, every symbol a ∈ AFinal

π5(a) = k is forbidden.

The transition patterns describe the evolution of T̃ after a symbol B. Each
time the symbol • appears it marks that the G-machines must execute one step
with respect to the previous G-coset. The description of these patterns is the
same as the one done in Theorem 3.7 with one difference. We update the tape
according to the transition function of T̃ only if a head is lying in a position not
marked by a 0 in the second coordinate. If this happens, then the tape does not
evolve.

Finally, we describe the 1-block code φ. Let ā ∈ A be a symbol such that
āG ∈ X. We define a local function Φ : AFinal → A by:

Φ(a) =

{
π3(a) if π1(a) = ?

ā otherwise

and we set φ(x)(g,k) = Φ(x(g,k)).

Let x ∈ AG be the G-projective subdynamics of φ(z), where z ∈ U × BG×Z
and avoids all forbidden patterns in F . By definition of U , as X̃time is a periodic
extension, each G-coset of z is either completely marked by ? or does not contain
a ? at all. If this last case happens, then x = āG ∈ X. Otherwise π1(z)(g,0) = ?
and thus by definition of U we have π1(z)(g,k) = x̃k. Suppose x /∈ X, then there
exists a ball Bn and p ∈ ABn such that [p]∩X = ∅. This implies that T accepts

the entry p in a finite number of steps nT . By definition, T̃ also accepts all
configurations in [p] in a number of steps bounded by a function of nT . Let Bm

be a ball such that T̃ never leaves Bm when working on [p] (one could take for
instancem as the bound on the number of steps). LetN ≥ max{|Q|, |S|, |Σ|,m}.
Then we know that T̃ starting on position 1G would accept an entry in [p] in
less than time(N) steps. Consider kN the position of the N -th appearance of ⊗
in x̃. By definition we know that in the G-coset in kN , the second coordinate
contains a configuration y ∈ {0, 1, 2}G such that y ∈ YN . Therefore, there exists
g ∈ B(1G, 4N) such that yg = 1. As each word of length smaller or equal to 4N
appears, then a codification of g−1 eventually does. Using the rules of U , this
means that after this word the next coset is marked by B, and the configuration
in the second coordinate is y′ = σg−1(y) thus y′1G

= 1. By definition of x̃, the
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next time(N) cosets are marked by • thus simulating T̃ for that number of steps
as long as the head does not see a 0 in the second coordinate. As there is a
ball of size at least N around the identity marked by a symbol 2, then T̃ is run
for time(N) steps, thus reaching the accepting state k which is forbidden. This
contradicts that x /∈ X.

Conversely, each x ∈ X can be obtained by constructing a configuration
z such that π3(z)(g,k) = xg and π1(z)(g,0) = ?. By definition of T̃ and similar
arguments as above, this configuration can be completed for all g ∈ G and k ≥ 0
without producing forbidden patterns. For k ≤ 0 we can just fill the coordinate
(g, k) with the symbol (•, 0, xg,t, 0) without creating forbidden patterns.

We remark that the condition that X must contain a uniform configuration
can easily be replaced by weaker statements. For example, it suffices to contain
a periodic configuration or more generally, a G-SFT Y such that Y ⊂ X. In
the proof above it would suffice to add a Z-periodic extension of Y as an extra
coordinate and change the definition of the 1-block code φ such that it projects
to this coordinate instead of ā.

Another interesting aspect of this construction is that even if the subshift U
is G × Z-effectively closed in general, it can sometimes be forced to be a sofic
subshift. For example, if G = Zd then Xtime is an effectively closed Z-subshift
and thus its periodic extension is a sofic Zd+1-subshift by [4, 12]. Also, we
remark that in the second coordinate of U , it suffices to contain a non-empty
subsystem of Yn in each G-coset. For Zd it is not hard to produce sofic subshifts
with those properties. For example, the subshift shown in Figure 7 in which
each horizontal strip contains a periodic configuration which doubles its period
when advancing vertically can be easily shown to be sofic and adapted by adding
extra symbols to produce a suitable subsystem of the second layer of U .

Figure 7: A sofic subshift which doubles its period.
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