
École Normale Supérieure de Lyon

Master 2 Rapport

Tilings on different structures: exploration
towards two problems

Author:

Sebastián Barbieri

Supervisor:

Dr. Nathalie Aubrun

A report submitted in fulfilment of the requirements

for the degree of Master 2

in the

MC2

LIP

June 2014

Research Group Web Site URL Here (include http://)

ÉCOLE NORMALE SUPÉRIEURE DE LYON

Abstract

École Normale Supérieure de Lyon

LIP

Master 2

Tilings on different structures: exploration towards two problems

by Sebastián Barbieri

We study the problem of tiling structures which are different from the usual group Zd. In the first part

we show a class of finitely generated groups for which the G-subshift X≤1, which consists on the functions

from G to {0, 1} so that at most one g ∈ G can map to 1, is not of sofic type. In the second part we

study tilings over structures which are not groups and are generated by a special type of substitution.

We define the emptiness problem and the possibility to simulate more complex substitutions in these

structures and we show results in that direction for two specific examples. We end that section by

constructing a partial order which under the assumption of a property preserves decidability of the

emptiness problem monotonically.

Faculty Web Site URL Here (include http://)

Acknowledgements

First of all I would like to address my special gratitude to Nathalie Aubrun and Mathieu Sablik for

their continuous support during my stay in Lyon and the enormous amount of help they gave me in

discussing research topics and writing this rapport.

I would also like to thank Stéphan Thomassén for agreeing to discuss random topics which sprout when

researching for this rapport and to François Dahmani who drew our attention back to the groups with

unsolvable word problem and gave great ideas in that regard.

I also want to express my sincere gratitude to the MC2 team for giving me such a good welcome in

France and for their huge support in the day to day struggles of a non-native French speaker.

Finally, I would like to thank Michael Schraudner for showing me into the field of symbolic dynamics

and for proposing me to apply to the scholarship to do a stage in France. In that regard I also want to

express my gratitude to the Labex MiLyon scholarship for funding my stage in Lyon.

ii

Contents

Abstract i

Acknowledgements ii

Contents iii

Introduction 1

1. Preliminaries 2

1.1 Group theoretic concepts . 2

1.2 Computational concepts and the word problem for groups 3

1.3 Symbolic dynamics concepts . 3

2. A class of finitely generated groups where the subshift X≤1 is not sofic 5

2.1 The subshift X≤1 . 6

2.2 A generalization of the previous result . 9

3. Tilings of graphs generated by self-similar substitutions 11

3.1 First definitions . 11

3.2 The emptiness problem and the Mozes property . 13

3.3 A partial order preserving decidability monotonically . 18

Conclusions 19

Appendix 21

Bibliography 31

iii

Introduction

Recent results in the theory of symbolic dynamics have found deep relations between dynamical proper-

ties of subshifts of finite type and computation theory. The first results in this direction were the studies

by Wang where he asked about the decidability of the question if a set of tiles which can be assembled

together by satisfying a finite number of local rules can tile the whole plane. This question became

known as the domino problem and Wang proved that it was decidable if every Wang tiling1 admitted

a periodic point [Wan60]. The previous assumption about the existence of periodic points was called

Wang’s conjecture and it was proven to be false by Berger [Ber66] who constructed an aperiodic set of

20426 Wang tiles and also provided a proof of the undecidability of the domino problem. Subsequently,

different authors have simplified Berger’s proof yielding very elegant structures of Z2-SFT without pe-

riodic points, such as the Robinson tiling [Rob71] and more recently and in a different perspective the

Kari-Culik tiling which contains only 13 tiles [Kar96, Cul96].

Other results exhibiting links between dynamical properties and computation have appeared lately. One

of the most important in this sense is the result by Hochman and Meyerovitch [HM10] which characterizes

the entropies of Zd-subshifts of finite type as the numbers which are right recursively enumerable.

Another is a result which shows that every subshift defined by an effective set of forbidden patterns

can be realized in the rows of a sofic Z2-subshift. First proven by Hochman [Hoc09] in Z3 and then

generalized by Aubrun and Sablik [AS13] and Durand, Romashchenko and Shen [DRS10]. Doubtlessly

this relationship between dynamical properties of subshifts defined over groups and computational theory

is one of the reasons several researchers interested in symbolic dynamical systems are facing the problems

from a computational perspective.

Even in the light of recent discoveries, still not much is known about the dynamics of Zd-subshifts, and

even less is known for the more general case of G-subshifts when G is an arbitrary group. Even the

problem of defining consistent dynamical invariants such as the entropy is not an trivial task in this

general setting. There is a definition for entropy using Følner nets for amenable groups [CSC09] and a

very recent extension for sofic groups [Bow10]. In spite of these difficulties, recent results suggest that

for the case of general groups many properties could also be linked to computational related ideas. This

rapport is dedicated to the study of this general case under the computational scope and to tilings of

structures which are not groups but which can also be modeled as subshifts defined by a finite amount

of information.

In the first part of this report we speak about an important class of groups such that the G-subshift

which is defined over the alphabet A = {0, 1} and admits at most one occurrence of the symbol 1 in

any point is sofic. These subshifts are known to have applications in geometric group theory [DY02].

1A Wang tiling is a finite set of square tiles with markings on each border such that two tiles can be assembled together
if they math in the border.

1

Despite having the property of being a sofic subshift in a wide class of groups we show that this property

fails for the class of finitely generated and recursively presented groups which have undecidable word

problem, thus we use a computational approach to discover a class of examples which answer an open

problem in symbolic dynamics. We also explore a natural generalization of this subshift.

In the second part we explore a class of subshifts which can be understood as tilings of graphs generated

by substitutions which can be seen as regular substructures of Zd. We study the decidability of the

emptiness problem, that is, the equivalent formulation of the domino problem in this setting, for such

systems with the hope of building a bridge between the rather complicated dynamics of Z2-subshifts

of finite type and their one dimensional counterparts. We also study if those structures can simulate

substitutions in the sense of the results by Mozes and Goodman-Strauss [Moz89, GS98] and finally we

link those two concepts by means of a theorem which introduces a partial order which monotonically

preserves the undecidability of the emptiness problem under the assumption that the bigger substitution

satisfies a property analogous to the result by Mozes. Special attention is given to two substitutions

which resemble the structures of both the Sierpiński triangle and the Sierpiński carpet.

1. Preliminaries

In this section we define some basic concepts from group theory [Lan02], computation theory [AB09]

and symbolic dynamics [LM95, CSC09] which are needed in order to present our results. As these topics

and related concepts are extensively covered in the previous references, we stick to short definitions and

won’t discuss these concepts beyond necessity.

1.1 Group theoretic concepts

Let G be a group and id be its identity element. let P = 〈S|R〉 be a presentation of G where S is the set

of generators and R the set of relations. The Cayley graph of G generated by P is the directed graph

Γ = (G,E) where the set of vertices is G and the set of arcs is E := {(g, gh) ∈ G2 | g ∈ G, h ∈ S}.

Let G and P = 〈S|R〉 be a presentation of G. For g ∈ G we denote |g|P the function so that |id|P = 0

and |g|P is the smallest length n of a representation g = id ·g(1) ·g(2) . . . g(n) so that ∀1 ≤ i ≤ n, g(i) ∈ S.

If the context is clear we will just write such length as |g|G or |g|. We also define the ball of size n,

Λn = {g ∈ G||g|P ≤ n} which is identified to the portion of the Cayley graph of G generated by P which

contains the identity and every other element at a distance at most n.

A group G is called finitely generated if there exists a presentation P = 〈S|R〉 of G such that |S| <∞,

G is called finitely presented if there exists a presentation P = 〈S|R〉 where both S and R are finite.

Furthermore, a group G is called recursively presented if there exists a presentation P = 〈S|R〉 where S

is countable and R is recursively enumerable, that is, there exists a Turing machine which enumerates

every relation in R. It is straightforward to notice that every finitely presented group is both recursively

2

Section 1. Introduction 3

presented and finitely generated, and every recursively presented group where S is finite is finitely

generated.

1.2 Computational concepts and the word problem for groups

Let A be a finite alphabet, we say a language L ⊆ A∗ =
⋃

n∈NAn is decidable if there exists a Turing

machine such that for every w ∈ A∗ the machine halts on the input word w, and it accepts w if and

only if w ∈ L. We say that L is recursively enumerable if there exists a Turing machine that enumerates

every element in L, or equivalently, a machine such that if w ∈ L the machine running on input w halts

and accepts, and otherwise it could either halt and reject or it could loop.

Consider a finitely generated group G = 〈g1, . . . , gd|R〉 and g a word in the free monoid M , where

M := {g1, . . . , gd, g
−1
1 , . . . , g−1

d }
∗. We want to address the problem of determining whether two different

words in that monoid represent the same element in the group. That is, if we denote by w1 =G w2 the

property that two words seen as products of elements in G are equal, we want to know if the following

language is decidable:

W := {g ∈M |g =G id}.

This is known as the word problem for groups. Besides the fact that the language above depends

on the representation of a group, the word problem for a given set of generators is equivalent to the

word problem for another set of generators and thus one can speak unambiguously of the property of

having a decidable word problem for a given group. It was shown by Novikov in 1955 [Nov55] that

there are finitely presented groups such that the word problem W is undecidable, a more modern and

compact proof with a smaller example being given by Collins in 1986 [Col86]. Nonetheless, if the group

is recursively presented, then W is recursively enumerable. Indeed, W is the set of words freely equal

to a product of conjugates of the set of relations R and this set can be enumerated whenever R can be

enumerated.

1.3 Symbolic dynamics concepts

Let A be a finite alphabet and G a group. We say that the set AG = {x : G → A} equipped with the

left group action σ : G×AG → AG such that (σg(x))h = xg−1h is the full G-shift.

By taking the discrete topology in A we obtain by Tychonoff’s theorem that the product topology in

AG is compact. This topology is generated by a clopen basis given by the cylinders [a]g = {x ∈ AG|xg =

a ∈ A}. If the group G is countable, then AG is metrizable and the compacity of the product topology

can be proven directly without using Tychonoff’s theorem. In the case of a finitely generated group G,

an ultrametric which generates the product topology is given by d(x, y) = 2− inf{|g|G|g∈G:xg 6=yg}.

AG with the previously defined topology is called a full G-shift. A G-subshift is a subset X ⊆ AG which

is topologically closed and invariant under the shift action: ∀g ∈ G, σg(X) = X.

Section 1. Introduction 4

Let F be a finite subset of G. A pattern P is an element of AF , the set F is called the support or

shape of P and is denoted by supp(P). The set of all patterns1 is A∗ :=
⋃

F⊆G,|F |<∞AF . We say that

the pattern P ∈ AF1 is a subpattern of Q ∈ AF2 (and we write P v Q) if there exists g ∈ G such that

gF1 ⊆ F2 and P = QgF1 , we also say that P is a pattern of x ∈ AG (and we write P @ x) if there exists

n ∈ N such that P v x|Λn .

A G-subshift can be defined also by a set of forbidden patterns F ⊆ A∗, that is, XF := {x ∈ AG|∀g ∈
G,∀S ⊆ G : xg+S /∈ F}. This definition is equivalent to the previous one as the set of points containing

a given pattern can be seen as a cylinder intersection and thus XF =
⋂

g∈G
⋂

P∈F [P]cg where [P]g =

{x ∈ AG|xg+supp(P) = P}.

Let X be a G-subshift. We define the set of globally admissible patterns of X as:

L(X) =
⋃
F⊆G
F finite

LF (X) = {P ∈ A∗|∃x ∈ X : P v x}

where LF (X) := {P ∈ AF |∃x ∈ X : P v x} is the set of globally admissible patterns of shape F of X.

Let X,Y be two G-subshifts over alphabets AX ,AY and F a finite subset of G. We say that φ : X → Y

is a sliding block code if there exists a local function Φ : AF
X → AY such that φ(x)g := Φ(xg+F), that

is denoted φ = Φ∞. A famous theorem by Curtis, Lyndon and Hedlund [CSC09] identifies the class of

sliding block codes with the class of continuous shift commuting functions. We say that a sliding block

code φ is a factor code if it’s surjective, and we say it’s a conjugacy if it’s bijective.

Whenever there is a factor code φ : X → Y we will write X � Y and say that Y is a factor of X and

that X is an extension of Y . Furthermore, if φ is a conjugacy we will write X ' Y and say they are

conjugated. The conjugacy is an equivalence relation, and it preserves most of the topological dynamics

of a system.

If φ : X → Y is a sliding block code defined by a local function Φ : AX → AY then we will say that φ

is a 1-block code. For every sliding block code φ : X → Y it is possible to find a conjugacy ψ : X → X̂

and a 1-block code φ̂ : X̂ → Y such that φ = φ̂ ◦ ψ. This means that for every extension of a given

G-subshift Y we can ask for a conjugate version X̂ of X which extends Y by a 1-block code.

X

X̂ Y

φ
ψ

φ̂

We say that a G-subshift X ⊆ AG is a G-subshift of finite type (G-SFT) if it can be defined by a finite

set of forbidden patterns, that is, |F| < ∞ and X = XF . We say that a G-subshift Y is sofic if there

1The notation A∗ is the same as the one for the set of words over A as this generalizes the idea of finite word to finite
patterns in a group.

exists a G-SFT X and a factor code φ such that φ(X) = Y . The class of sofic G-subshifts is the smallest

class closed under factor codes that contains every G-SFT. Both classes are conjugacy invariants, that

is, the property of belonging to them is preserved under conjugacy.

Let G be a group with a presentation 〈S,R〉, we say a G-SFT is nearest neighbor if every forbidden

pattern P ∈ F has a support supp(P) = {id, g} where g ∈ S. If G is a finitely generated group, then

every G-SFT admits a conjugated version which is nearest neighbor.

2. A class of finitely generated groups where the

subshift X≤1 is not sofic

We have recalled results which say that even when dealing with well understood groups such as Z2 the

properties of sofic subshifts defined over those groups can be quite complicated and are still not well

understood. A different way of dealing with the properties of subshifts in the general setting of arbitrary

groups is to take a Z-subshift X which is already well understood, generalize its definition to any group

G and then pose the following question: for which groups is a dynamical property of X still valid?

For example, consider the even shift in Z, Seven := {x ∈ {0, 1}Z|∀n ∈ N0 : 10n+11 6v x}, that is, the

subshift which contains bi-infinite sequences which only admit an even number of zeros between two ones.

One natural way to generalize this subshift to arbitrary finitely generated groups (the generalization is

for any group, but makes sense mainly in this case) is to take a group presentation P = 〈S,R〉 and forbid

every pattern whose support is a connected component of the Cayley graph of P such that it contains

a connected component of zeros with an odd number of vertices and that component is surrounded by

ones in every direction allowed by S. It is easy to show that Seven is a sofic Z-subshift, but it is quite

interesting the fact that for every finitely generated group G and any presentation of such group given

by a finite number of generators, the generalization of Seven is a sofic G-subshift too. A proof of this

fact is presented in the appendix, see theorem A.1.

While the proof for the case of Seven is straightforward, the same definition but with an odd number of

zeros, that is, the generalized odd shift Sodd, is a much harder case. While the one dimensional case is

trivially sofic and the Z2 case has already been proven to be sofic by Julien Cassaigne (unpublished),

The Zd case remains an open problem. The main obstruction to making a proof similar to the one given

for Seven is that it has been proven impossible to realize as a sofic subshift in Zd with d ≥ 3 the subshift

in which every finite component has a special marked coordinate, and thus it is impossible to construct

a tree with a special marked root in those components. Another reason is that in the even case pasting

two components with an even number of zeros yielded another component with the same property, while

that is no longer true for odd components.

5

Section 2. A class of groups where X≤1 is not sofic 6

2.1 The subshift X≤1

The same question as in the previous section can be asked for subshifts whose generalizations are even

easier to describe. Let G be a group and consider the G-subshift defined by:

X≤1 = {x ∈ {0, 1}G| |{g ∈ G : xg = 1}| ≤ 1}.

That is, the set of maps from G to {0, 1} where at most one coordinate can be assigned the symbol 1.

The motivation for working with this particular subshift arises both for its simplicity (aside from the

even shift, it’s one of the first examples one would come up with if asked to think about a sofic Z-subshift

which is not a Z-SFT) and the fact that it has applications in geometric group theory. In fact, in a paper

by Dahmani and Yaman [DY02], some results were proven about the boundary of relatively hyperbolic

groups which depend on some groups having the property that X≤1 is sofic. Surprisingly, there is no

complete characterization of the class of groups for which X≤1 a sofic G-subshift and the existence of

any finitely generated group not satisfying the property remained an open problem. Regardless of that,

there are a lot of stability results which show that the class is sufficiently large.

Definition 2.1. We will say that G satisfies the special symbol property if X≤1 is a sofic G-subshift.

In the next proposition, we prove that in order to satisfy the special symbol property, a group must be

finitely generated. In consequence, from this point forward we only consider groups which fall into that

category.

Proposition 2.2. Let G be a group that satisfies the special symbol property, then G is finitely generated.

Proof. Let X � X≤1 be an SFT extension obtained by a 1-block code and defined by a finite set of

forbidden patterns F such that X = XF . Let S =
⋃

P∈F supp(P) be the union of the support of every

pattern in F , which is finite because it’s the finite union of finite sets. We claim that S is a generating

set for G. Denote by 〈S〉G the set of elements of G generated by S and suppose by contradiction that

there exists g ∈ G such that g /∈ 〈S〉G, then 〈S〉G ∩ g〈S〉G = ∅. Now, take preimages x(id), x(g) ∈ X of

the point which has exactly a symbol 1 in positions id and g respectively, and consider:

xh =

x
(id)
h , if h ∈ 〈S〉G

x
(g)
h , if not.

We note that the image of x contains exactly two symbols 1 on positions id and g and thus it doesn’t

belong to X≤1, but x ∈ X, because it doesn’t contain any forbidden pattern P ∈ F . If it did, the

appearance of P must contain elements from both 〈S〉G and G \ 〈S〉G and that is absurd as S contains

supp(P). This yields the desired contradiction.

Proposition 2.3. The class of finitely generated groups with the special symbol property satisfies the

following statements.

Section 2. A class of groups where X≤1 is not sofic 7

1. The special symbol property is true for any finite group.

2. The special symbol property is true for Z.

3. The free group Fk of rank k ∈ N satisfies the property.

4. The special symbol property is stable under direct products, that is, if X≤1 is a sofic subshift for

the groups G1 and G2, then it is also sofic for the group G1 ⊕G2.

5. The special symbol property is satisfied by every finitely generated abelian group.

The proof for these basic properties can be found in the appendix, see proposition A.2. Other properties

which pertain this class of groups are proven in [DY02]. We present the results here just to show that

the class is not reduced to the trivial cases presented above.

Proposition 2.4. The following statements about finitely generated groups are true:

1. If a group G splits in a short exact sequence 1→ N → G→ H → 1 and both N and H satisfy the

property, then G also does.

2. Let H ≤ G be a subgroup with [G : H] <∞, then G has the special symbol property if and only if

H has the special symbol property.

3. The special symbol property is true for hyperbolic groups.

4. Any poly-hyperbolic group satisfies the special symbol property.

Despite having all these properties, the class of groups satisfying the special symbol property is not the

whole class of finitely generated groups. In this section we show a class of finitely generated groups

which do not satisfy the property.

Theorem 2.5. For any group G which is finitely generated, recursively presented and whose word

problem is undecidable, the G-subshift X≤1 ⊆ {0, 1}G is not sofic.

Before starting the proof it is good to state the following remark: if we have two finitely generated

groups G1 and G2 generated by the same set of generators which are defined by maximal sets R1 and

R2 of element identifications respectively, that is, sets of pairs {g, g′} where g, g′ are words in the free

monoid of generators that represent the same element in the group, then if R1 ⊆ R2 and we have defined

subshifts over G1 and G2 given by an alphabet A and the same finite set of forbidden patterns F then

every valid tiling of G2 is a valid tiling of G1. Indeed, a tiling in any such group G is actually a tiling

of the free group (with rank the number of generators of the group) together with the restriction that

if (g =G g′) then the positions g and g′ must carry the same symbol in every valid tiling.

Proof. We proceed by contradiction by showing that if X≤1 is sofic then the word problem is decidable.

Suppose that X≤1 ⊆ {0, 1}G is sofic, then there exists an SFT extension φ : X � X≤1. Furthermore,

Section 2. A class of groups where X≤1 is not sofic 8

by choosing a conjugate version of X, one can suppose that φ = Φ∞ is a 1-block code where the special

symbol 1 has just one preimage under Φ and (as G is a finitely generated group) X is a nearest neighbor

G-SFT. Thus the SFT extension X has a special symbol (which we will also call 1 = Φ−1(1)) that can

appear at most once in x for every x ∈ X. Let A be the alphabet of X and L(X) the set of all globally

admissible patterns.

Let G be generated by the set S := {g1, . . . , gd}. The proof relies on the following remark: let g ∈
{g1, . . . , gd, g

−1
1 , . . . , g−1

d }
∗. We have that g =G id ⇔ Π ∈ L(X), where Π ∈ A{id,g} is the pattern such

that Πid = 1, Πg = 1.

We claim that Algorithm 1 decides if Π ∈ L(X).

Algorithm 1
Input: 〈S,M, g〉, where S is a finite set, M is a Turing machine which enumerates a set R such that
G = 〈S,R〉 and g is the word for which we want to know whether g =G id.
Output: True if g =G id and False if g 6=G id.

1: T ← R(M) . T is the machine which enumerates all identifications given by R, that is, generates a
maximal list of pairs {g1, g2} such that g1 =G g2.

2: Rel,Θ,Γ← ∅
3: j ← 0
4: while True do
5: Γ← Λ|g|+j . Λ|g|+j is the ball of size |g|+ j of F|S|.

. F|S| is the free group on |S| generators.
6: Rel← Rel ∪ T (j) . T (j) = {g1, g2} is the j-th output of T .
7: if T (j) = {id, g} then
8: return True
9: end if

10: Θ← ∅
11: for x tiling of Γ by rules of X that respects Rel and Π do
12: Θ← Θ ∪ x
13: end for
14: if Θ = ∅ then
15: return False
16: end if
17: j ← j + 1
18: end while

The algorithm does the following: Let j = 0. We iterate the following procedure in a loop: First

we construct the directed graph Γ := Λ|g|+j the ball of size |g| + j of free graph on d generators

S = {g1, . . . , gd} and we run the algorithm T which enumerates every element identification deduced

from the set of relations R up to j steps. For every relation between two elements in Γ found (that is,

whose word lengths under the free monoid is lesser or equal than |g| + j), we add the rule that those

two elements in Γ must carry the same symbol under any tiling. After that procedure we find the set Θ

of all valid tilings of Γ by using the nearest neighbor rules of X, the element identification rule and with

the restriction that {id, g} is tiled with the pattern Π. If by iterating the algorithm which enumerates

the elements identifications we have obtained that g =G id then we return that Π ∈ L(X). If Θ = ∅ we

return that Π /∈ L(X), if none of these happen, we take j := j + 1 and we repeat the procedure.

Section 2. A class of groups where X≤1 is not sofic 9

Now we prove that indeed this procedure always stops and returns the correct answer. First note that

in every step j the graph Γ has less element identifications that the ball of size |g| + j in the Cayley

graph of G, indeed, Γ is an upwards approximation of such ball. In consequence any valid tiling of the

ball of size |g|+ j of the Cayley graph of G is a valid tiling of Γ.

Suppose Π ∈ L(X). As the set R is recursively enumerable, we know that in a finite number of steps

the algorithm will yield that g =G id. Then Π is actually the pattern which has only one symbol in the

identity, and thus it’s possible to tile every ball of arbitrary size in the Cayley graph of G such that Π

appears as before. Then we can always tile Γ and thus Θ 6= ∅ ∀j ∈ N. In consequence, the procedure

won’t stop before reaching g =G id and it will return the correct answer.

Conversely, if Π /∈ L(X) there is an integer N ∈ N such that the ball of size N of the Cayley graph of G

cannot be tiled (if not, by a compacity argument we would deduce that Π ∈ L(X)). Using the fact that

this ball is defined by a finite number of element identifications over the ball of the free graph of rank d,

and that every one of these identifications will be found after a finite number M ∈ N of iterations, one

concludes then that after M steps of the algorithm the restriction of Γ to it’s ball of size N is exactly

the ball of size N of the Cayley graph of G, and thus Θ = ∅ in that stage and the process stops and

returns the correct answer.

The previous algorithm decides the word problem for G, which is a contradiction given that the group

G has unsolvable word problem.

Corollary 2.6. For every finitely presented group G with undecidable word problem the G-subshift

X≤1 ⊆ {0, 1}G is not sofic.

Proof. As every finitely presented group if both finitely generated and recursively presented the previous

result holds for this class.

2.2 A generalization of the previous result

A natural generalization of the previous subshift is to allow not only one occurrence of the symbol 1,

but a finite number of them. We now show that the same result holds for this class of subshifts.

Definition 2.7. Let G be a group, we define for k ∈ N

X≤k := {x ∈ {0, 1}G| |{g ∈ G : xg = 1}| ≤ k}.

Let G be a fixed group. It is obvious that if X≤1 is a sofic subshift then X≤k is sofic for every k ∈ N. Just

notice that an obvious extension for X≤k is k copies of X≤1, that is,
∏k

i=1X≤1 � X≤k by just projecting

any coordinate which has any symbol 1 into the symbol 1 and everything else to 0. By choosing an SFT

extension for X≤1 and taking the product we obtain an SFT extension to X≤k. The other direction is

not obvious, and in principle it may happen that there are groups such that X≤k is sofic but X≤1 isn’t.

We will show that for the case of finitely generated and recursively presented groups with undecidable

word problem the subshift X≤k also cannot be sofic.

Proposition 2.8. Let G be a finitely generated and recursively presented group. If X≤k is a sofic G-

subshift, then for each set S of k + 1 words we can decide if either they are all different as elements of

G or if there exists a pair that is equal in G.

Proof. We proceed again by contradiction, suppose X≤k is sofic and take a nearest neighbor SFT ex-

tension X that maps onto X≤k via a 1-block code φ. It is clear (as the alphabet of the extension is

finite) that |Φ−1(1)| <∞. We have that P ∈ (Φ−1(1))S can’t belong to L(X) if the k+ 1 elements of S

are different (and thus it’s impossible to extend that initial configuration to a tiling of the group). By

applying a modified version of the previous algorithm we can decide if either all elements are different

in G or if there exists a pair that is equal. The modified algorithm is as follows: instead of searching

if g =G id, we search for any equality between members of S, and instead of trying to tile Γ using the

pattern Π we try with every pattern P ∈ (Φ−1(1))S . The rest of the proof remains the same.

Theorem 2.9. Let G be a finitely generated and recursively presented group such that the word problem

in G is undecidable, then for each k ∈ N X≤k is not sofic.

Proof. As the group has undecidable word problem, we know it’s infinite. In consequence Λk in G has

at least 2k + 1 different elements. If we consider sets of the form: {id, g1, . . . , gk} with gi a word in the

free group whose length is less than or equal to k. We know there is one of those sets so that each word

seen as an element of G is different. By just applying the algorithm from proposition 2.8 over every

possible set as above (there are
(d· (2d−1)k−1

d−1

k

)
such sets, where d is the number of generators) we can then

obtain {id, g1, . . . , gk} so that every word represents a different element in G.

Now consider a word g and the following k sets:

{g} ∪ ({id, g1, . . . , gk} \ {gi}), 1 ≤ i ≤ k

There is at least one choice of i such that g /∈ ({g1, . . . , gk} \ {gi}) and thus g ∪ ({g1, . . . , gk} \ {gi})
has k elements. Now we run in parallel the algorithm which decides if k + 1 elements are different in

G for these k sets. If the algorithm returns for a given set that there are k + 1 different elements then

g 6=G id. If the algorithm returns that there is a repetition for every set it means that for the special

case where g ∪ ({g1, . . . , gk} \ {gi}) has k elements, adding the identity didn’t add an extra element. As

the set {g1, . . . , gk} doesn’t contain the identity we conclude that g =G id.

10

Section 3. Tilings of graphs generated by self-similar substitutions 11

3. Tilings of graphs generated by self-similar sub-

stitutions

3.1 First definitions

In the beginning of this rapport some results were recalled which show that the emptiness problem is

not decidable when considering Zd-subshifts of finite type with d > 1. This result was first proven

by Berger [Ber66] who studied the domino problem proposed by Wang and was later on proved using

smaller constructions by Robinson [Rob71] and by Kari [Kar96]. Another way to prove this result is

by using a rich enough substitution and then applying Mozes theorem, which says that every subshift

generated by a Z2-substitution satisfying a mild consistency condition is of sofic type [Moz89].

In this section we generate classes of Zd-subshifts which represent graph tilings (that is, sets of functions

from graphs to a finite alphabet which respect local rules) which aim to emulate structures lying between

Z and Zd. We are interested in the study of the emptiness problem in these classes of tilings and in

the possibility of these graphs to satisfy a property similar to the one proven by Mozes, that is, the

possibility of these graphs to simulate substitutions in themselves by local rules. We first introduce

these structures from a symbolic dynamics perspective and then we prove some results concerning the

decidability of the emptiness problem and the Mozes-like property, finally we show a result linking these

two properties by means of an order relation. In order to define these structures properly and to treat

the tilings over them in the language of symbolic dynamics, some definitions are needed.

A rectangular Zd-substitution s is a function s : A → AR where A is a finite alphabet and R is a

rectangle, that is, there are natural numbers l1, . . . , ld ≥ 2 such that

R := R[l1, · · · , ld] = {z ∈ Zd|∀1 ≤ i ≤ d, 1 ≤ zi ≤ li}

A substitution can also be regarded as a function from the set of finite patterns A∗ by concatenation of

the images. We will assume that every substitution treated from now on is rectangular.

Example 3.1. Consider the alphabet A = {0, 1} and the Z2-substitution s such that:

s(0) =
0 0

0 0
and s(1) =

0 1

1 1
.

This object is the Sierpiński triangle substitution, and it is the main example we study in this section.

Definition 3.1. A substitution s over the alphabet {0, 1} will be said to be a self-similar substitution

if the image of s(0) is a rectangle containing only the symbol 0.

Section 3. Tilings of graphs generated by self-similar substitutions 12

Any self similar substitution can be defined just by s(1), thus, we can identify the set of self-similar

Zd-substitutions with the set of d-dimensional arrays over {0, 1}, that is, the set of functions from d-

dimensional rectangles to {0, 1}. For example, the Sierpiński triangle substitution defined above can be

written as s =
0 1

1 1
.

Example 3.2. Consider self-similar Z2-substitution s such that:

s =

1 1 1

1 0 1

1 1 1

.

This object is the Sierpiński carpet substitution, and it is another important example.

Definition 3.2. The subshift generated by a Zd-substitution s is the set

Xs := {x ∈ AZd |∀P v x : P ∈ L(s)}.

Where L(s) := {P ∈ A∗|∃a ∈ A,∃n ∈ N : P v sn(a)} is called the language of s.

Theorem 3.3. Let s be a Zd-substitution where d = 2. Then Xs is a Zd-subshift of sofic type.

The above theorem was first proven in the special case of Z2 by Mozes [Moz89] for a slightly larger

set of substitutions where the rules were not needed to be of the same size. The theorem was later

largely generalized by Goodman-Strauss [GS98] to a class of R2 geometrical substitutions satisfying a

mild condition where the above theorem in the case of Z2 sprouts as a corollary. The case of d > 2 is

seen as a natural generalization of Mozes proof though to the author’s knowledge nobody has dared to

write it yet.

Definition 3.4. Let s be a Zd-substitution over the alphabet {0, 1}, let B := A∪· {0} a finite alphabet

and F ⊆ B∗ a finite set of forbidden patterns. Define the projection sliding block code as the map

π : BZd → {0, 1}Zd by π = Π∞ where Π(0) = 0 and ∀a ∈ A, Π(a) = 1. with these elements in hand we

define the set of tilings of s given by F as the Zd-subshift:

Xs
F := {x ∈ BZd |π(x) ∈ Xs,∀P v x : P /∈ F}

For simplicity, we restrict the study to the case where s is a self-similar substitution and unless said

otherwise we suppose that for every P ∈ F then supp(P) ⊆ U with U = {−1, 0, 1}d. Also, in order to

rule out the trivial empty case, we demand that no block consisting only on zeros is forbidden. Thus

every tiling of a self-similar substitution s will always contain the point 0∞ consisting only on zeros.

The subshift Xs
F when F satisfies the above conditions can be interpreted as the set of tilings of the limit

graph generated by iterating the substitution s over the symbol 1, and then identifying every 1 with a

vertex and putting an edge between every pair of adjacent (according to the shape of the patterns in F)

Section 3. Tilings of graphs generated by self-similar substitutions 13

ones in the resulting matrix. Figure 3.1 shows this construction for the substitution given in example

3.1 and a set F with support in U = {−1, 0, 1}2.

→ →

Figure 3.1: The Sierpiński triangle substitution as a graph substitution.

The formalization given above lets us consider colorings of such graphs while avoiding the need to give

a definition of what is a limit graph. It also helps to avoid the problem of defining the local rules in the

graph setting and it allows the tiling to use the border information in order to enforce local rules.

By using theorem 3.3 we obtain that Xs is a sofic shift and has an SFT extension X. Considering

X × (XF) with F ⊆ A∗ along with the extra rules that in X a symbol which is projected into a 0 must

carry a 0 in a second coordinate and the rest must carry a symbol from A, then we obtain that Xs
F is

also a sofic Zd-subshift by just projecting the previous construction onto the second coordinate.

3.2 The emptiness problem and the Mozes property

Let s be a fixed self-similar substitution, and let L be the set of all F ⊆ N∗ such that Xs
F 6= {0∞},

that is, the set of all sets of forbidden patterns over a finite alphabet1 such that the set of tilings of s

is non-empty (does not restrict itself to the trivial point containing only zeros). A natural question is

for which self-similar substitutions s is L decidable. This is the formulation of the emptiness problem in

this particular setting.

If we consider s to be the array containing only zeros then the problem above is clearly decidable, in

the other hand, if s is the array containing only ones, the set of possible tilings corresponds to the class

of Z2-SFTs, and thus the problem above is undecidable as a consequence of theorem 3.3.

Beside the trivial examples shown above, we show intermediate cases of self-similar Z2-substitutions

which fall into these two categories.

1Here we identify a finite alphabet A with cardinality n to the set {1, 2, . . . n}.

Section 3. Tilings of graphs generated by self-similar substitutions 14

Theorem 3.5. The Sierpiński triangle substitution from example 3.1 has decidable emptiness problem.

Proof. Consider n ∈ N and the set of all possible tilings of sn(1), that is, the set of patterns in A2n×2n ∩
L(Xs

F) such that their image under the projection sliding block code π is sn(1). Notice that as sn+1(1) =

sn(s(1)) and s is self-similar, then sn+1(1) is constructed by pasting together three pieces of sn(1) along

with a block of zeros. It is easy to proof inductively that for each n ∈ N sn(1) has no ones over the

diagonal, and thus in order to construct any tiling over sn+1(1) it suffices to paste three tilings of sn(1)

which respect the local rules F in the point where they meet, that is, the only points relevant in order

to decide if three tilings of sn(1) can be pasted in order to make a tiling of sn+1(1) are the following

(suppose sn(1) has support R[2n, 2n]):

C = {(1, 1), (1, 2n − 1), (1, 2n), (2, 2n), (2n, 2n)}.

With that information, it is straightforward to construct an algorithm for deciding the emptiness prob-

lem: given A and F with support in U construct all possible tilings of s2(1) and for every one of them

store the image of the set C as a tuple in A5. That gives an element of P (A5) which is finite. As the

tilings of sn+1(1) depend on the tilings of sn(1), then also the attainable tuples of sn+1(1) depend only

on the tuples attainable by sn(1), we continue to store this elements in a list. If there is a repetition

of a non-empty element of P (A5), then as the adjacencies just depend on the previous configuration,

the sequence of attainable tuples becomes eventually periodic and therefore it is possible to construct

arbitrary big tilings and the algorithm returns that Xs
F 6= {0∞}. Either this must happen before 2A

5

iterations of the algorithm or a big enough triangle will not be able to be tiled (that is, we obtain

∅ ∈ P (A5) as the set of configurations for a big enough n). In that case the algorithm returns that

Xs
F = {0∞}

The above proof can be easily generalized to any self-similar substitution where the number of new

adjacent ones (if seen as a graph, the number of new edges) obtained by pasting pieces of sn(1) to form

sn+1(1) is bounded. In particular a countable class of 2-dimensional self-similar substitutions which

can be proven to be decidable by the above argument is the Pascal triangle modulo m ≥ 2, that is,

sm ∈ {0, 1}R[m,m] where s(i,j) = 1⇔ i ≤ j.

Before presenting the undecidability results it is convenient to introduce a related concept, which deter-

mines the possibility that a self-similar substitution is able to simulate more complex substitutions as

tilings of its structure.

Definition 3.6. Let s be a self similar substitution defined over the rectangle R. We say that a

substitution s′ over a finite alphabet A∪· 0 and defined over the same rectangle R is an Xs-substitution

if s′(0) = 0R and for every a ∈ A and position p ∈ R: s′(a)p = 0 if and only if s(1)p = 0.

Definition 3.7. We say that a self similar substitution s satisfies the Mozes property if for every Xs-

substitution s′ there exists an alphabet A′ and a set of local rules F ′ ⊆ (A′ ∪· {0})∗ and a local function

Φ : A′ → A such that φ(Xs
F ′) = Xs′ , where φ = Φ∞.

Section 3. Tilings of graphs generated by self-similar substitutions 15

This property is the equivalent of Mozes theorem for substitutions defined over self-similar substitutions.

It may seem redundant at first glance, but the fact that all Xs−substitutions are sofic Zd-subshifts

does not mean that all substitutions s satisfy the Mozes property, for example consider the diagonal

substitution s =
0 1

1 0
.

The subshift generated by s consists on the shift closure of the point consisting of a single diagonal of

ones immersed in a sea of zeros. If we allow the forbidden patterns to take support in U as usual, then

there is an obvious correspondence between the set of tilings of s and the class of 1-step Z-SFT2. On

the other hand, if we consider the Xs−substitution s′ given by:

a→
0 b

a 0
, b→

0 a

b 0

then the Z-subshift which is in correspondence to the tiling of the diagonal is the one generated by the

Thue-Morse sequence (see [FB02] for this fact), which is not of sofic type, and thus can not be obtained

as the image by a sliding block code of an SFT.

Next we show that the two examples shown at the beginning of this section satisfy the Mozes property.

Theorem 3.8. The Sierpiński triangle from example 3.1 satisfies the Mozes property.

Theorem 3.9. The Sierpiński carpet from example 3.2 satisfies the Mozes property.

The proof for the previous theorems are a little long, they can be found on the appendix, see theorems

A.3 and A.4.

With these two results in hand we proceed to prove that the Sierpiński carpet substitution has un-

decidable emptiness problem. The proof will consist on the simulation of a substitution which allows

arbitrarily big square blocks of Z2 to be simulated in the structure.

Theorem 3.10. The Sierpiński carpet substitution from example 3.2 has undecidable emptiness problem.

Proof. Let s be the Sierpiński carpet substitution and consider s′ the Xs-substitution over the alphabet

A = {•,�,�, l,↔} given by the following rules:

• →
� ↔ �

l l
� ↔ �

, � →
� ↔ �

l l
� ↔ �

, � →
� ↔ �

l l
� ↔ �

l →
l • l
l l
l • l

, ↔ →
↔ ↔ ↔
• •
↔ ↔ ↔

.

2A Z-SFT is said to be n-step if it can be defined with a set of forbidden words of length at most n+ 1.

Section 3. Tilings of graphs generated by self-similar substitutions 16

As s satisfies the Mozes property there exists a set of tilings Xs
F and a 1-block factor code φ such that

φ : Xs
F � Xs′ . We claim that in any point of Xs′ which is not 0∞ for any n ∈ N the pattern s′n(•)

appears infinitely often. In order to prove that, it suffices to use the fact that any tiling of sn(1) is s′n(a)

for a ∈ A. Checking in the rules above that regardless of the starting symbol a, • appears at most after

2 iterations of s′, it suffices to consider s′n+2(a) to be sure to find s′n(•) as a subpattern. As we can do

this for every block s′n+2(a) we obtain an infinite number of occurrences of such a block.

Now consider the block s′n(•) for n ≥ 1. It is easy enough to see by means of an induction argument

that this will consist on a lattice of 2n × 2n boxes which are being connected by arrows as in figure 3.2,

along with smaller instances s′m(•) for m ≤ n − 2. Of all of these boxes in the lattice, the only box �

will be the one in position (1, 2n−1 + 1) of the lattice.

• →
� ↔ �
l l
� ↔ �

→

� ↔ � ↔ ↔ ↔ � ↔ �
l l • • l l
� ↔ � ↔ ↔ ↔ � ↔ �
l • l l • l
l l l l
l • l l • l
� ↔ � ↔ ↔ ↔ � ↔ �
l l • • l l
� ↔ � ↔ ↔ ↔ � ↔ �

Figure 3.2: The three first levels of s′n(•).

The previous lattice can be used to simulate patterns of size 2n × 2n of a nearest neighbor Z2-SFT XG

in a second coordinate. It suffices to let any symbol of A carry any symbol appearing in XG in a second

coordinate with the restrictions that two horizontally adjacent horizontal arrows must carry the same

symbol, two vertically adjacent vertical arrows must carry the same symbol and given a box tile, if there

is a horizontal arrow to the right or a vertical arrow down, then the symbols on the second coordinate

must not be forbidden in G. If there is a horizontal arrow to the left or a vertical arrow up then they

must share the same symbol in the second coordinate. In this way the 2n × 2n symbols in the lattice of

boxes correspond to the coordinates of a square pattern of size 2n × 2n in XG . An example can be seen

in figure 3.3.

Now consider the alphabet given by a set of tiles which simulates a Turing machineM = 〈Q, q0,Γ,t, F, δ〉3

running on a empty input.

t q0,t t a

a

q, a

a

q

q, a

a

q

a2

q1, a1

q2

a2

q1, a1

q2

Here the three first tiles define a Turing machine starting on a empty input in the initial state q0, the

symbols a and q denote an element of Γ and Q respectively and finally the two last tiles represent

3Where Q is the set of states, q0 the initial state, Γ is both the tape and starting alphabet, t ∈ Γ the blank symbol, F
the set of final states and δ : Q \ F × Γ→ Q× Γ× {L,R} is the transition function

Section 3. Tilings of graphs generated by self-similar substitutions 17

a2 a2 a3 a4

b2 b2 b3 b4
c2 c2 c3 c4

d2 d2 d3 d4

→

(�, a1) (↔, a2) (�, a2) (↔, a3) (↔, a3) (↔, a3) (�, a3) (↔, a4) (�, a4)
(l, b1) (l, b2) (•, ·) (•, ·) (l, b3) (l, b4)
(�, b1) (↔, b2) (�, b2) (↔, b3) (↔, b3) (↔, b3) (�, b3) (↔, b4) (�, b4)
(l, c1) (•, ·) (l, c2) (l, c3) (•, ·) (l, c4)
(l, c1) (l, c2) (l, c3) (l, c4)
(l, c1) (•, ·) (l, c2) (l, c3) (•, ·) (l, c4)
(�, c1) (↔, c2) (�, c2) (↔, c3) (↔, c3) (↔, c3) (�, c3) (↔, c4) (�, c4)
(l, d1) (l, d2) (•, ·) (•, ·) (l, d3) (l, d4)
(�, d1) (↔, d2) (�, d2) (↔, d3) (↔, d3) (↔, d3) (�, d3) (↔, d4) (�, d4)

Figure 3.3: The simulation of the 4 × 4 pattern in the left in the lattice. The bullets can carry any
symbol from the alphabet of XG .

transitions from δ. δ(q1, a2) = (q2, a2, L) and δ(q1, a2) = (q2, a2, R) respectively. The nearest neighbor

rules for these tiles are just that same color arrow tails must match with arrow heads, and in the case

any of those carry information, they must match. This simulates a Turing machine running on a empty

input, each line representing a step in the computation while holding all the information of the tape4.

The important thing to notice in this construction is that if we are given an infinite line constructed by

using the first three tiles and in which the second tile (the starting point of the tape) appears, then the

tiles given above are able to tile the upper semiplane starting from that line if and only if the machine

M never halts.

By using the extension Xs
F to simulate Xs and then the rules described above to simulate the tiling

given by the Turing machine M (that is, every rule which involved a symbol in A now involves every

symbol in it’s preimage via the 1-block code φ) along with the extra rule that every � must carry the

starting computation symbol we obtain a finite alphabet B along with a finite set of forbidden patterns

H such that (B,H) tiles the Sierpiński carpet if and only if the Turing machine M loops in the empty

input. Suppose the emptiness problem was decidable for the Sierpiński carpet, then we would obtain a

decision algorithm to see if a Turing machine halts on empty input, which yields a contradiction.

Notice that the above proof can be modified in order to make a proof of the undecidability of the

emptiness problem for Z2. Just consider the same substitution s′ as above with the modification such

that s′(a)(2,2) = • for every a ∈ A. Theorem 3.3 ensures this primitive substitution generates a sofic

Z2-subshift and the same proof as above can be applied.

The proofs given above for the Sierpiński carpet can be easily generalized to a countable class of Z2-

substitutions which resemble the carpet. For example, take n ∈ N and pairs (i, i′) and (j′, j′) such

that i < i′ − 1, j′ < j′ − 1 and they lie between 1 and n. Consider the Z2-substitution s such that

s(k,l) = 1 ⇔ k ∈ i, i′ ∨ l ∈ {j, j′}. The tuples for the Mozes property construction can be forced in

position (i, j) and arbitrarily big lattices can be simulated via substitutions in a similar way as in the

proof of the last theorem.

4Similar constructions can be found all over the literature, see for example [Rob71].

Section 3. Tilings of graphs generated by self-similar substitutions 18

Next we show the first general theorem relating the Mozes property and the decidability of the emptiness

problem. Before stating the theorem we must introduce a partial order relation between substitutions

with the same support.

3.3 A partial order preserving decidability monotonically

Definition 3.11. Let s1 and s2 be two self-similar substitutions defined over the same rectangle. We

say that s1 � s2 if and only if for every array position p we have that:

(s2)p = 0⇒ (s1)p = 0.

Theorem 3.12. Let s1 and s2 be two self-similar substitutions such that s2 satisfies the Mozes property

and s1 � s2, then if s2 has a decidable emptiness problem then s1 has a decidable emptiness problem as

well.

Proof. First note that for each n ∈ N if we define sn1 := sn1 (1) then sn1 � sn2 and Xsj = Xsnj
for

j = 1, 2 thus the decidability of the emptiness problem is equivalent if we consider the power of a

substitution. Suppose the substitutions are defined over the rectangle R[l1, . . . , ld]. For S ⊆ Zd define

the diameter of S as diam(S) := maxg,h∈S max1≤i≤d {|gi − hi|}. And for a set of forbidden patterns F
let diam(F) := maxP∈F diam(supp(P)).

Let (A,F) an alphabet and a finite set of forbidden patterns. First we rule out the trivial case where

Xs2 = {0∞} because in that case the result is trivially true. Consider then m ∈ N and p̄ ∈ R[lm1 , . . . , l
m
d]

such that (sm2)p̄ = 1 and p̄+ Λ2·diam(F)+1 ⊆ R[lm1 , . . . , l
m
d]. Such values must always exist because on the

contrary we would have that Xs2 = {0∞}.

Consider the Xsm2
-substitution s′ over the alphabet B = {1, ∗} given by the rules:

s′(1)p =

0, if (sm2)p = 0

1, if (sm1)p = 1

∗, if (sm1)p = 0 ∧ (sm2)p = 1

, s′(∗)p =

0, if (sm2)p = 0

1, if p = p̄

∗, if (sm1)p = 1 ∧ p 6= p̄.

The above substitution emulates sm1 in the structure of sm2 . In fact, if we consider a simplified substitution

where the symbol ∗ is substituted into a block of 0 and ∗ then by identifying 0 and ∗ the structure of

ones arising from a 1 is exactly sm1 (1). Nevertheless, in order to forbid infinite points of ∗ appearing and

thus rendering the decidability problem always true, it is necessary to introduce new seeds of 1 which

force the blocks (sm1)n(1) to appear infinitely often for all n ∈ N and in any point of Xs′ . The idea

of putting the extra seed of 1 in a position p̄ such that p̄ + Λ2·diam(F)+1 ⊆ R[lm1 , . . . , l
m
d] is that every

new appearance of 1 (and block derived by further substituting this) is sufficiently far from the rest of

the ones in the array, and thus the structures can be tiled independently without forbidden patterns

appearing between the two structures.

Consider a set of tilings Y with two layers so that the first layer is an extension given by a 1-block

code φ = Φ∞ such that φ : X
sm2
F ′ � Xs′ and the second layer is given by the set of tilings of sm2 with

the alphabet A ∪· {•} and the forbidden patterns H where H, is a copy of the patterns in F where any

number of zeros can be replaced by •. We finally add the linking rule between the two layers such that

any symbol in the first coordinate which projects via Φ to 1 must carry a symbol from A in the second

coordinate and every ∗ must have • in the second coordinate. We claim that Y 6= {0∞} if and only if

X
sm1
F 6= {0∞}. This will finish the proof as there is a decision algorithm to know whether Y 6= {0∞}.

Suppose first that Xs1
F = {0∞}. As we discarded the trivial case where Xs1 = {0∞} there must be

n ∈ N such that smn
1 (1) can not be tiled by (A,F). As s′(1)p = 1 if sm1 (1)p = 1 then s′n(1)p = 1 if

smn
1 (1)p = 1 and as this component of ones is surrounded by the symbols 0 and ∗ at least in a radius

of 2 · diam(F) + 1 we conclude that there are not valid tilings in the second coordinate of Y which tile

smn
2 (1).

Now suppose that Xs1
F 6= {0∞}. From this we know that there are valid tilings of sn1 (1) for every n ∈ N.

We construct a tiling for the second coordinate of Y restricted to snm2 (1), that is, we tile each component

of ones in s′n(1) which coincides with the positions of the ones in smj(1) for j = n, n−1, . . . , 1. The rest

can be filled with •. As the distance between each component of ones arising directly from a 1 (that is,

that in its substitution history didn’t came from a ∗) is at least 2 · diam(F) + 1, we conclude that no

forbidden patterns were formed and this is indeed a valid tiling of snm2 (1) which has s′n(1) in the first

coordinate. We conclude by compacity that Y 6= {0∞}.

Corollary 3.13. Let s1 and s2 be two self-similar substitutions such that s1 � s2 and s2 satisfies

the Mozes property, then if s1 has an undecidable emptiness problem then s2 has also an undecidable

emptiness problem.

Yet another proof of the fact that emptiness problem is undecidable on Z2 can be given using the

above corollary. On one hand we have that the set of all Z2-SFT correspond to the set of tilings of the

substitution s2 = 1R[3,3] and by theorem 3.3 that substitution satisfies the Mozes property. In the other

hand we can take s1 as the Sierpiński carpet substitution and s1 � s2. Thus the result follows from

corollary 3.13 and theorem 3.10.

Conclusions

In the first part of this rapport we presented a countable class of groups for which the subshift X≤1 is

not of sofic type and we generalized the construction in order to prove the same result for X≤k with

k ∈ N. Nevertheless we are still far from a total characterization of the set of groups which satisfy the

special symbol property as defined in 2.1. In particular, we believe that certain groups which have a lot

of cycles and an intermediate growth of the border ∂Λn := Λn \ Λn−1 could also serve as examples for

which the special symbol property is not held. In particular, an interesting group which answers to both

the Burnside [ALW11] and the Milnor problems [Gri11] (that is, every element has finite order and the

19

Section 4. Conclusions 20

border growth is intermediate between polynomial and exponential) is the Grigorchuk group [Gri84],

which we believe is a good candidate of a group with decidable word problem so that it may not satisfy

the special symbol property. Also the Lamplighter group [Nek05] has been suggested by Dahmani as a

potential candidate.

In the second part of this work we presented a formal framework in order to simulate tilings of graphs

generated by self-similar substitutions. The study of this class of substitutions was motivated by the

idea of building a bridge between the undecidability of the emptiness problem in Z2 and the decidability

of its counterpart in Z. We started this study with the naive idea that the Hausdorff dimension of a

fractal which could be simulated by a self-similar substitution s, that is, the box counting dimension of

a transitive point of Xs, could hold the key to determining the decidability of the emptiness problem.

Nevertheless, using an argument similar to the one presented in theorem 3.5 by filling the center of

a substitution with ones while leaving zeros in the border we obtain that there are substitutions with

arbitrarily big dimension and decidable emptiness problem, thus showing that the initial idea of a

dimension threshold didn’t hold. We then proceeded to show examples which satisfied the emptiness

property and some who didn’t while linking this to the Mozes property we defined in 3.7. The reader

can note that while the hierarchical layers in the two proofs regarding the Mozes property were different

(in the triangle case a very light structure sufficed while in the carpet a more robust anatomy was

necessary) the proof was essentially the same. We believe the proof can be generalized to wider classes

of self-similar substitutions whose graphs satisfy a connexity condition.

Conjecture 4.1. let s be a self-similar substitution such that for every n ∈ N the graph defined by sn(1)

and the adjacencies in U = {−1, 0, 1}d is 2-connected [Die06], then s satisfies the Mozes property.

If this conjecture above is true, it may be possible to characterize completely which self-similar sub-

stitutions satisfy the Mozes property and thus that can be used to determine the decidability of the

emptiness problem for larger classes using theorem 3.12. In particular, given a fixed rectangle R, it

may be useful to determine which is the boundary between decidability and undecidability in the lattice

given by the poset ({0, 1}R,�) in view of theorem 3.12. Though still some examples would remain for

which we haven’t been able to classify its decidability, see the following table.

Decidable substitutions Unknown decidability Undecidable substitutions

Substitutions for which Substitutions where arbitrarily

the proof of theorem ? big lattices can be simulated

3.5 can be adapted by a substitution as in 3.10.

Example: Example: Example:

0 0 0 1

0 1 1 1

0 1 1 1

1 1 1 1

1 0 1

1 0 1

1 1 1

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

Appendix

In this section we present proofs of either claims given in the previous sections which are not strictly

necessary to the topics presented in this report but that require some sort of justification that is not in

the literature, or proofs of results that are simply too long to fit in the 20 page limit.

Theorem A.1. For every finitely generated group G and any presentation of such group given by a

finite number of generators, the generalization of Seven as defined in Section 1.3 is a sofic G-subshift.

Proof. The proof will proceed by construction of an extension X and a 1-block code φ : X � Seven.

Suppose that the group G is presented by P = 〈S,R〉 and take the set K = Λ1 \ {id}, that is, the set

of generators S along with their inverses so that every element identification arising from R has already

been applied. If G is already a finite group the proof is trivial, if not, then K has at least two elements.

Now, consider the finite set of functions (ϕi)i∈I with ϕi : K → {0, 1} such that |ϕ−1
i (1)| is either 0 or

an odd number (an example can be seen in figure A.1). Now let A = (ϕi)i∈I be a finite alphabet and

consider the subshift X ⊆ AG given by the finite amount of rules such that for every g ∈ K the block

P with support {id, g} is forbidden if Pid(g) 6= Pg(g−1), that is, if they don’t match up as Wang tiles.

Consider also the 1-block code Φ that maps ϕi ≡ 0 to 1 and any other function to 0. and take φ = Φ∞.

We claim that X is an extension mapping onto Seven via φ.

First we show that for every x ∈ X the image lies in Seven. Take an x ∈ X and suppose there is a finite

maximal component of zeros in φ(x). By definition of φ the preimage x must have a finite connected

component of functions not equal to 0 surrounded by ϕ ≡ 0. Identify each of these nonzero functions as

nodes in a finite graph with edges between two nodes whenever they are adjacent in the Cayley graph

and they are matched by the symbol 1 in the direction of adjacency. We see that every node in this

graph has an odd degree as every ϕ was defined in this way. By the handshaking lemma we obtain that∑
deg(v) = 2|E|. As the degree of every vertex is odd, we conclude that the number of vertices must

be even. Thus every maximal finite connected component of 0s in φ(x) must be even.

Now we show that the function is surjective. Take y ∈ Seven. Obviously every symbol 1 must have as

preimage a 0, so we only have to deal with the preimage of both finite and infinite maximal components

of 0s. Take first a finite maximal even component of 0s and consider the underlying portion of the

Cayley graph it defines. Take a covering tree of such component. If every node in the covering tree

has odd degree then this can be realized as elements of A and we are done, if not, take a vertex in the

covering tree that has even degree and consider the subtrees generated by deleting this vertex. As the

number of vertices in the tree is even, there must exist an odd number of subtrees that have odd degree.

By reconnecting this vertex to every such odd component (we use a symbol from A), we obtain a forest

of subtrees where each has an even number of vertices and the total number of vertices with even degree

has been reduced by one. Iterating this procedure yields a forest where every node has odd degree

and thus a covering of the component that can be realized by elements of A. For the case of infinite

21

Appendix 22

components we proceed by a compacity argument. Using the previous procedure we generate a sequence

of points (xn)n∈N where xn ∈ AG and such that φ(xn)|Λn−1 = y|Λn−1 and xn|Λn respects every rule of X

(we can do so by modifying y|Λn by deleting a 0 in the border Λn \Λn−1 in each component with an odd

number of zeros and then taking a preimage using the previous construction). By compacity we extract

a converging subsequence xnα → x̄. Clearly x̄ ∈ X and by continuity of φ we obtain that φ(x) = y.

• • • • • • • •

Figure A.1: The alphabet A in the extension of Seven for Z2 represented as Wang tiles.

Proposition A.2. The properties from proposition 2.3 are true.

Proof. 1) The property is trivial for finite groups because any subshift defined over a such a group is

actually an SFT.

2) For G = Z consider the alphabet A = {←, 1,→} and the set of forbidden patterns F := {←→
, 1 ←, 11,→←,→ 1}. The 1-block code given by the local rule φ = Φ∞ that sends Φ(1) = 1 and

Φ(←) = Φ(→) = 0 is a factor code onto X≤1.

100000. . . 0 0 0 0 0 . . .φ(x) =

φ

1←←←←←. . . →→→→→ . . .x =

Figure A.2: The construction for Z.

3) Let the generators of Fk be S = {g1, . . . , gk} and let Λ1 = {id, g1, . . . , gk, g
−1
1 , . . . , g−1

k }. Consider the

alphabet:

A = {1, d1, . . . , dk, d
−1
1 , · · · , d−1

k }.

Take also the function ϕ : Λ1 → A such that ϕ(id) = 1 and ∀1 ≤ i ≤ d ϕ(gi) = di and ϕ(g−1
i) = d−1

i .

Consider the finite set of forbidden patterns F such that every pattern with support Λ1 which has the

symbol 1 in id is forbidden unless each element of Λ1 has associated it’s image under ϕ. For every

g ∈ {g1, . . . , gk, g
−1
1 , . . . , g−1

k } we as well forbid every pattern with support Λ1 \ {g−1} which has the

symbol ϕ(g) in id unless each element of Λ1 \ {id, g−1} has associated it’s image under ϕ. With these

rules in hand, setting the symbol 1 as the image of an element of the group immediately fixes the whole

point and thus gives an SFT extension to X≤1 by projecting each di and −di to 0. The case of Z can

be seen a special case in this proof when k = 1. Figure A.3 shows this for F2.

4) This property can be seen as a direct consequence of proposition 2.4 1) by taking the short exact

sequence:

1→ G1 → G1 ⊕G2 → G2 → 1.

Appendix 23

1 d1

d2

d−1
1

d−1
2

d2

d1

d−1
2

d2

d1d−1
1

d2

d−1
1

d−1
2

d−1
1 d1

d−1
2

−→
φ

1 0

0

0

0

0

0

0

0

00

0

0

0

0 0

0

Figure A.3: The construction in the case of the free group on two elements, only the elements in Λ2

are shown.

With the injection and the projection into the second coordinate. A direct proof can be done by

considering two presentations for the groups G1 and G2 given by a finite number of generators, taking

SFT extensions XF1 ⊆ A
G1
1 and XF2 ⊆ A

G2
2 given by a 1-block codes defined by local rules Φ1,Φ2 and

considering the following construction: take XF ⊆ (A1 ×A2)G1⊕G2 such that:

XF := {(xi, yj)i∈G1,j∈G2 |x ∈ XF1 , y ∈ XF2}

Obviously the set of forbidden patterns are the ones that forbid that symbols from the first coordinate

change when acting under the second group and vice-versa and also ensure that when restricting a point

to one coordinate the point we see is in the Gi-subshift corresponding to the other coordinate. That

is every rule from the corresponding Fi is respected. This is a finite amount of rules and thus XF is

an (G1 ⊕ G2)-SFT. By defining a local rule such that Φ(a1, a2) = 1 ⇔ Φ1(a1) = 1 ∧ Φ2(a2) = 1 and

0 otherwise we obtain a 1-block code φ = Φ∞ which maps XF to X≤1. Indeed, suppose there are two

symbols which get mapped to 1 in a point x, lets say x(id,id) = (a1, a2) and x(g1,g2) = (b1, b2) with

Φ1(a1) = Φ1(b1) = Φ2(a2) = Φ2(b2) = 1. The forbidden pattern rules imply then that x(id,g2) = (c1, b2)

where Φ1(c1) = 0, which in turn implies that x(id,id) = (c1, c2) which yields a contradiction.

5) Every finitely generated abelian group is the direct sum of a finite number of copies of Z and a finite

group, by using together properties 1, 2 and 5 we obtain this result.

Theorem A.3. The Sierpiński triangle substitution s defined in example 3.1 satisfies the Mozes property

from definition 3.7.

Proof. Let the Xs-substitution s′ be defined over an alphabet A. For the sake of simplicity during this

proof we will refer to positions (1, 1), (1, 2) and (2, 2) in R[2, 2] as 1, 2 and 3 respectively. We will proceed

by constructing explicitly the alphabet A′ and the set of finite rules F ′ which satisfy the requirements.

Appendix 24

Consider the alphabet A′ given by the following three types of tiles:

a)
•

b)
•

c)
•

where each tile carries some extra information which is not shown in the picture. The dot and each of

the two segments in each tile carry a tuple belonging to

A× {1, 2, 3} × A3.

Where the triple in A3 is the image under s′ of the element in A (ordered according to the previous

simplification of the positions in R[2, 2]). It will be represented as:

a, i→
0 a3

a1 a2

. where i, j ∈ {1, 2, 3} and a, a1, a2, a3 ∈ A

The meaning of such a tuple is the following: it represents the substitution rule s′(a) coming from s′

with the additional information that a appears in position i in a previous substitution rule.

The size of the alphabet previously described obviously depends in the particular substitution considered,

nevertheless, an upper bound for its size is given by |A′| ≤ 81|A|3.

Now we proceed to describe the finite set of forbidden patterns F ′. We do so by first describing a set of

rules and later showing how they can be obtained by forbidden rules. In this description, a single dot ·
will mean an arbitrary tile from A′, # will mean a number in {1, 2, 3} and ∗ will mean a symbol from

A.

1. Structure rule: The only admissible tilings of s(1) are the ones where tiles of the type a), b)

and c) are on positions 1, 2 and 3 respectively. Furthermore, in every such tiling of s(1) the tuple

in the dots must be the same for each dot. Also the tuples from lines that match in the border of

a tile must coincide.

It is possible to generate these rules in the following way: The first part of the rule can be easily

enforced by checking the neighbors, that is, we forbid every pattern of size 2× 2 which has any of

the following configurations:

·

·

•

0

·

·

•

0

·

·

•

0

· ·

•0

·

·

•

0

··

•0

Appendix 25

• • • • • • • •
0 • 0 • 0 • 0 •
0 0 • • 0 0 • •
0 0 0 • 0 0 0 •
0 0 0 0 • • • •
0 0 0 0 0 • 0 •
0 0 0 0 0 0 • •
0 0 0 0 0 0 0 •

Figure A.4: A tiling of s3(1). Different colors represent different tuples in lines.

The rest of the rules described here can be obtained by further forbidding any 2× 2 pattern which

does not satisfy the conditions.

2. Base rule: Any tiling of s(1) which carries in their dots a rule of the form:

a, i→
a3

a1 a2

must satisfy the following rule: if second coordinate of the tuple is the number i=1 (respectively

2, 3) then the vertical (resp diagonal, horizontal) line in the triangle must carry a tuple where a

must appear in the right hand side in position i, that is:

∗,#→
a

∗ ∗
supposing i = 3, for example

This rule can be obviously obtained in the same way as the rules before.

3. Pasting rule: Whenever we encounter patterns of the following shape:

• •
,

•

•

or
•

•

.

Then we demand that the two lines which have the same orientation must carry the same tuple.

Also, the other pair of lines forming an angle must also carry the same tuple between them.

This rule can obviously be enforced by forbidding every pattern with the shapes shown above

which does not satisfy the property.

4. Extension rule: When encountering patterns as in the last rule: if the tuple shared by the lines

forming an angle carries in the second coordinate the number 1 (respectively 2, 3), then if the

other two lines which share the orientation are vertical (respectively diagonal, horizontal) then

they must carry a tuple which originates from the tuple shared by the lines which make an angle

in the same way as in the base rule.

Appendix 26

With these rules, we claim that by projecting each tile to the third coordinate in the position given by

the type of tile (that is: a) goes to 1, b) to 2 and c) to 3) of the tuple which is held by the black •,
(this is the local rule Φ) then for every n ∈ N, every tiling of sn(1) projects onto s′n(a) for an a ∈ A.

Before starting, let n ∈ N. We will refer to the set of positions of R[2n, 2n] given by

Bn = {(1, j), (j, j), (j, 2n) for j ∈ {0, . . . , 2n}}

as the n-border and we will call n-skeleton to the set (See figure A.5)

Sn = {(2n−1 + 1, j), (j + 2n−1, j), (j + 2n−1, 2n−1 + 1) for j ∈ {1, . . . , 2n−1}}.

Figure A.5: The n-border is given by the black lines and the n-skeleton by the dashed lines.

We proceed by induction. We show the previous claim along with two extra invariants: for any n ∈ N the

tuple carried by horizontal lines in the lowest part of the border of sn(1) (respectively by the diagonals

or the vertical lines) is the same. Also, for n ≥ 2, the tuple in the n-skeleton is the same everywhere.

The structure rule ensures that every tiling of s(1) satisfies both the claim and the invariants. The case

for n = 2 is implied by the fact that any tiling of s(2) is made by pasting together three tilings of s(1),

thus, by using the pasting rule we obtain the invariant over the border B2. The pasting rule also ensures

that the rules in the 2-skeleton S2 must match and hence we have the two invariants. Using the base

rule we obtain the claim for n = 2.

Suppose both the invariants and the claim are true for n − 1, using the structure of Xs, that is, that

every tiling of sn(1) is formed by pasting 3 tilings of the previous level, the pasting rules again ensure

that the invariants are satisfied for both Bn and Sn. Using the extension rule in the same fashion as the

basic rule, we are ensured that each side of the skeleton carries the symbol which generated each one of

the three tilings of sn−1(1), and thus the claim is also satisfied by n.

Now consider a tiling x ∈ Xs
F ′ , as the projection via φ of any tiling of sn(1) yields s′n(a) for a ∈ A,

then we conclude that φ(x) ∈ Xs′ by definition (every tiling of Xs
F ′ can be partitioned in either tilings

of sn(1) or patterns consisting only on zeros). In the other sense, it is clear that the construction allows

every s′n(a) for a ∈ A which appears in the right side of a substitution rule to appear as the projection

of a tiling of sn(1). As this are the only patterns that appear in Xs′ for an arbitrary size and they can

always be constructed, we conclude that for each y ∈ Xs′ there exists a preimage which can be easily

obtained by a compacity argument.

Appendix 27

Therefore we conclude that φ : Xs
F � Xs′ is a 1-block factor code as demanded by definition 3.7.

In the previous proof, the reader may note that the information of the right hand side of the substitution

was redundant as the symbol of origin already had all of the information given the substitution s. The

proof was presented in the previous way in order to make the proof applicable to the more general

context of non-deterministic substitutions, where a symbol a ∈ A may be substituted in more than one

fixed way. Also, presenting the construction in the previous way allows an easier definition of the 1-block

code φ. These arguments are also applicable to the next theorem.

Theorem A.4. The Sierpiński carpet from example 3.2 satisfies the Mozes property.

Proof. This proof will yield an explicit extension for any Xs-substitution where s is the Sierpiński carpet.

We will proceed by building a hierarchical layer or skeleton which will give the necessary structure in

order to communicate the different levels of the substitution s′ and therefore generate a foundation for

the construction of the layer which carries the substitution information.

We start by defining the alphabet B1 of the hierarchical layer. Consider the set of valid tuples T :=

R[3, 3] \ {(2, 2)}, that is, the positions of s(1) which carry a 1. Each of these tuples will represent an

element of B1 and they will be represented by the following tiles (arranged as the right hand side of the

substitution s):

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 3)

(3, 1) (3, 2) (3, 3)

→

(1, 1) (1, 2)(1, 3)

(2, 1) (2, 3)

(3, 1) (3, 2)(3, 3)

We say that a pair of tuples (t1, t2) ∈ T 2 are horizontally adjacent if t2 = t1 + (1, 0) and we say they are

vertically adjacent if t2 = t1 + (0, 1).

For every pair of horizontally adjacent tuples (t1, t2) we add in B1 the following tiles:

t1 t2 t1 t2 t1 t2

Similarly, for every pair of vertical adjacent tuples (t1, t2) we add the following tiles:

t1 t2 t1 t2 t1
t2

The first two tiles which have dashed lines will be called basic lines, the next two tiles which carry arrows

will be called arrow lines, and the last tile with the segment is called a middle line.

Appendix 28

For the construction, we will also need a blank tile, and a variety of intersection tiles where each

intersection is between an arrow line and either a basic line or a middle line. Each of the lines in these

tiles will carry tuples in the way shown above (these are not shown in the picture).

Now we define the set of forbidden patterns for the first layer by means of a set of local rules. The tiles

which carry a zero are represented as a black square just for aesthetic reasons:

1. In every pattern of Xs where a 0 is surrounded both in the bottom and in the left positions by

a 1, then the position diagonally to the bottom and left of the 0 must carry a tuple, conversely,

every tuple tile must have a 0 in the position which is diagonally up and to the right and another

tile different from 0 to the right and up:

1

1

1

0
→

t

·

·

0

2. Each tuple must be continued in the directions of the two adjacent tuples either by basic lines or

by arrow lines carrying the same tuple. We show examples of this rule for tuples (1, 1) and (2, 3).

(1, 1)

(1, 1)

(1, 1)
(1, 1)

(1, 1)

(1, 1)

(2, 3)

(2, 3)

(2, 3) ·

· (2, 3)

(2, 3)

(2, 3) ·

·

3. A basic horizontal (respectively vertical) tile can only be continued by another horizontal basic tile

carrying the adjacent horizontal tuple. (Either of these basic lines could be part of an intersection

tile). Thus the tuples connected by basic lines are at distance 3, see figure A.6.

4. an horizontal (respectively vertical) arrow tile (with no intersections) can only be continued by

another horizontal arrow tile carrying the same tuple, or by an intersection tile where the arrow

carries the same tuple.

t t t t t t

5. A middle tile can only be continued in the direction of the segment either by an identical middle

tile, or by an intersection tile. If the connection is with an intersection tile, then the arrow head

from the intersection tile must match with the end of the middle tile so that their tuples coincide.

Appendix 29

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 3)

(3, 1) (3, 2) (3, 3)

(1, 1)

Figure A.6: A tiling of s2(1) using the first layer. The tuples in the lines aren’t shown in order to make
the picture readable.

t1 t1 t2 t1 t1 t2 t1 t2 t1 t2 t1 t2 t2 t1 t2 t2

6. An intersection line can only be continued in the direction of the arrow by a middle line, and in

the opposite direction by an arrow line, all carrying the same tuple as above. the other line (basic

or middle) must follow the rules of a normal basic or middle line.

With these rules in hand we have the basic structure ready, and we proceed to build the substitution

layer:

The alphabet B2 will be constructed by using tuples from the set S := A × T × AT × T where any

tuple (a, t1, (at)t∈T , t2) ∈ S must satisfy that s′(a) = (at)t∈T . This tuple intends to code the following

information: ”I carry the symbol at2 which is generated by substituting the symbol a which in turn

appears in position t1 of another substitution rule”.

Each tile of B2 can carry one, two or three tuples from S depending on the corresponding symbol in the

first layer: Every tile carries at least one tuple from S in the background. Also every tuple tile or line

carries an extra element of S. Thus tuple tiles and line tiles carry two elements from S and intersection

tiles carry three of them (one in the background and two for each line).

Now we define the set of local rules for B2, which use the structure given by the first layer. Note that

this construction is extremely similar to the one shown in theorem A.3:

1. Structure rule: Each tiling of s(1) must carry in each of their tiles in the background the same

tuple from S except for the last coordinate, where each one of them must match to the position

of s(1) that it is tiling, also, the second coordinate of the tuple of S must match to the tuple in

the first layer in the position (1,1). This can easily be enforced by using the structure of Xs and

forbidding every pattern of size 3× 3 which does not satisfy this rule.

Appendix 30

2. Base rule: In each tiling of s(1), if the tuples of S in the background are (a, t1, (at)t∈T , ·), then

the tuple of S which goes with the tuple tile t1 in position (1,1) is of the form: (b, t3, (bt)t∈T , t1)

where bt1 = a.

3. Pasting rule: Any set of 8 tuples which are connected by lines, and the lines that connect them

must carry the same tuple from S, except by the last coordinate, which must coincide with the

tuple they are carrying (in the case of middle tiles, it must be the smallest one lexicographically)

4. Extension rule: When two lines meet in an intersection tile, if the basic or middle lines carries

the tuple (a, t1, (at)t∈T , ·), then the tuple of the arrow must be of the form (b, t3, (bt)t∈T , t1) where

bt1 = a.

With these rules in hand, we can proceed to prove the result.

Consider the function Φ which projects every tile by considering the tuple (a, t1, (at)t∈T , t2) ∈ S in the

background and projecting it to at2 . We claim that φ = Φ∞ is the desired 1−block factor map.

In order to prove that, it suffices to show that for any n ∈ N the projection by Φ of any tiling of sn(1)

is s′n(a) for a ∈ A which appears at the right hand side of a substitution rule of s′ and conversely that

every tiling as such can be obtained as a projection of a pattern in the construction. These two facts

are easily obtained simultaneously from the fact that for a tiling of sn(1) if the tuple tile1 from the first

layer in position (3n−1, 3n−1), carries the tuple (a, t1, (at)t∈T , t2) then the image via Φ of the whole block

corresponds to s′n(at2).

We proceed to show the previous fact by induction, the case for n = 1 follows from the first and second

rules of the second layer. Now suppose the property is true for every tiling of sn−1(1) and consider a

tiling of sn(1) such that the tuple in the center position described above is (a, t1, (at)t∈T , t2). The rules

from the first layer enforce that in any valid tiling of sn(1) the tuples originating in the centers of the

8 blocks of shape sn−1(1) must be connected by arrows and middle tiles, and the third rule from the

second layer imposes the condition that all these tuples and lines must carry the same tuple from S

except for the last coordinate. Using the second rule from the first layer in the tile from the center

position we obtain that the information originating in this tuple must extend and eventually intersect

the structure formed by the 8 tuple tiles in the center positions of the tilings of sn−1(1). Finally, using

the last rule from the second layer in the intersections we obtain that the structure formed by the 8

tuple tiles must carry a tuple of the form: (at2 , t2, (at)t∈T , t
′) where t′ depends on the tuple carried by

the structure of the 8 tuple tiles. using the induction hypothesis we obtain that the image of each of

these blocks is sn−1(s(at2)t′) and thus the image of the whole block is sn−1((s(at2)t′)t′∈T) = sn(at2).

1This position (3n−1, 3n−1) is the upper right corner of the lowest left tiling (it will be called center position) of sn−1(1)
composing sn(1). It must carry a tuple tile according to the first rule of the first layer.

Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press, 2009.

[ALW11] S.I. Adian, J. Lennox, and J. Wiegold. The Burnside Problem and Identities in Groups.

Ergebnisse Der Mathematik Und Ihrer Grenzgebiete. 2. Folge. Springer London, Limited,

2011.

[AS13] N. Aubrun and M. Sablik. Simulation of effective subshifts by two-dimensional subshifts of

finite type. Acta Appl. Math., 126:35–63, 2013.

[Ber66] R. Berger. The Undecidability of the Domino Problem. American Mathematical Society, 1966.

[Bow10] L. Bowen. Sofic entropy and amenable groups. ArXiv e-prints, August 2010.

[Col86] D. J. Collins. A simple presentation of a group with unsolvable word problem. Illinois Journal

of Mathematics, 30(2):230–234, 06 1986.

[CSC09] T. Ceccherini-Silberstein and M. Coornaert. Cellular Automata and Groups. Springer, 2009.

[Cul96] I. K. Culik. An aperiodic set of 13 wang tiles. Discrete Mathematics, 160(1-3):245–251, 1996.

[Die06] R. Diestel. Graph Theory. Electronic library of mathematics. Springer, 2006.

[DRS10] B. Durand, A. Romashchenko, and A. Shen. Effective closed subshifts in 1d can be imple-

mented in 2d. In Fields of Logic and Computation, volume 6300, pages 208–226. Springer

Berlin / Heidelberg, 2010.

[DY02] F. Dahmani and A. Yaman. Symbolic dynamics and relatively hyperbolic groups. 2002.

[FB02] N.P. Fogg and V. Berthé. Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture

Notes in Mathematics. Springer, 2002.

[Gri84] R. Grigorchuk. Degrees of growth of finitely generated groups, and the theory of invariant

means. Math. USSR Izv., 1984.

[Gri11] R. Grigorchuk. Milnor’s problem on the growth of groups and its consequences. ArXiv e-prints,

November 2011.

[GS98] C. Goodman-Strauss. Matching rules and substitution tilings. Annals of Mathematics,

147(1):pp. 181–223, 1998.

[HM10] M. Hochman and T. Meyerovitch. A characterization of the entropies of multidimensional

shifts of finite type. Annals of Mathematics, 171(3):2011–2038, 2010.

31

Bibiliography 32

[Hoc09] M. Hochman. On the dynamics and recursive properties of multidimensional symbolic systems.

Inventiones Mathematicae, 176(1):131–167, 2009.

[Kar96] J. Kari. A small aperiodic set of wang tiles. Discrete Mathematics, 160:259 – 264, 1996.

[Lan02] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2002.

[LM95] D.A. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge

University Press, 1995.

[Moz89] S. Mozes. Tilings, substitution systems and dynamical systems generated by them. Journal

d’Analyse Mathématique, 53(1):139–186, 1989.

[Nek05] V. Nekrashevych. Self-similar Groups. Mathematical surveys and monographs. American

Mathematical Society, 2005.

[Nov55] P. S Novikov. On the algorithmic unsolvability of the word problem in group theory. Trudy

Mat. Inst. Steklov, 44:143 pp. (Russian), 1955.

[Rob71] R. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inventiones Mathe-

maticae, 12:177–209, 1971.

[Wan60] H. Wang. Proving theorems by pattern recognition i. Commun. ACM, 3(4):220–234, April

1960.

	Abstract
	Acknowledgements
	Contents
	Introduction
	1. Preliminaries
	1.1 Group theoretic concepts
	1.2 Computational concepts and the word problem for groups
	1.3 Symbolic dynamics concepts

	2. A class of finitely generated groups where the subshift X1 is not sofic
	2.1 The subshift X1
	2.2 A generalization of the previous result

	3. Tilings of graphs generated by self-similar substitutions
	3.1 First definitions
	3.2 The emptiness problem and the Mozes property
	3.3 A partial order preserving decidability monotonically

	Conclusions
	Appendix
	Bibliography

